
Module 2:
Classical Algorithm Design

Techniques

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Module Topics

• 2.1 Divide and Conquer

• 2.2 Decrease and Conquer

• 2.3 Transform and Conquer

• 2.4 Space-Time Tradeoff: Sorting and

Hashing

2.1 Divide and Conquer

Divide-and-Conquer
The most-well known

algorithm design strategy:

1. We divide a problem of

instance size ‘n’ into

several sub problems

(each of size n/b);

2. Solve ‘a’ of these sub
problems (a ≥ 1; b > 1)

recursively and

3. Combine the solutions

to these sub problems to
obtain a solution for the

larger problem.

Typical Case of Divide and Conquer Problems

Merge Sort
• Split array A[0..n-1] in two about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:

• compare the first elements in the remaining
unprocessed portions of the arrays

• copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

Master Theorem to Solve
Recurrence Relations

• Assuming that size n is a

power of b to simplify analysis,

we have the following

recurrence for the running

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that

accounts for the time spent on

dividing an instance of size n

into instances of size n/b and

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1 � a > bd

())()(
24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2 � a = bd

()nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3 � a < bd

()3
)(nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0 � a > bd

())()(
2log2 nnnT Θ=Θ=

Merge Sort

Merge Algorithm

Example for Merge Sort

Analysis of Merge Sort

Binary Search
• Binary search is a Θ(log n), highly efficient search

algorithm, in a sorted array.

• It works by comparing a search key K with the array’s

middle element A[m]. If they match, the algorithm stops;

otherwise, the same operation is repeated recursively for

the first half of the array if K < A[m], and for the second

half if K > A[m].

• Though binary search in based on a recursive idea, it can

be easily implemented as a non-recursive algorithm.

Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0 r=12 m=6

l=7 r=12 m=9

l=7 r=8 m=7

55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55 1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0 r=12 m=6

l=0 r=5 m=2

l=0 r=1 m=0

l=1 r=1 m=1

l=1 r=0 STOP!!

55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search # comparisons

< 3 3

> 3 and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86

• A unimodal array is an array that has a sequence
of monotonically increasing integers followed by a
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5 6 7 8 9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 1

Using Master Theorem,

C(n) = Θ(logn)

Space complexity: Θ(1)

• Proof of Correctness
– We always maintain the invariant that the maximum

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to
be either at index m+1 or to the right of index m+1.
Hence, we set L = m+1 and retain R as it is,
maintaining the invariant that the maximum element is
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either
at index m or before index m. Hence, we set R = m
and retain L as it is, maintaining the invariant that the
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop
ends and we return the maximum element.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14

Applications of Binary Search (2)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i]
< A[i+1]. That is, the element is lower than the element to
the immediate left as well as to the element to the
immediate right.

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum.

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search

on the half corresponding to the smaller of its two neighbors.

Applications of Binary Search (2)
Local Minimum in an Array

8 5 7 2 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1 Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)

Applications of Binary Search (2)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5 Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8 Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0 1 2 3 4 5 6 7 8 9 10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 1 for n > 1

Basic Condition: T(1) = 1

Using Master Theorem, we have

a = 1, b = 2, d = 0 � a = bd.

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

Applications of Binary Search (2)
Local Minimum in an Array

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an
array, then the array has to have at least one local
minimum.

• Proof: Let us prove by contradiction.
– If the second number is not to be a local minimum, then the third

number in the array has to be less than the second number.

– Continuing like this, if the third number is not to be a local minimum,
then the fourth number has to be less than the third number and so
on.

– Again, continuing like this, if the penultimate number is not to be a
local minimum, then the last number in the array has to be smaller
than the penultimate number. This would mean the second
constraint is violated (and also the array is basically a
monotonically decreasing sequence). A contradiction.

• An element is a local
minimum in a two-dim array if
the element is the minimum
compared to the elements to
its immediate left and right as
well as to the elements to its
immediate top and bottom.
– If an element is in the edge

row or column, it is compared
only to the elements that are
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost

Row

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex(A[MidRowIndex][])

/* Finds the col index with the minimum element in the row
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex,
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1,

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood

Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element

12 in Mid Row is smaller

than its immediate top

(40) and bottom (33)

neighbors
12 at (1, 3) is a local minimum

Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0 1 2 3 4 5

Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0 1 2 3 4 5

Bottom Row Index

The minimum element

15 in Mid Row is smaller

than its immediate top

bottom (35) neighbor

15 at (0, 3) is a local minimum

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2)

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n)

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array
• Proof of Correctness

• We will prove by contradiction.
– Assume the local minimum is not in the top half (as well as in the

bottom half) and not in the middle row either.

– If the local minimum is not in the middle row and there is an
element in the immediate top row of the middle row that is less
than the minimum element in the middle row, then we move the
search space to the top half (or likewise to the bottom half).

– If there is no local minimum in the top half, then for every row in
the top half: for the minimum element in this row, there is an
element that is lower than it in the immediate top row (recursively
starting from the row above the middle row).

• This implies, there should be an element above the topmost row that
is less than the minimum element in the topmost row.

• Such a row (that is above the topmost row) does not exist. (A
contradiction)

• Hence, there should be some element in the top half (or the bottom
half) that should be a local minimum, if a local minimum does not exist
in the middle row.

2.2 Decrease and Conquer

Decrease by One: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array

divided into two parts: A[0,…,i-1] and A[i…n-1].
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the
sorted sequence A[0…i-1] to insert v at the appropriate position.

• The scanning is proceeded from right to left (i.e., for index j
running from i-1 to 0) until we find the right position for v.

• During this scanning process, v = A[i] is compared with A[j].

• If A[j] > v, then we v has to be placed somewhere before A[j] in the
final sorted sequence. So, A[j] cannot be at its current position (in
the final sorted sequence) and has to move at least one position to
the right. So, we copy A[j] to A[j+1] and decrement the index j, so
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to
A[j+1]. This also provides the stable property, in case v = A[j].

Insertion Sort
Pseudo Code and Analysis

The comparison A[j] > v is the basic operation.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved

all the way to index 0, by scanning through the entire sequence A[0…i-1].

Best Case (if the array

is already sorted): the

element v at A[i] will be just

compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we

retain v at A[i] itself and

do not scan the rest of the

sequence A[0…i-1]. There

is only one comparison

for each value of index i.

∑∑ ∑ ∑ ∑∑
−

= −=

−

=

−

=

−

=

−

=

−
==+−−==

1

1

0

1

1

1

1

1

1

1

1

0 2

)1(
10)1(11

n

i ij

n

i

n

i

n

i

i

j

nn
ii

)1(11)1(1
1

1

−=+−−=∑
−

=

nn
n

i

Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half

of the sorted sequence A[0…i-1] to put A[i] at the proper position.

∑ ∑∑ ∑
−

=

−

=

−

=

−

−=

Θ=
+

=+
−

==
1

1

2
1

1

1

1

2/)1(

1

)(
2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

i

ij

n
ii

nC

Example: Given sequence (also initial): 45 23 8 12 90 21

Iteration 1 (v = 23):

45 45 8 12 90 21

23 45 8 12 90 21

Iteration 2 (v = 8):

23 45 45 12 90 21

23 23 45 12 90 21

8 23 45 12 90 21

Iteration 3 (v = 12):

8 23 45 45 90 21

8 23 23 45 90 21

8 12 23 45 90 21

Iteration 4 (v = 90):

8 12 23 45 90 21

9 12 23 45 90 21

Iteration 5 (v = 21):

9 12 23 45 90 90

9 12 23 45 45 90

9 12 23 23 45 90

9 12 21 23 45 90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1
Overall time complexity

O(n2)

2.3 Transform and Conquer

Walks of Certain Length in a Graph

1 2

3 4

A2 =

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

1

2

3

4

1 2 3 4

3 1 1 2

1 2 2 1

1 2 2 1

2 1 1 3

=

A Walk is a sequence of vertices

connecting source and destination

such that any vertex (including the

end vertices) could occur even more

than once. In a path, an intermediate vertex

(if any is present) could occur only once.

Walk (also a path): 2 – 1 – 3 Length: 2

Walk (not a path): 2 – 1 – 2 – 4 – 3 Length: 4

Number of Walks in a Graph
walks of Length 4:

Find A4 = A2 * A2.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

1

2

3

4

1 2 3 4

15 9 9 14

9 10 10 9

9 10 10 9

14 9 9 15

A4 =

To find the number of walks length 4 between

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.

1 2

3 4

1

2

3

4

1 2 3 4

3 1 1 2

1 2 2 1

1 2 2 1

2 1 1 3

1

2

3

4

1 2 3 4

3 1 1 2

1 2 2 1

1 2 2 1

2 1 1 3

2.4 Space-Time Tradeoff

In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimum

and/or constant amount of extra storage space to
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may

sometime overwrite an input to the desired output as the algorithm
executes (as in the case of in-place sorting algorithms); the output
space may sometimes be a constant (for example in the case of
string-matching algorithms).

• Algorithms that use significant amount of extra storage
space (sometimes, additional space as large as the input
– example: merge sort) are said to be out-of-place in
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms:
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort

and Quick Sort have a worst-case time complexity of Θ(n2).

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a
worst-case time complexity of Θ(nlogn).

Hashing
• A very efficient method for implementing a dictionary, i.e., a set with

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m;

– If the keys are letters of some alphabet, the position of the letter in the
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet,
then, the hash function could be:

Collisions and Collision Resolution

If h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions

but some collisions should be expected

• In this module, we will look at open hashing that

works for arrays of any size, irrespective of the

hash function.

Open Hashing

Open Hashing
• Inserting and Deleting from the hash table is of the same

complexity as searching.

• If hash function distributes keys uniformly, average length of
linked list will be α = n/m. This ratio is called load factor.

• Average-case number of key comparisons for a successful search
is α/2; Average-case number of key comparisons for an
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get
a linked list containing all the n elements hashing to the same
index. To avoid this, we need to be careful in selecting a proper
hashing function.

– Mod-based hashing functions with a prime integer as the divisor are more
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if the number of keys, n > the size of
the hash table, m.

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and
for each element in the smaller array: search if it is in the hash table for
the larger array. If even one element in the smaller array is not there in
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n)

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time.

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the
brute-force approach.

• Note: The above solution could also be used to find whether two sets are
disjoint or not. Even if one element in the smaller array is there in the
larger array, we could stop!

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 11) + 2 (for 3) +

1 (for 7) + 2 (for 1) = 6

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 1 (for 11) + 5 (for 3) +

6 (for 7) + 2 (for 1) = 14

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.

Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 22) + 0 (for 25) +

1 (for 27) + 3 (for 28) = 5

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 6 comparisons for each element * 4 = 24

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the
contiguous subsequences of length 2 or above as well as the
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element
in the hash table.

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44

45

55

57

34 43 32 33 91

93

42 31

33

34

35

36

37

41

41

42

43

44

32

33

34

35
36

Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i] // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while (j is in H) do

j = j + 1

end while

if (j – A[i] > 1) then // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each
element in the array)

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44
45

55

57

34 43 32 33 91

93

42 31

33

34

35
36
37

41

