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Networks or Graphs
• We typically use the terms interchangeably.
• Networks – refers to real systems

– WWW: network of web pages connected by URLs

– Society: network of individuals connected by family, 
friendship or professional ties

– Metabolic network: sum of all chemical reactions that 
take place in a cell

• Graphs: Mathematical representation of the 
networks
– Web graph, Social graph, Metabolic graph



Real systems of quite different nature can 

have the same network representation
• Even though these real systems have different nature, appearance or scope, 

they can be represented as the same network (graph)

• Internet – connected using routers

• Actor network – network of actors who acted together in at least one movie

• Protein-Protein Interaction (PPI) network – two proteins are connected if there 
is experimental evidence that they can bind each other in the cell

Internet

Actor Network

PPI

Network

Graph

Fig. 2.3: Barabasi



Networks: Terminologies
• Node – Components in the system

• Link – Interactions between the nodes

• Directed link – nodes that interact in a specific direction (A calling B, 
not vice-versa; URL A is linked to URL B; A likes B)

• Undirected link – Transmission lines on the power grid (two people 
who are friends to each other in Facebook; electric current flowing in 
both directions; A and B are siblings; A and B are co-authors)

• Degree of a node – Number of links incident on it

• In-degree - # incoming links; Out-degree - # outgoing links

• Directed network – contains all directed links

• Undirected network – contains all undirected links

• Some networks can have both directed and undirected links

– Metabolic network with certain reactions being reversible and 
certain reactions proceeding in only one direction

• It is important to make proper choices in the selection of links to 
apply the network science theory.

A regular graph is a graph in which all vertices have the same degree



Edge Attributes
• Weight (e.g., frequency of communication)

• Ranking (choice of dining parameters)

• Type (friend, relative, co-worker)

Source: girls school dormitory dining-table 

partners, 1st and 2nd choices (Moreno, 

The sociometry reader, 1960) 



Storing Graph Information

• Adjacency List                    Adjacency Matrix
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We represent only the outgoing edges for directed graphs
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Storing Graph Information

• Adjacency Matrix
• Unweighted graphs: Aij = 1 if 

there is a link pointing from 

node i to node j, and 0 

otherwise

• Weighted graphs: Aij = wij –

weight of a link from node i to 

node j, and 0 otherwise

1
2

3
4

5
3 2

5

8
7

3

1

2
3

4

5

1   2   3   4   5
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Note that Adjacency Matrix of an 

Undirected graph is a 
symmetric matrix
i.e., Aij = Aji
for given indices i and j



Degree and # Links

• Undirected network

– Let ki denote the degree of node i, then the total number 

of links is:

– The ½ factor is because we count each link twice while 

computing the sum of the degrees

– The average degree of an undirected network

On a complete graph of N nodes, 

the max. number of links is 
2

)1( −NN Average 
Degree

= N – 1

For many large real-world networks,

<k> ~ 1/N, implying that the networks are sparse



Degree and # Links
• Directed Network

– Let ki
in and ki

out denote the incoming and 
outgoing degrees of node i.

– The total number of links:

– Average degree of a directed network is:

–



Common Network Maps: their Properties

*

*

* - Subset of the real system



Degree Distribution

• Let pk denote the probability that a randomly selected node 
has degree k.

• For a fixed number of nodes (N) in the network, pk = Nk / N, 
where Nk is the number of degree k nodes.

• Average degree of a network is: 
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Nodes Degree

1 3

2 3

3 2

4 5

5 4

6 3

7 2

8 2

Degree # nodes

2 3

3 3

4 1

5 1

Degree Prob[deg]

2 0.375

3 0.375

4 0.125

5 0.125

Avg. Degree = (2*0.375) + (3*0.375) + (4*0.125) + (5*0.125)
= 3.0



Degree Distribution
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Degree Distribution Examples

N1 = 1

N2 = 2

N3 = 1 

p1 = N1 / N = ¼ = 0.25

p2 = N2 / N = 2/4 = 0.5

p3 = N3 / N = ¼ = 0.25

Average Degree 

= 1*0.25 + 2*0.5 + 1*0.25 

= 1.5

Average Degree

= 2*1.0

= 2.0

Source: 

Figure 2.4a: Barabasi



k

p(k) p(k)

k

k

p(k) p(k)

!
)(

k

ke
kp

kk−

=

Poisson

Distribution

( )












 −
−

=
2

2

2

2

1
)(

k

kk

k

ekp
σ

πσ

Gaussian

Distribution

kk
ekp

/
~)(

−

Exponential

Distribution

γ−
kkp ~)(

Power-Law

Distribution

k

(e.g., Star Graphs)



US Football 2000

Network

This is a network of 
115 football teams 
(nodes) that 
competed in the Fall 
2000 season. There 
is an edge between 
two teams (nodes) if 
they have competed 
against each other 
during the season.



US Airports network



US Airports 1997

Network

This is a network 
of 332 airports in 
the US in 1997. 
There is an edge 
between two 
airports if there is 
a direct flight 
connection 
between them.



Degree Distribution of Real-World Networks
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Assortativity Index

• Assortativity is a measure of the association of nodes of 
similar weight (usually, refer to node degrees). That is, high 
degree nodes tend to associate with high degree nodes 
and low-degree nodes with low-degree nodes.

• On the other hand, if high degree nodes associate with low 
degree nodes and vice-versa, it is referred to as 
disassortativity.

• We measure the assortativity index as the Pearson 
Correlation Coefficient (r) evaluated on the degrees of the 
end nodes of every link in the network.
– Positive values of r indicate the network exhibits assortativity.

– Negative values of r indicate the network exhibits diassortativity.

– Values of r close to 0 indicates the network is more neutral.



Example: Assortativity Index

1 2

3
45

Edges Degrees of End Nodes

X – Y Degree(X)    Degree(Y) X – Avg(X)   Y – Avg(Y) (X-Avg(X))(Y-Avg(Y))

1 – 2 3 2 0.5 -0.5 -0.25

1 – 4 3 3 0.5 0.5 0.25

1 – 5 3 2 0.5 -0.5 -0.25

2 – 4 2 3 -0.5 0.5 -0.25

3 – 4 2 3 -0.5 0.5 -0.25

3 – 5 2 2 -0.5 -0.5 0.25

Avg. X   2.5 2.5 SumSq 1.5 1.5 Sum  -0.5

Assortativity Index = -0.5 / [sqrt(1.5) * sqrt(1.5)] = -0.333 [disassortativity]

We follow the convention of considering edges

in the increasing order of the left node ID,

followed by increasing order of right node ID.



Assortativity of Social Networks
Network # Nodes Assortativity Index

Physics

Co-authorship 52,909 0.363

Film actor

Collaborations 449,913 0.208

Company 

Directors 7,673 0.276

E-mail Comm.

In real world, most of the social networks are assortative and the non-social

Networks are typically disassortative. However, there are some exceptions.

Network Assortativity Index Network Assortativity Index

Drug Users -0.118 Roget’s Thesaurus 0.174

Karate Club -0.476 Protein Structure 0.412

Students dating -0.119 St Marks Food Web 0.118



Assortativity of Social Journal Net.

This is a network of 475 

authors (vertices) 

involved in the 

production of 295 

articles for the Social 

Networks Journal since 

its inception until 2008; 

there is an edge 

between two vertices if 

the corresponding 

authors co-authored at 

least one paper 

published in the journal.

Assortative Index

0.349



Assortativity of Karate Club Network

Assortative Index

- 0.476

This is a network of 

34 members (nodes) 

of a Karate Club at a 

US university in the 

1970s; there is an 

edge between two 

nodes if the 

corresponding 

members were seen 

interacting with each 

other during the 

observation period. 



Maximal Matching of Edges
• A “Matching” M for a graph G 

= (V, E) is a set of 
independent edges (chosen 
from E) such that no two 
edges in M have a common 
end vertex.

• A “Maximal Matching” is a set 
of independent edges such 
that the addition of one more 
edge to this set violates the 
property of matching.

• A “Maximum Matching” is a 
set of independent edges such 
that every vertex in the graph 
could be paired with another 
vertex without violating the 
property of matching. 

1 2 3 4

5 6 7 8

Maximal 

Matching

{1 – 5, 2 – 7, 3 – 4}

{1 – 6, 2 – 7, 4 – 8}

{1 – 5, 2 – 6, 3 – 7, 4 – 8}

{1 – 2, 3 – 4, 5 – 6, 7 – 8}

Maximum 

Matching

{1 – 5, 2 – 6, 3 – 7, 4 – 8}

{1 – 2, 3 – 4, 5 – 6, 7 – 8}

For a graph with odd number of vertices 
(V), the maximum number of node pairs
that could be matched is (V/2) – 1.

Matching (arbitrary): {1 – 2, 3 – 4}



Maximal Node Matching (MNM)
• As a maximal matching need not maximize the number of nodes 

matched, the objective for MNM is to maximize the number of nodes 
that could be matched.

• If the MNM of a graph contains all the vertices in the graph, then the 
MNM corresponds to a maximum matching.

• Sample Application: Given a network of people who can work with 
each other, we want to maximize the number of two-member teams.

1 2 3 4

5 6 7 8

{1 – 2, 3 – 4, 5 – 6, 7 – 8} is an MNM

as well as a maximum matching

1 2 3 4

5 6 7 8

{1 – 5, 2 – 6, 3 – 7} is an MNM, but

not a maximum matching

{1 – 2, 6 – 7} is a maximal matching,

but is not an MNM.



MNM Algorithm
• Let M be the set of edges constituting a matching (MNM).

• An edge is said to be covered if it is either in M or is adjacent to an 
edge in M.

• At any time, we define the coverage weight of an edge as the number 
of uncovered edges adjacent to it.

• To start with, each edge in the graph is an uncovered edge.

• In each iteration, we remove the edge with the minimum coverage 
weight and include in the set M and also remove its adjacent edges (as 
they are no longer uncovered).
– We prefer to include an edge with a minimum coverage weight as 

such an edge is likely to cover a minimal number of adjacent edges 
and we can maximize the number of nodes matched.

• We repeat the iterations until there exists no edge in the graph.

1 2 3 4

5 6 7 8

Assume all edges are initially uncovered

Edge  Coverage 

Weight

1 – 2 4

1 – 5 3

1 – 6 5
2 – 3 3

2 – 6 5

Two edges are adjacent if they have a common end vertex

Edge  Coverage 

Weight

3 – 7 4

4 – 7 3

5 – 6 4
6 – 7 6

7 – 8 3



MNM Example 1

1 2 3 4

5 6 7 8

Given Graph

1 2 3 4

5 6 7 8

Initial Coverage Weights

4

3
5

3

5 4 3

4 6 3

1 2 3 4

5 6 7 8

Iteration 1
(Remove Edge 2 – 3

and its adjacent edges)

2
3

2

4 3 2

1 2 3 4

5 6 7 8

Iteration 2
(Remove Edge 1 – 5 

and its adjacent edges)

2

2 2



MNM Example 1 (2)

1 2 3 4

5 6 7 8

Iteration 3

(Remove Edge 4 – 7 

and its adjacent edges)

1 2 3 4

5 6 7 8

Final Maximal Node Matching



Intuition for Edge Selection Criteria

• What happens if pick an edge with the 

largest coverage weight to be part of MNM?

1 2 3 4

5 6 7 8

Assume all edges are initially uncovered

Edge  Coverage 

Weight

1 – 2 4

1 – 5 3

1 – 6 5

2 – 3 3

2 – 6 5

Edge  Coverage 

Weight

3 – 7 4

4 – 7 3

5 – 6 4

6 – 7 6

7 – 8 3

If select the edge {6 – 7} with the 

largest coverage weight of 6 to be 

part of the MNM, then we see that 

we are losing several edges from 

being considered for a matching.

There are only three available 
edges {1 – 2; 1 – 5; 2 – 3} for a 

subsequent iteration.

1 2 3 4

5 6 7 8



Intuition for Edge Selection Criteria (2)

• What happens if pick an edge with the 

smallest coverage weight to be part of MNM?

1 2 3 4

5 6 7 8

Assume all edges are initially uncovered

Edge  Coverage 

Weight

1 – 2 4

1 – 5 3

1 – 6 5

2 – 3 3

2 – 6 5

Edge  Coverage 

Weight

3 – 7 4

4 – 7 3

5 – 6 4

6 – 7 6

7 – 8 3

If select the edge {2 – 3} with the 

smallest coverage weight of 3 to 

be part of the MNM, then we are 

likely to retain several edges to be 

considered to be part of a 
matching in the subsequent 
iterations.

1 2 3 4

5 6 7 8



MNM Example 2

1

2 4 5

3 6 7

Given Graph Initial Coverage Weights

1

2 4 5

3 6 7
3

4

5 6

6 5

7
7

6

5
4

Iteration 1
(Remove Edge 1 – 3

and its adjacent edges)

1

2 4 5

3 6 7

3 5

4

5

5

4
4

Iteration 2
(Remove Edge 2 – 4

and its adjacent edges)

1

2 4 5

3 6 7
2

2
2

Note that in the case of MNM, we do not consider the weights of the vertices

(even if they have some weight) while computing the coverage weights

0.5

0.7 0.3 0.1

0.9 0.8 0.4



MNM Example 2 
(2) 1

2 4 5

3 6 7% of Node Matches: 86%

Assortative Index:  – 0.55

0.7 0.3 0.1

Final Maximal Node Matching
0.9 0.8 0.4

0.5



Maximal Assortative Matching 
(MAM) and Maximal Dissortative

Matching (MDM)
• We know that the assortative index of a set of edges can be from -1 to 1.

• MAM: A maximal matching whose assortative index is as large as 
possible (close to 1)
– Maximal matching of similar vertices

• MDM: A maximal matching whose assortative index is as small as 
possible (close to -1)
– Maximal matching of dissimilar vertices

• Assortative Weight of an Edge: 
– Coverage Weight * Absolute value of the difference in the weights of the 

end vertices of the edge

• MAM Algorithm: Run the MNM algorithm by removing the edge with the 
smallest assortativity weight in each iteration.

• MDM Algorithm: Run the MNM algorithm by removing the edge with the 
largest assortativity weight in each iteration.

N. Meghanathan, "Maximal Assortative Matching and Maximal Dissortative Matching for Complex Network 

Graphs," accepted for publication in The Computer Journal, 2016. DOI: 10.1093/comjnl/bxv102 



MAM Example 1

Given Graph

Initialization: Assortative Edge Weights

Iteration 1

Edge 3 – 6 is chosen for MAM

All its adjacent edges are 

removed.



MAM Example 1 (2)

Iteration 2

Edge 4 – 7 is chosen for MAM

All its adjacent edges are 

removed.



MAM Example 1 (3)



MDM Example 1

Given Graph

Initialization: Assortative Edge Weights

Iteration 1

Edge 3 – 4 is chosen for MDM

All its adjacent edges are 

removed.



MDM Example 1 (2)

Iteration 2

Edge 5 – 6 is chosen for MDM

All its adjacent edges are 

removed.



MDM Example 1 (3)



Cocitation and Bibliographic Coupling
• The CB-Adjacency matrix is the one where there is a 1 in 

(row index i, column index j) if there is an edge j to i.
– Aij = 1 iff there is an edge j � I

– Aij = 0 iff there is NO edge from j to i.

• Cocitation and Bibliographic coupling are some of the 
techniques to transform a directed graph to an undirected 
graph and analyze the info hidden in the directed graph.

• The cocitation of two vertices i and j in a directed graph 
is the number of vertices k that have outgoing edges 
pointing to both i and j. 
– Cocitation Cij = 1 iff Aik = 1 and Ajk = 1.

i j

Cij = 3



Cocitation Coupling: Example

1

23

4

6 5

1

2

3

4

5

6

1   2   3   4   5   6

0   0   1   0   0   1

1   0   1   0   0   0  

0   0   0   1   0   1

1   1   0   0   0   0

1   0   0   1   0   1

0   0   0   0   0   0

CB Adj.

Matrix

A =

1

2

3

4

5

6

1   2   3   4   5   6

0   1   0   1   1   0

0   0   0   1   0   0

1   1   0   0   0   0

0   0   1   0   1   0

0   0   0   0   0   0

1   0   1   0   1   0

AT =

Cocitation

Coupling

Matrix = 

1

2

3

4

5

6

1   2   3   4   5   6

=

1

2

3

4

5

6

1   2   3   4   5   6

0   0   1   0   0   1

1   0   1   0   0   0  

0   0   0   1   0   1

1   1   0   0   0   0

1   0   0   1   0   1

0   0   0   0   0   0

1

2

3

4

5

6

1   2   3   4   5   6

0   1   0   1   1   0

0   0   0   1   0   0

1   1   0   0   0   0

0   0   1   0   1   0

0   0   0   0   0   0

1   0   1   0   1   0

2   1   1   0   1   0 

1   2   0   1   1   0

1   0   2   0   2   0

0   1   0   2   1   0

1   1   2   1   3   0

0   0   0   0   0   0

Other than the entries for a vertex to itself, the only entries where
Cij > 1 are: C35 = C53 = 2; meaning that two papers (4 and 6) are citing both

papers 3 and 5.



Cocitation Coupling

• A cocitation network comprises of only undirected edges (i, j), iff
Cij > 0.

• The value of Cij is a good indicator of two papers i and j that deal 
with related topics.
– If two papers are often cited together in the same bibliography, they 

probably have something in common.

– The more often they are cited together, the more likely it is that they are 
related.

• Strength: Cocitation counts of papers increase with time. The rate 
of increase can be used to trace the evolution of an academic field.

• The co-citation measure reflects the opinion of many authors.

• Weakness with Cocitation coupling: The relative similarity 
between two papers is being adjudged with the number of papers 
citing them.

• For two papers i and j to be adjudged to be “strongly related” to each 
other, we should have more incoming edges to both of them. 
– This may not be the case for two papers (or at least one of them) that 

have few citations.

– Also, the relative similarity of two papers cannot be computed until both 
the papers are cited by at least one paper.



Bibliographic Coupling
• Two papers i and j are related if they refer to one 

or more papers k in common.

– The number of common references is an indicator of the 

similarity between the two papers.

• However, the similarity is based on the opinion of only the 

authors of the two papers; not others in the subject area – a 

weakness to assess similarity between two papers.

– It is a static measure: established when a paper gets 

published and not updated henceforth. 

• Hence, it cannot be used to trace the evolution of an academic 

field.

– Strength: Unlike Co-citation coupling, there is no need 

to wait for other papers to cite.



Bibliographic Coupling
• The bibliographic coupling 

of two vertices i and j in a 
directed graph is the number 

of vertices k that have 
incoming edges from both i 
and j. 

– Bibliographic coupling Bij = 
1 iff Aki = 1 and Akj = 1.

i j



Bibliographic Coupling: Example

1

23

4

6 5

1

2

3

4

5

6

1   2   3   4   5   6

0   0   1   0   0   1

1   0   1   0   0   0  

0   0   0   1   0   1

1   1   0   0   0   0

1   0   0   1   0   1

0   0   0   0   0   0

CB Adj.

Matrix

A =

1

2

3

4

5

6

1   2   3   4   5   6

0   1   0   1   1   0

0   0   0   1   0   0

1   1   0   0   0   0

0   0   1   0   1   0

0   0   0   0   0   0

1   0   1   0   1   0

AT =

Bibliogr.

Coupling

Matrix = 

1

2

3

4

5

6

1   2   3   4   5   6

=

1

2

3

4

5

6

1   2   3   4   5   6

0   0   1   0   0   1

1   0   1   0   0   0  

0   0   0   1   0   1

1   1   0   0   0   0

1   0   0   1   0   1

0   0   0   0   0   0

1

2

3

4

5

6

1   2   3   4   5   6

0   1   0   1   1   0

0   0   0   1   0   0

1   1   0   0   0   0

0   0   1   0   1   0

0   0   0   0   0   0

1   0   1   0   1   0

3   1   1   1   0   1

1   1   0   0   0   0

1   0   2   0   0   1 

1   0   0   2   0   2 

0   0   0   0   0   0

1   0   1   2   0   3

Other than the entries for a vertex to itself, the only entries where
Bij > 1 are: B46 = B64 = 2; meaning that two papers (1 and 3) are both being

referred by papers 4 and 6.



Bipartite Graph and Projection
• A bipartite graph (or bigraph) is a network whose 

nodes are divided into two disjoint sets U and V; 
the only links in the graph are those connecting 
a U-node to a V-node. 
– There is no link connecting two U-nodes or two V-

nodes.
– The U-nodes can be of one color and the V-nodes 

can be of another color; a link always connects two 
nodes of different colors.

• Projection:
– Projection U: Links involving the U-nodes. Two U-

nodes are connected if they link to the same V-node 
in the bipartite graph.

– Projection V: Links involving the V-nodes. Two V-
nodes are connected if they link to the same U-node 
in the bipartite graph. 



Bipartite Graph and Projection

Source: Fig. 2.9a, Barabasi

(Vertex Projection) (Group Projection)



Incidence Matrix and Projections

Vertex Projection
Two vertices are connected if they 

belong to at least one common group.

Group Projection
Two groups are connected if they 

share at least one common vertex.

VPij is the number of groups that 

i and j share. 

VPii is the number of groups to 

which i belongs to.

GPij is the number of vertices that 

groups i and j share. 

GPii is the number of vertices that 

belong to group i.



A B C D

1 2 3 4 5

A

B

C

D

1     2     3     4     5

1     0     0     1     0

0     1     1     0     1

1     1     1     1     0

0     0     1     1     1

1   0   0   1   0

0   1   1   0   1

1   1   1   1   0

0   0   1   1   1

1   0   1   0

0   1   1   0

0   1   1   1

1   0   1   1

0   1   0   1

2   0   2   1

0   3   2   2

2   2   4   2

1   2   2   3

1   0   1   0

0   1   1   0

0   1   1   1

1   0   1   1

0   1   0   1

1   0   0   1   0

0   1   1   0   1

1   1   1   1   0

0   0   1   1   1

2    1   1   2   0

1    2   2   1   1

1    2   3   2   2

2    1   2   3   1 

0    1   2   1   2

=

=

Adjacency Matrix   B

B BT BBT

BT B BTB

Groups

Vertices

Group Projection: Indicates the

number of vertices that are

common to any two groups.

Vertex Projection: Indicates 

the number of common groups 

for any two vertices.

A

B

C

D

A   B  C  D

1

2

3

4

5

1    2   3   4   5



Examples of Bipartite Graphs 
and Projections

• Actor-movie network: Actors are one set of nodes and the 
movies are another set of nodes. Each actor is connected 
to the movie(s) in which s/he has acted.
– Projection Actors (Actor network): Two actors are connected if they 

acted together in at least one movie

– Projection Movies (Movie network): Two movies are connected if 
they had at least one common actor.

• Diseasome network: One set of nodes are the diseases 
and another set of nodes are the genes: A disease is 
connected to a gene if mutations in that gene are known to 
affect the particular disease.
– Projection Gene (Gene network): Two genes are connected if they 

are associated with the same disease.

– Projection Disease (Disease network): Two diseases are connected
if the same genes are associated with them, indicating the two 
diseases have common genetic origins. 



Paths and Distances in Networks

• A path between two nodes i and j is a route along the 
links of the network; the length (distance dij) is the 
number of links the path contains.
– In an undirected network, dij = dji

– In a directed network, dij need not be equal to dji

• Shortest path (geodesic path): between any two nodes i 
and j is the path with the fewest number of links.

• Diameter of a network: Maximum of the shortest path 
lengths between any two nodes

• The number of paths (walks) of length k between any 
two vertices can be found from: Ak where A is the 
adjacency matrix of the network.

• The shortest path length between any two nodes i and j 
is the minimum value of k for which Ak-1[i, j] = 0 and     
Ak[i, j] > 0.



Eccentricity, Diameter, Radius, Center
• The eccentricity of a node is the maximum of the shortest path distance 

(# hops) to any other node in the network.

• The diameter of the network is the maximum of the node eccentricity 
values.

• The radius of the network is the minimum of the node eccentricity 
values.

• A node is said to be central if its eccentricity is equal to the radius of 
the network.

• The set of nodes that are central constitute the center of the network.

• Weiner Index: 

1 2

3 4

5 6

Nodes Distances

(Eccentricity)

1 1, 1, 2, 2, 2 (2)

2 1, 1, 1, 2, 2 (2) 

3 1, 1, 2, 2, 3 (3)
4 1, 1, 2, 2, 3 (3)
5 1, 1, 2, 2, 2 (2)

6 1, 1, 1, 2, 2 (2)

Diameter = 3

Radius 2

Center = {1, 2, 5, 6}

Average Path Length:

Weiner Index = 48
Avg. Path Length = 48/ (6*5)

= 1.60

∑∑
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Example 2: Path Length, Diameter

1 2 3 4

5 6 7 8

Distance Matrix

1

2

3

4

5

6

7
8

1    2    3    4    5    6    7    8
0    1    2    3    1    1    2    3

1    0    1    3    2    1    2    3

2    1    0    2    3    2    1    2

3    3    2    0    3    2    1    2

1    2    3    3    0    1    2    3

1    1    2    2    1    0    1    2

2    2    1    1    2    1    0    1

3    3    2    2    3    2    1    0

Eccentricity

3

3

3

3

3

2

2
3

Diameter = 3

Radius 2

Center = {6, 7}

Weiner Index = 106

Avg. Path Length = 106/(8*7)

= 1.89 

Sum

13

13

13

16

15

10

10

16



# Walks (Paths) of Certain Length

1 2

3 4

A2 = 

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

0     1    1    1

1     0    0    1

1     0    0    1

1    1    1    0

1

2

3

4

1     2    3    4

3     1    1    2

1     2    2    1

1     2    2    1

2     1    1    3

=

A Walk is a sequence of vertices 

connecting source and destination

such that any vertex (including the 

end vertices) could occur even more 

than once. In a path, an intermediate vertex 

(if any is present) could occur only once. 

Path: 2 – 1 – 3 Length: 2

Walk: 2 – 1 – 2 – 4 – 3 Length: 4



Number of Paths of Certain Length

1 2

3 4

A2 = 

1

2

3

4

1     2    3    4

0     0    0    1

1     0    0    1

1     0    0    0

0     0    1    0

1

2

3

4

1     2    3    4

0     0    1    0

0     0    1    1

0     0    0    1

1     0    0    0

=

1

2

3

4

1     2    3    4

0     0    0    1

1     0    0    1

1     0    0    0

0     0    1    0

1

2

3

4

1     2    3    4

0     0    0    1

1     0    0    1

1     0    0    0

0     0    1    0



Small Average Path Length and Diameter
• Co-Authorship studies

– Grossman (2002) Math mean 7.6, max 27

– Newman (2001) Physics mean 5.9, max 20

– Goyal et al (2004) Economics mean 9.5, max 29

• WWW
– Adamic, Pitkow (1999) – mean 3.1 (85.4% possible of 50M pages)

• Facebook
– Backstrom et al (2012) – mean 4.74 (721 million users)

• Small-World Property:

• A network of n nodes is said to exhibit the “small-world” property if the 
average path length of the network is proportional to ln(n) 
– Observed for random networks with Poisson degree distribution

• Ultra Small-World Property:

• A network of n nodes is said to exhibit the “ultra small-world” property if 
the average path length of the network is proportional to ln(n)/ln(ln(n)).
– Observed for scale-free networks with Power-law degree distribution

n = 100 ln(n) = 4.61 ln(n)/ln(ln(n)) = 3.02
n = 10,000 ln(n) = 9.21 ln(n)/ln(ln(n)) = 4.15

n = 10,000,000 ln(n) = 16.12 ln(n)/ln(ln(n)) = 5.79



Components (Clusters)
• The vertices of a graph are said to be in a single 

component if there is a path between the vertices. 

• A graph is said to be connected if all its vertices are in one 
single component; otherwise, the graph is said to be 
disconnected and consists of multiple components.

– Adding one or more links (bridges) can connect the 
different  components

Bridge



Breadth First Search (BFS)
• BFS is a graph traversal algorithm (like DFS); but, BFS proceeds in a 

concentric breadth-wise manner (not depth wise) by first visiting all 
the vertices that are adjacent to a starting vertex, then all unvisited 
vertices that are two edges apart from it, and so on.
– The above traversal strategy of BFS makes it ideal for determining 

minimum-edge (i.e., minimum-hop paths) on graphs.

• If the underling graph is connected, then all the vertices of the graph 
should have been visited when BFS is started from a randomly 
chosen vertex. 
– If there still remains unvisited vertices, the graph is not connected and the 

algorithm has to restarted on an arbitrary vertex of another connected 
component of the graph.

• BFS is typically implemented using a FIFO-queue (not a LIFO-stack 
like that of DFS).
– The queue is initialized with the traversal’s starting vertex, which is marked 

as visited. On each iteration, BFS identifies all unvisited vertices that are 
adjacent to the front vertex, marks them as visited, and adds them to the 
queue; after that, the front vertex is removed from the queue.

• When a vertex is visited for the first time, the corresponding edge that 
facilitated this visit is called the tree edge. When a vertex that is 
already visited is re-visited through a different edge, the 
corresponding edge is called a cross edge. 



Pseudo Code of BFS

BFS can be implemented with graphs represented as:
adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)



Example for BFS

Source: Figure 3.11: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.

0

1 1 1

2 2

0

1 1

2



Use of BFS to find Minimum Edge Paths

Source: Figure 3.12: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.

Note: DFS cannot be used to find minimum edge paths, because DFS is not guaranteed to 
visit all the one-hop neighbors of a vertex, before visiting its two-hop neighbors and so on.

For example, if DFS is executed starting from vertex ‘a’ on the above graph, then vertex ‘e’
would be visited through the path a – b – c – d – h – g – f – e and not through the 
direct path a – e, available in the graph.

a b c d

e f g h

1 2

3

5

4

7

6

8



Bi-Partite (2-Colorable) Graphs 
• A graph is said to be bi-partite or 2-colorable if the vertices of the 

graph can be colored in two colors such that every edge has its 
vertices in different colors. 

• In other words, we can partition the set of vertices of a graph into two 
disjoint sets such that there is no edge between vertices in the same 
set. All the edges in the graph are between vertices from the two sets.

• We can check for the 2-colorable property of a graph by running a 
BFS
– With BFS, if there are no cross-edges between vertices at the same level, 

then the graph is 2-colorable.

• We will use BFS as the algorithm to check for the 2-colorability of a 
graph.
– The level of the root is 0 (consider 0 to be even).

– The level of a child node is 1 more than the level of the parent node from 
which it was visited through a tree edge.

– If the level of a node is even, then color the vertex in yellow.

– If the level of a node is odd, then color the vertex in green.



Bi-Partite (2-Colorable) Graphs 

a b c

d e f

a b c

d e f

0 1

1

2

2 3

a b c

d e f

Example for a 2-Colorable Graph

a b

d e

Example for a Graph that is Not 2-Colorable

a b

d e

0 1

1 1

We encounter cross edges between vertices

b and e; d and e – all the three vertices are 

in the same level.



Examples: 2-Colorability of Graphs

f b c g

d a e

f b c g

d a e

01

1

1

1

b – d is a cross edge between

Vertices at the same level. So,

the graph is not 2-colorable

f b c g

d a e

f b c g

d a e

0

11

1

2

2

2

The above graph is 2-Colorable

as there are no cross edges

between vertices at the same level



Local Clustering Coefficient
• The local clustering coefficient captures the degree to 

which the neighbors of a given node link to each other.

• If ki is the degree of node i, then the maximum number of 

links between its ki neighbors is ki * (ki – 1) / 2.

• Let Li be the number of links among the neighbors of node 

i. Local clustering coefficient of node i is

• The local clustering coefficient is a probability that any two 

neighbor nodes of a node are linked to each other.

• Average Clustering Coefficient 

Is a measure of the probability that any two

neighbor nodes of a randomly selected node are

linked to each other.

Local clustering coefficient is a measure of the 

neighborhood density. Larger the value, more dense

is the neighborhood and vice-versa.



Examples for Local Clustering Coefficients



Case 
Study: 

PPI 
Network of 

Yeast

The probability of finding 

Nodes with degree 

less than 3 is 69%

Any two nodes are connected 

within a shorter distance

Nodes that have a 

high degree do not 

have a dense

neighborhood. The

contrary is observed.


