
Module 4

Dynamic Programming

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Introduction to Dynamic Programming
• Dynamic Programming is a general algorithm design technique for

solving problems defined by recurrences with overlapping sub problems

• “Programming” here means “planning”

• Main idea:

• set up a recurrence relating a solution to a larger instance to
solutions of some smaller instances

• solve smaller instances once

• record solutions in a table

• extract solution to the initial instance from that table

• Dynamic programming can be interpreted as a special variety of
space-and-time tradeoff (store the results of smaller instances
and solve a larger instance more quickly rather than repeatedly
solving the smaller instances more than once).

• Example: Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• F(n) = F(n-1) + F(n-2), for n > 1. F(0)=0; F(1) = 1

– F(6) = F(5) + F(4).

– F(5) = F(4) + F(3). Note that we do not solve F(4) twice. We find F(4) only
once and use that to compute F(5) and F(6).

Computing a binomial coefficient
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk
+ . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0

C(n,0) = 1, C(n,n) = 1 for n ≥≥≥≥ 0

Value of C(n,k) can be computed by filling a table:

0 1 2 . . . k-1 k

0 1

1 1 1

.

.

.

n-1 C(n-1,k-1) C(n-1,k)

n C(n,k)

Computing C(12,5)

Computing C(n,k): pseudocode
and analysis

Time efficiency: Time efficiency: ΘΘ((nknk))

Space efficiency: Space efficiency: ΘΘ((nknk))

Coin-Collecting Problem
• Problem Statement: Several coins are placed in cells of an n x m

board, no more than one coin per cell. A robot, located in the upper left
cell of the board, needs to collect as many of the coins as possible and
bring them to the bottom right cell. On each step, the robot can move
either one cell to the right or one cell down from its current location.
When the robot visits a cell with a coin, it always picks up that coin.
Design an algorithm to find the maximum number of coins the robot can
collect and a path it needs to follow to do this.

• Solution: Let F(i, j) be the largest number of coins the robot can collect
and bring to the cell (i, j) in the ith row and jth column of the board. It
can reach this cell either from the adjacent cell (i-1, j) above it or from
the adjacent cell (i, j-1) to the left of it.

• The largest numbers of coins that can be brought to these cells are F(i-
1, j) and Fi, j-1) respectively. Of course, there are no adjacent cells to
the left of the first column and above the first row. For such cells, we
assume there are 0 neighbors.

• Hence, the largest number of coins the robot can bring to cell (i, j) is the
maximum of the two numbers F(i-1, j) and F(i, j-1), plus the one
possible coin at cell (i, j) itself.

Coin-Collecting Problem

where cij = 1 if there is a coin in cell (i, j) and cij = 0 otherwise.

Time Complexity: Θ(nm)

Space Complexity: Θ(nm)

Recurrence

Coin-Collecting Problem
• Tracing back the optimal path:

• It is possible to trace the computations backwards to get an optimal

path.

• If F(i-1, j) > F(i, j-1), an optimal path to cell (i, j) must come down from

the adjacent cell above it;

• If F(i-1, j) < F(i, j-1), an optimal path to cell (i, j) must come from the

adjacent cell on the left;

• If F(i-1, j) = F(i, j-1), it can reach cell (i, j) from either direction. Ties can

be ignored by giving preference to coming from the adjacent cell to the

left.

• If there is only one choice, i.e., either F(i-1, j) or F(i, j-1) are not

available, use the other available choice.

• The optimal path can be obtained in Θ(n+m) time.

Coin-Collecting Problem: Ex-1

5

4 3

2 7

8 2

69

0 0 0 0 5 5

0 4 4 7 7 7

0 4 4 9 9 16

0 4 12 12 12 18

9 9 12 12 18 18

Coin-Collecting Problem: Ex-1 (1)

0 0 0 0 5 5

0 4 4 7 7 7

0 4 4 9 9 16

0 4 12 12 12 18

9 9 12 12 18 18

5

4 3

2 7

8 2

69

Coin-Collecting Problem: Ex-2

7 4

5 3

8 2

4 6 1

9 5

3 7

0 7 7 7 7 11

0

0

4

13

13

7 12 15 15 15

15 15 15 15 17

15 21 21 22 22

15 21 26 26 26

18 21 26 33 33

Coin-Collecting Problem: Ex-2 (1)

0 7 7 7 7 11

0

0

4

13

13

7 12 15 15 15

15 15 15 15 17

15 21 21 22 22

15 21 26 26 26

18 21 26 33 33

7 4

5 3

8 2

4 6 1

9 5

3 7

