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2.1  Divide and Conquer



Divide-and-Conquer
The most-well known 

algorithm design strategy:

1. We divide a problem of 

instance size ‘n’ into 

several sub problems 

(each of size n/b);

2. Solve ‘a’ of these sub 
problems (a ≥ 1; b > 1) 

recursively and 

3. Combine the solutions 

to these sub problems to 
obtain a solution for the 

larger problem.

Typical Case of Divide and Conquer Problems



Merge Sort
• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of 
the arrays:

• compare the first elements in the remaining 
unprocessed portions of the arrays

• copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

– Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
other array into A.



Master Theorem to Solve 
Recurrence Relations

• Assuming that size n is a 

power of b to simplify analysis, 

we have the following 

recurrence for the running 

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that 

accounts for the time spent on 

dividing an instance of size n 

into instances of size n/b and 

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:
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a = 4; b = 2; d = 1 � a > bd
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Merge Sort



Merge Algorithm



Example for Merge Sort



Analysis of Merge Sort



Binary Search
• Binary search is a Θ(log n), highly efficient search 

algorithm, in a sorted array. 

• It works by comparing a search key K with the array’s 

middle element A[m]. If they match, the algorithm stops; 

otherwise, the same operation is repeated recursively for 

the first half of the array if K < A[m], and for the second 

half if K > A[m].

• Though binary search in based on a recursive idea, it can 

be easily implemented as a non-recursive algorithm.



Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7



55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55            1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [ Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0   r=12   m=6

l=0   r=5     m=2

l=0   r=1     m=0

l=1   r=1     m=1

l=1   r=0    STOP!!



55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search       # comparisons

< 3            3

> 3   and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86



• A unimodal array is an array that has a sequence 
of monotonically increasing integers followed by a 
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search. 

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5       6         7 8        9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 1

Using Master Theorem,

C(n) = Θ(logn) 

Space complexity: Θ(1)



• Proof of Correctness
– We always maintain the invariant that the maximum 

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to 
be either at index m+1 or to the right of index m+1. 
Hence, we set L = m+1 and retain R as it is, 
maintaining the invariant that the maximum element is 
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either 
at index m or before index m. Hence, we set R = m 
and retain L as it is, maintaining the invariant that the 
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop 
ends and we return the maximum element.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14



Applications of Binary Search (2)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i 
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i] 
< A[i+1]. That is, the element is lower than the element to 
the immediate left as well as to the element to the 
immediate right.

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum. 

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we 
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search 

on the half corresponding to the smaller of its two neighbors.



Applications of Binary Search (2)
Local Minimum in an Array

8 5 7 2 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1   Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)



Applications of Binary Search (2)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5   Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8   Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0        1        2        3       4        5       6         7 8        9       10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 1 for n > 1

Basic Condition: T(1) = 1

Using Master Theorem, we have

a = 1, b = 2, d = 0 � a = bd. 

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).



Applications of Binary Search (2)
Local Minimum in an Array

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an 
array, then the array has to have at least one local 
minimum.

• Proof: Let us prove by contradiction. 
– If the second number is not to be a local minimum, then the third 

number in the array has to be less than the second number. 

– Continuing like this, if the third number is not to be a local minimum, 
then the fourth number has to be less than the third number and so 
on. 

– Again, continuing like this, if the penultimate number is not to be a 
local minimum, then the last number in the array has to be smaller 
than the penultimate number. This would mean the second 
constraint is violated (and also the array is basically a 
monotonically decreasing sequence). A contradiction.



• An element is a local 
minimum in a two-dim array if 
the element is the minimum 
compared to the elements to 
its immediate left and right as 
well as to the elements to its 
immediate top and bottom. 
– If an element is in the edge 

row or column, it is compared 
only to the elements that are 
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost 

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost 

Row

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array



Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex( A[MidRowIndex][ ] )

/* Finds the col index with the minimum element in the row 
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex, 
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1, 

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array



Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0           1         2           3          4          5       6

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the 

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood



Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element 

12 in Mid Row is smaller 

than its immediate top 

(40) and bottom (33) 

neighbors
12 at (1, 3) is a local minimum



Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0           1         2           3          4          5



Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0           1         2           3          4          5

Bottom Row Index

The minimum element 

15 in Mid Row is smaller 

than its immediate top 

bottom (35) neighbor

15 at (0, 3) is a local minimum



Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2) 

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n) 

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)



Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array
• Proof of Correctness

• We will prove by contradiction. 
– Assume the local minimum is not in the top half (as well as in the 

bottom half) and not in the middle row either.

– If the local minimum is not in the middle row and there is an 
element in the immediate top row of the middle row that is less 
than the minimum element in the middle row, then we move the 
search space to the top half (or likewise to the bottom half).

– If there is no local minimum in the top half, then for every row in 
the top half: for the minimum element in this row, there is an 
element that is lower than it in the immediate top row (recursively 
starting from the row above the middle row). 

• This implies, there should be an element above the topmost row that 
is less than the minimum element in the topmost row. 

• Such a row (that is above the topmost row) does not exist. (A 
contradiction)

• Hence, there should be some element in the top half (or the bottom 
half) that should be a local minimum, if a local minimum does not exist 
in the middle row.



2.2  Decrease and Conquer



Decrease by One: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array 

divided into two parts: A[0,…,i-1] and A[i…n-1]. 
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the 
sorted sequence A[0…i-1] to insert v at the appropriate position. 

• The scanning is proceeded from right to left (i.e., for index j 
running from i-1 to 0) until we find the right position for v. 

• During this scanning process, v = A[i] is compared with A[j]. 

• If A[j] > v, then we v has to be placed somewhere before A[j] in the 
final sorted sequence. So, A[j] cannot be at its current position (in 
the final sorted sequence) and has to move at least one position to 
the right. So, we copy A[j] to A[j+1] and decrement the index j, so 
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to 
A[j+1]. This also provides the stable property, in case v = A[j]. 



Insertion Sort
Pseudo Code and Analysis

The comparison A[j] > v is the basic operation.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved

all the way to index 0, by scanning through the entire sequence A[0…i-1].

Best Case (if the array

is already sorted): the

element v at A[i] will be just

compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we

retain v at A[i] itself and 

do not scan the rest of the

sequence A[0…i-1]. There

is only one comparison

for each value of index i.
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Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half 

of the sorted sequence A[0…i-1] to put A[i] at the proper position.
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Example: Given sequence (also initial): 45 23   8   12   90   21

Iteration 1 (v = 23):

45 45 8   12   90   21

23   45 8   12   90   21

Iteration 2 (v = 8):  

23   45   45 12   90   21

23   23 45 12   90   21

8    23   45 12   90   21

Iteration 3 (v = 12):  

8    23   45   45 90   21

8    23   23 45 90   21

8    12   23   45 90   21 

Iteration 4 (v = 90):

8 12   23   45 90   21

9 12  23   45   90 21

Iteration 5 (v = 21):

9    12   23   45   90  90

9    12   23   45  45 90

9    12   23   23 45  90

9    12   21  23   45   90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1
Overall time complexity

O(n2)



2.3  Transform and Conquer



# Walks of Certain Length in a Graph

1 2

3 4

A2 = 

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

3     1    1    2

1     2    2    1

1     2    2    1

2     1    1    3

=

A Walk is a sequence of vertices 

connecting source and destination

such that any vertex (including the 

end vertices) could occur even more 

than once. In a path, an intermediate vertex 

(if any is present) could occur only once. 

Walk (also a path): 2 – 1 – 3            Length: 2

Walk (not a path): 2 – 1 – 2 – 4 – 3  Length: 4



Number of Walks in a Graph
# walks of Length 4: 

Find A4 = A2 * A2.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

1

2

3

4

1    2    3    4

15  9    9   14

9    10 10 9

9    10 10 9

14   9   9   15

A4 = 

To find the number of walks length 4 between 

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.

1 2

3 4

1

2

3

4

1     2    3    4

3     1    1    2

1     2    2    1

1     2    2    1

2     1    1    3

1

2

3

4

1     2    3    4

3     1    1    2

1     2    2    1

1     2    2    1

2     1    1    3



2.4 Space-Time Tradeoff



In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimum 

and/or constant amount of extra storage space to 
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may 

sometime overwrite an input to the desired output as the algorithm 
executes (as in the case of in-place sorting algorithms); the output 
space may sometimes be a constant (for example in the case of 
string-matching algorithms).

• Algorithms that use significant amount of extra storage 
space (sometimes, additional space as large as the input 
– example: merge sort) are said to be out-of-place in 
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms: 
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort 

and Quick Sort have a worst-case time complexity of Θ(n2). 

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a 
worst-case time complexity of Θ(nlogn).



Hashing
• A very efficient method  for implementing a dictionary, i.e., a set with 

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with 
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of 
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash 
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m; 

– If the keys are letters of some alphabet, the position of the letter in the 
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as 
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet, 
then, the hash function could be: 



Collisions and Collision Resolution

If   h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions 

but some collisions should be expected

• In this module, we will look at open hashing that 

works for arrays of any size, irrespective of the 

hash function.



Open Hashing



Open Hashing
• Inserting and Deleting from the hash table is of the same 

complexity as searching.

• If hash function distributes keys uniformly, average length of 
linked list will be α = n/m.  This ratio is called load factor.

• Average-case number of key comparisons for a successful search 
is α/2; Average-case number of key comparisons for an 
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get 
a linked list containing all the n elements hashing to the same 
index. To avoid this, we need to be careful in selecting a proper 
hashing function. 

– Mod-based hashing functions with a prime integer as the divisor are more 
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if  the number of keys, n > the size of 
the hash table, m.



Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct 
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and 
for each element in the smaller array: search if it is in the hash table for 
the larger array. If even one element in the smaller array is not there in 
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n) 

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time. 

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the 
brute-force approach.

• Note: The above solution could also be used to find whether two sets are 
disjoint or not. Even if one element in the smaller array is there in the 
larger array, we could stop!



Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.
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# comparisons = 1 (for 11) + 2 (for 3) + 

1 (for 7) + 2 (for 1) = 6 

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

# comparisons = 1 (for 11) + 5 (for 3) + 

6 (for 7) + 2 (for 1) = 14 

• Example 2: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.



Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

# comparisons = 1 (for 22) + 0 (for 25) + 

1 (for 27) + 3 (for 28) = 5 

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

# comparisons = 6 comparisons for each element * 4 = 24 

• Example 2: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for 

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.



Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the 
contiguous subsequences of length 2 or above as well as the 
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element 
in the hash table.
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H(K) = K mod 7
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Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i]   // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while ( j  is in H) do

j = j + 1

end while 

if ( j – A[i] > 1) then  // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L



Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for 
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or 
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first 
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each 
element in the array)
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