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Centrality
• Tells us which nodes are important in a network based on 

the topological structure of the network (instead of using 
the offline information about the nodes: e.g., popularity of 
nodes)
– How influential a person is within a social network

– Which genes play a crucial role in regulating systems and 
processes

– Infrastructure networks: if the node is removed, it would critically 
impede the functioning of the network.

Y Z

Nodes X and Z have higher

Degree

Node Y is more central from

the point of view of 

Betweenness – to reach from 

one end to the other

Closeness – can reach every

other vertex in the 

fewest number of hops

X



Centrality Metrics

• Degree-based Centrality Metrics
– Degree Centrality: measure of the number of vertices adjacent to a vertex 

(degree)

– Eigenvector Centrality: measure of the degree of the vertex as well as 

the degree of its neighbors

• Shortest-path based Centrality Metrics
– Betweeness Centrality: measure of the number of shortest paths a node is 

part of

– Closeness Centrality: measure of how close is a vertex to the other 

vertices [sum of the shortest path distances]

– Farness Centrality: captures the variation of the shortest path distances 

of a vertex to every other vertex

• Hybrid Centrality Metrics
– Local Clustering Coefficient based Degree Centrality: Nodes having a 

lower local clustering coefficient, but larger degree, lie on the shortest 

paths for several of  their neighbor nodes.



Degree Centrality

Weakness: Very likely that more than one vertex has the same degree and not 

possible to uniquely rank the vertices

Time Complexity: Θ(V2)



Eigenvector 
Centrality (1)

Power Iteration Method

Time Complexity: Θ(V3)



Eigenvector 
Centrality (2)

After 7 iterations



EigenVector Centrality Example (1)
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4

5

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

Iteration 1

Let X0 = 
1

1

1

1
1

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

1

1

1

1

1

=

1

2

2

3

2

Normalized Value = 4.69

≡

0.213

0.426

0.426

0.639

0.426

Iteration 2

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

0.213

0.426

0.426

0.639

0.426

=

0.426

0.852

1.065

1.278

1.065

Normalized Value = 2.19

0.195

0.389

0.486

0.584

0.486

≡



EigenVector Centrality Example (1)

1

2

3

4

5

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

Let X0 = 
1

1

1

1
1

Iteration 3

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

=

0.389

0.779

1.07

1.361

1.07

Normalized Value = 2.21

0.195

0.389

0.486

0.584

0.486

0.176

0.352

0.484

0.616

0.484

≡

Iteration 4

0   1   0   0   0

1 0   0   1   0

0   0   0   1   1

0   1   1   0   1

0   0   1   1   0

Normalized Value = 2.21 converges

0.176

0.352

0.484

0.616

0.484

0.352

0.792

1.100

1.320

1.100

=

0.176

0.352

0.484

0.616

0.484

Eigen Vector

Centrality

1

2

3

4

5



EigenVector Centrality Example (2)

1

2

3

4

5

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Let X0 = 

1

1

1

1
1

1

6

Iteration 1

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

1

1

1

1

1

1

2

2

1

3

1

1

=

Normalized Value = 4.472

0.447

0.447

0.224

0.671

0.224

0.224

Iteration 2

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Normalized Value = 1.674

0.447

0.447

0.224

0.671

0.224
0.224

0.671

0.671

0.447

0.895

0.671
0.671

0.401

0.401

0.267

0.535

0.401
0.401

=

≡

≡



EigenVector Centrality Example (2)

1

2

3

4

5

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Let X0 = 

1

1

1

1
1

1

6

Iteration 3

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Normalized Value = 1.872

0.401

0.401

0.267

0.535

0.401
0.401

0.668

0.936

0.401

1.203

0.535

0.535

0.357

0.500

0.214

0.643

0.286

0.286

Iteration 4

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Normalized Value = 1. 901

0.357

0.500

0.214

0.643

0.286

0.286

0.714

1.000

0.357

1.072

0.643

0.643

0.376

0.526

0.188

0.564

0.338

0.338

≡

≡

=

=



EigenVector Centrality Example (2)

1

2

3

4

5

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Let X0 = 

1

1

1

1
1

1

6

Iteration 5

0   1   1   0   0   0

1   0   0   1   0   0

1 0   0   0   0  0

0   1   0   0   1   1

0   0   0   1   0   0

0   0   0   1   0   0

Normalized Value = 1. 901 converges

0.376

0.526

0.188

0.564

0.338

0.338

0.714

0.940

0.376

1.202

0.564

0.564

0.376

0.494

0.198

0.632

0.297

0.297

≡=

0.376

0.494

0.198

0.632

0.297
0.297

EigenVector

Centrality

Node 

Ranking

4

2

1

5

6

3

Note that we typically

stop when the EigenVector

values converge. 

For exam purposes,

we will Stop when

the Normalized value

converges.



Closeness and Farness Centrality

1 23

6 7

8

4

5

1

2

3

4

5

6

7

8

1     2     3     4     5     6     7    8

0    1      1     1     1     2    3    2

1    0      2     2     2     1    2    1

1    2      0     2     2     3    4    3

1    2      2     0     2     3    4    3

1    2      2     2     0     3    4    3

2    1      3     3     3     0    1    2

3    2      4     4     4     1    0    3
2    1      3     3     3     2    3    0

Distance Matrix Principal

Eigenvector

δ1 = 

[0.2527    

0.2518    

0.3771     

0.3771      

0.3771        

0.3278      

0.4439        

0.3763]

Ranking of Nodes

Score Node ID

0.2518 2

0.2527 1

0.3278 6

0.3763 8

0.3771 3

0.3771 4

0.3771 5

0.4439 7
Sum of

distances
11

11

17

17

17

15

21

17

Principal

Eigenvalue

η1 = 16.315

Closeness
Farness

Time Complexity: Θ(VE + V2)



Betweeness Centrality

• We will now discuss how to find the total number of 
shortest paths between any two vertices j and k as well as 
to find out how many of these shortest paths go through a 
vertex i (j ≠ k ≠ i).

• Use Breadth First Search (BFS) to find the shortest path 
tree from vertex j to every other vertex k
– Root vertex j is at level 0

– Vertices that are 1-hop away from j are at level 1; 2-hops away 
from j are at level 2, and so on.

– The number of shortest paths from j to a vertex k at level p is the 
sum of the number of shortest paths from j to the neighbors of k in 
the original graph that are at level p-1 

– The number of shortest paths from j to k that go through vertex i is 
the maximum of the number of shortest paths from j to i and the 
number of shortest paths from k to i. 

Time Complexity: Θ(VE + V2)
(j < k for undirected graphs)



Betweenness
Centrality Example

BWC for node 0: 0.0

BWC for node 1

Pair (0, 5): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (2, 5): ���� 1 / 3

BWC (1) = 2.333

BWC for node 4

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (2, 5) ���� 1 / 3

Pair (2, 6) ���� 1 / 1

Pair (2, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2

BWC (2) = 4.333

BWC for node 3

Pair (2, 5) ���� 1 / 3

BWC (3) = 0.333

BWC for node 5

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (1, 3) ���� 1 / 2

Pair (1, 4) ���� 1 / 2

Pair (1, 6) ���� 1 / 1

Pair (1, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2
BWC (5) = 5.0

BWC for node 6: 0.0
BWC for node 7: 0.0

BWC for node 2

Pair (0, 3): ���� 1 / 1

Pair (0, 4): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (1, 3): ���� 1 / 2

Pair (1, 4): ���� 1 / 2
BWC (2): 4.0

ID BWC
0 0.0

1 2.333

2 4.0

3 0.333

4 4.333

5 5.0

6 0.0

7 0.0



For vertices

1, 6 and 7

BWC = 0



a b c g

d f e

a b c g

d f e

0

1

1

2 3

3 4

a b c g

d f e

1

1

1

2 2

2 4

Levels of 

Vertices on

the BFS tree

# shortest paths

from the root

to the other 

vertices

a b c g

d f e

01

1
2

3

34

a b c g

d f e

11

1
2

2

24

# shortest paths from a to g that go through c

is the maximum (# shortest paths from a to c,

# shortest paths from g to c)

= max (2, 1) = 2

BWC (‘c’ with respect to pair a-g) = 2/4



0

1

2

3

4

5

6 7

To determine how many

Shortest paths from nodes

1 to 7 that go through

node 4.

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0



To determine how many Shortest paths from nodes

1 to 7 that go through node 4: = Max(2, 1) = 2

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

0

1

2

3

4

5

6 7

1

1 1

2

2

2

2 2

0

1

2

3

4

5

6 7

2

1 1

1

1

1

1 1

BFS Tree

rooted at 

Vertex 1

BFS Tree

rooted at 

Vertex 7

# shortest paths

from vertex 1 to

the other vertices

# shortest paths

from vertex 7 to

the other vertices

BWC(node 4 with respect to pair 1-7) = 2/2



Ego Network
• The ego network is 

node-specific.
• The ego network for 

a node comprises of 
the node and its 
neighbors as 
vertices and the 
links connecting the 
node and/or its 
neighbors as edges.

• The BWC of a vertex 
computed on the 
entire graph is 
directly related to the 
LCCDC of the vertex 
computed on its ego 
network (see next 
few slides).
– Could be used to 

rank the vertices.



Local Clustering Coefficient-based 
Degree Centrality (LCCDC)

• Local Clustering Coefficient (LCC) of a node is the ratio of the number 
of edges connecting the neighbors of the node to that of the maximum 
number of edges between the neighbors of the node.

• A node having a lower LCC and a larger degree is more likely needed 
to connect its neighbor nodes on the shortest path, compared to that of 
a node having a larger LCC and a larger degree.

• LCCDC (v) = ( 1 – LCC(v) ) * degree(v)

• LCCDC can be used as an alternate metric for ranking the vertices in a 
graph in lieu of BWC.

• The LCCDC metric for a vertex can also be computed on the 
egocentric network graph of the vertex.

A maximum of 4(4-1)/2 = 6 edges is possible among

the neighbors of node 2.

There are actually 2 edges among the neighbors.

LCC(2) = 2/6 = 1/3.

Degree(2) = 4.

LCCDC(2) = [1 – LCC(2)] * Degree(2)

= [1 – 1/3] * 4 = 8/3 = 2.67.

Note: LCC of a vertex 

with Degree 1 is 1.0



LCCDC Example

Vertex Degree Max. Edges Actual Edges LCC 1-LCC LCCDC

among neighbs among neighbs

0 2 2(2-1)/2 = 1 1 1.0 0.0 0.0

1 3 3(3-1)/2 = 3 1 0.33 0.67 2.0

2 4 4(4-1)/2 = 6 2 0.33 0.67 2.67

3 3 3(3-1)/2 = 3 2 0.67 0.33 1.0

4 5 5(5-1)/2 = 10 5 0.5 0.5 2.5

5 5 5(5-1)/2 = 10 4 0.4 0.6 3.0

6 3 3(3-1)/2 = 3 3 1.0 0.0 0.0
7 3 3(3-1)/2 = 3 3 1.0 0.0 0.0

Vertex LCCDC BWC

0 0.0 0.0

1 2.0 2.33

2 2.67 4.0

3 1.0 0.33

4 2.5 4.33

5 3.0 5.0

6 0.0 0.0

7 0.0 0.0



Spearman’s Rank-based Correlation
• We could find the similarity of the ranking of the vertices in 

a graph with respect to two different centrality metrics 
using the Spearman’s rank-based correlation measure.

• We follow the convention of assigning the rank values from 
1 to n for a graph of n vertices, even though the vertex IDs 
range from 0 to n-1. 

• To obtain the rank for a vertex based on the list of values 
for a centrality metric, we first sort the values (in ascending 
order). 
– If there is any tie, we break the tie in favor of the vertex with a lower 

ID; we will thus be able to arrive at a tentative, but unique, rank 
value for each vertex with respect to the centrality metric. 

• We determine a final ranking of the vertices as follows: 
– For vertices with unique value of the centrality metric, the final 

ranking is the same as the tentative ranking. 

– For vertices with an identical value for the centrality metric, the final 
ranking is assigned to be the average of their tentative rankings. 



Spearman’s Rank-based Correlation
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i di is the difference in the final

ranking for vertex i in the two datasets

Correlation between BWC and LCCDC



Concordant, Discordant Pairs
• Let B and L be the two centrality metrics of 

interest.

• For any two vertices vi and vj:
– vi and vj are concordant if:

• B(vi) > B(vj) and L(vi) > L(vj)

• B(vi) < B(vj) and L(vi) < L(vj)

• B(vi) = B(vj) and L(vi) = L(vj)

– vi and vj are discordant if:
• B(vi) > B(vj) and L(vi) < L(vj)

• B(vi) < B(vj) and L(vi) > L(vj)

)1(
2

1

.#.#
),(

−

−
=

nn

pairsdisc    pairsconc
LBKCCKendall’s Concordance

based Correlation Coefficient

N. Meghanathan, "Correlation Coefficient Analysis of Centrality Metrics for Complex Network 
Graphs," Proceedings of the 4th Computer Science Online Conference, (CSOC-2015), Intelligent 

Systems in Cybernetics and Automation Theory: Advances in Intelligent Systems and Computing, 

Vol. 348, pp. 11-20, April 27-30, 2015 



Concordance-based Correlation

Pair LCCDC BWC         C/D

Vi, Vj (Vi, Vj) (Vi, Vj)    

0, 1 (0, 2) (0, 2.33)        C

0, 2 (0, 2.67) (0, 4)             C   

0, 3 (0, 1) (0, 0.33)        C  

0, 4 (0, 2.5) (0, 4.33)        C

0, 5 (0, 3) (0, 5)             C

0, 6 (0, 0) (0, 0)             C 

0, 7 (0, 0) (0, 0)             C

1, 2 (2, 2.67) (2.33, 4)        C

1, 3 (2, 1) (2.33, 0.33)   C

Pair LCCDC BWC

Vi, Vj (Vi, Vj) (Vi, Vj)

1, 4 (2, 2.5)         (2.33, 4.33)     C

1, 5 (2, 3) (2.33, 5)          C

1, 6 (2, 0) (2.33, 0)          C

1, 7 (2, 0) (2.33, 0)          C

2, 3 (2.67, 1)       (4, 0.33)          C

2, 4 (2.67, 2.5)    (4, 4.33)          D

2, 5 (2.67, 3)       (4, 5)               C

2, 6 (2.67, 0)       (4, 0)               C

2, 7 (2.67, 0) (4, 0)               C

3, 4 (1, 2.5) (0.33, 4.33)     C

3, 5 (1, 3) (0.33, 5)          C

3, 6 (1, 0) (0.33, 0)          C

3, 7 (1, 0)            (0.33, 0)          C

4, 5 (2.5, 3) (4.33, 5)          C

4, 6 (2.5, 0)         (4.33, 0)          C

4, 7 (2.5, 0) (4.33, 0)          C

5, 6 (3, 0) (5, 0)               C

5, 7 (3, 0)            (5, 0)               C

6, 7 (0, 0) (0, 0)               C

C – Concordant

D – Discordant

KCC = (27 – 1)/28

= 0.93

Vertex LCCDC BWC

0 0.0 0.0

1 2.0 2.33

2 2.67 4.0

3 1.0 0.33

4 2.5 4.33

5 3.0 5.0

6 0.0 0.0

7 0.0 0.0



Link Analysis-based Ranking

• We want to rank a node in a graph based on the 
number of edges pointing to it and/or leaving it as 
well as based on the rank of the nodes at the other 
end of these edges.

• Used primarily in web search
– We model the web as a graph: the pages as nodes and 

the edges are directed edges – a page citing (having a 
link to) another page.

• Hubs and Authorities (HITS) algorithm

• PageRank algorithm



Hypertext Induced Topic Search 
(HITS) Algorithm

• Hub: Node that points to lots of pages
– Yahoo like directory

• Authority: Node to which several other nodes point to
– The larger the number of nodes pointing to a node, the 

more authoritative is the view presented by a node on a 
particular subject

• The HITS algorithm assigns two scores for each 
page:
– Authority: an estimate of the value of the contents of the 

page
– Hub: an estimate of the value of its links to other pages

• A page is considered to be more authoritative if it is 
referenced by many hub pages that are relevant to a 
search query

• A page is a hub page for a search query if it points to 
many authoritative pages for that query

• Good authoritative and hub pages reinforce one 
another.

HUB

Auth

ority

A variant of HITS is used by Ask.com



Finding Pages for a Query in HITS
• Initial Work
• Step 1: Submit query q to a similarity-based engine and 

record the top n, i.e., the root set RS(q) pages.
• Step 2: Expand set RS(q) into the base set BS(q) to 

include pages pointed by RS(q) pages

• Step 3: Also include into BS(q), the pages pointing to 
RS(q) pages.

• Run the HITS algorithm
– For each page pj, compute the authority and hub score of pj

through a sequence of iterations.

• After obtaining the final authority and hub scores for 
each page, display the search results in the decreasing 
order of the authority scores. Pages having zero authority 
scores (nodes with no incoming links – strictly hubs) are 
listed in the decreasing order of their hub scores.
– Note: nodes that are strictly hubs still contribute to the authority of 

the nodes that it points to.



HITS Algorithm
• Let E be the set of links in BS(q) and a link from page pi to pj is 

denoted by the pair (i, j).

• A: Authority Update Step                  H: Hub Update Step

• After each iteration i, we scale the ‘a’ and ‘h’ values:

• As can be noted above, the two steps are interwined: one uses the 

values computed from the other.

– In this course, we will follow the asynchronous mode of 

computation, according to which the authority values are updated

first for a given iteration i and then the hub values are updated.

• The hub values at iteration i are using the authority values just 

computed in iteration i (rather than iteration i – 1).
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HITS Example (1)1

2

3 4

It # 1

a = [3    1     2      0]                   h = [0     5     3  6]

After Normalization,

a = [0.80    0.27    0.53    0]       h = [0    0.59    0.36    0.72]

It # 2

a = [1.67    0.72    1.31    0]       h = [0     2.98     1.67  3.7]

After Normalization,

a = [0.745  0.32    0.58    0]       h = [0    0.59    0.33    0.73]

It #3

a = [1.65    0.73    1.32    0]       h = [0    2.97    1.65    3.7]

After Normalization,

a = [0.74    0.32    0.59    0]       h = [0    0.59    0.33    0.73]

Order Pages

Listed after 

Search

1

3

2

4

Initial

a = [1    1    1     1]                  h = [1    1    1    1]



HITS Example (2)

1

2

3

4

5

It # 1

a = [  1      0   0      3        2  ]          h = [  5        3          5         1      0]

After Normalization,

a = [0.26   0   0   0.80   0.53]          h = [0.64    0.38    0.64    0.12   0]

It # 2

a = [0.12   0    0    1.66     1.28]      h = [2.94    1.66    2.94    0.12   0]

After Normalization,

a = [0.057   0    0    0.79     0.61]    h = [0.66    0.37    0.66    0.027  0]

It # 3

a = [0.027    0    0    1.69     1.32]    h = [3.01    1.69   3.01    0.027    0]

After Normalization,

a = [0.0126    0    0    0.79     0.61]    h = [0.66    0.37   0.66    0.006  0]

Initial

a = [1    1    1     1     1]                  h = [1    1    1 1    1]

Order Pages

Listed after 

Search

4

5

1

3

2

It # 4

a = [0.006    0    0    1.69     1.32]    h = [3.01    1.69   3.01    0.006    0]
After Normalization,

a = [0.003    0    0    0.79     0.61]    h = [0.66    0.37   0.66    0.001    0]



HITS Example (3)

1 2

3 4

It # 1

a = [0    3    1     1]                      h = [3     1     4 3]

After Normalization,

a = [0    0.91    0.30     0.30]       h = [0.51    0.17    0.68    0.51]

It # 2

a = [0    1.70     0.17    0.68]       h = [1.70    0.17     2.38   1.70]

After Normalization,

a = [0    0.92     0.09    0.37]       h = [0.50    0.05   0.70 0.50]

It # 3

a = [0    1.70     0.05  0.70]       h = [1.70   0.05    2.4    1.70]

After Normalization,

a = [0    0.92     0.027    0.38]     h = [0.50   0.014   0.70  0.50]

It # 4

a = [0    1.70     0.014  0.70]       h = [1.70     0.014   2.4 1.70]
After Normalization,
a = [0    0.92     0.008    0.38]     h = [0.50   0.004   0.71  0.50]

Order Pages

Listed after 

Search

2

4

3

1

Initial

a = [1    1    1     1]                  h = [1    1    1    1]



PageRank
• The basic idea is to analyze the link structure of the web to 

figure out which pages are more authoritative (important) in 
terms of quality.

• It is a content-independent scheme.

• If Page A has a hyperlink to Page B, it can be considered 
as a vote of A for B.
– If multiple pages link to B, then page B is likely to be a good page.

• A page is likely to be good if several other good pages link 
to it (a bit of recursive definition).
– Not all pages that link to B are of equal importance.

– A single link from CNN or Yahoo may be worth several times

• The web pages are first searched based on the content. 
The retrieved web pages are then listed based on their 
rank (computed on the original web, unlike HITS that is run 
on a graph of the retrieved pages).

• The Page Rank of the web pages are indexed 
(recomputed) for every regular time period.



PageRank

(Random Web Surfer)
• Web – graph of pages with the 

hyperlinks as directed edges.

• Analogy used to explain PageRank
algorithm (Random Web Surfer)

• User starts browsing on a random page

• Picks a random out-going link listed in 
that page and goes there (with a 
probability ‘d’, also called damping 
factor)
– Repeated forever

• The surfer jumps to a random page with 
probability 1-d. 
– Without this characteristic, there could be a 

possibility that someone could just end up 
oscillating between two pages B and C as in 
the traversing sequence below for the graph 
shown aside: 

G � E � F � E � D � B � C

B

C

E

FD

A

G

H
I

J

K

Lets say d = 0.85.

To decide the next page

to move, the surfer simply

generates a random 

number, r. If r <= 0.85, 

then the surfer randomly 

chooses an out-going link 

from the existing page. 

Otherwise, jumps to a 

randomly chosen page 

among all the pages,

including the current page.



PageRank Algorithm
• PageRank of Page X is the 

probability that the surfer is at page 
X at a randomly selected time. 
– Basically the proportion of time, the 

surfer would spend at page X.

• PageRank Algorithm
• Initial: Every node in the graph gets 

the same pagerank. PR(X) = 100% / 
N, where N is the number of nodes.

• At any time, at the end of each 
iteration, the page rank of all nodes 
add up to 100%.

• Actually, the initial pagerank value of 
a node is the pagerank at any time, if 
there are no edges in the graph. We 
have 100% / N chance of jumping to 
any node in the graph at any time.  

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1



PageRank Algorithm

• Page Rank of Node X is the probability of being at 
node X at the current time.

• How can we visit node X from where we are?

– (1-d) term: Random Jump: The probability of ending 

up at node X because of a random jump from some 

node, including node X, is 1/N. 

– However, such a random jump itself could occur with a 

probability of (1-d). 

– This amounts to a probability of (1-d)/N to be at node X 

due to a random jump.

Page Rank of 

Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
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PageRank Algorithm

• Page Rank of Node X is the probability of being at node X 
at the current time.

• How can we visit node X from where we are?
– d term: Edge Traversal from a Neighbor:

– We could visit node X from one of the nodes that point to node X. 

– Lets say, we are at node Y in the previous iteration. The probability 
of being at node Y in the previous iteration is PR(Y). We  can visit 
any of Y’s neighbors. 

– The probability of visiting node X among the Out(Y) out-going links 
of node Y is PR(Y) * (1 / Out(Y) ) = PR(Y) / Out(Y). 

– Likewise, we could visit X from any of its neighbors.

– All the probabilities of visiting X from any of its neighbors have to be 
added, because visiting X from any of its neighbors is independent 
of the neighbors. 

– The whole event of visiting from a neighbor occurs with a prob. ‘d’

Page Rank of 

Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR
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)(100*)1(
)(



PageRank

• Since Page Rank PR(X) denotes the probability of 
being at node X at any time, the sum of the Page 
Ranks of all the nodes at any time should be 
equal to 1.  

• We can also interpret the traversal from a node Y 
to node X as node Y contributing a part of its PR 
to node X (node Y equally shares its PR to the 
nodes connected to it through its out-going links).

• Implementation:
– Note that (unlike HITS) we need to use the page rank 

values of the nodes from the previous iteration to 
update the page rank values of the nodes in the current 
iteration. 

• Need to maintain two arrays at any time t: PR(t-1) and  PR(t)



Calculating PageRank of 
Node B

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B

Iteration 1

9.1

9.1

4.5
4.5

3.0

4.54.5

4.5

B
A

D

C

F

E

G

H
I

J

K G

H
I

D

C

F

E

For any iteration, 

PR(B) = 0.15 * 9.1 +

0.85 * [ PR(C) + ½ PR(D) +

⅓ PR(E) + ½ PR(F) +

½ PR (G) + ½ PR(H) + ½ PR(I) ]

Assume the damping factor d = 0.85 For Iteration 1, 

Substituting the PR values of

the nodes (initial values), 

we get PR(B) ≈ 31



Final PageRank Values for the 
Sample Graph

9.1
9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B
A

D

C

F

E

G

H
I

J

K

3.3 38.4
34.3

3.9 3.9

8.1

1.6

1.6

1.61.6

1.6

BA

D

C

F

E

G

H
I

J

K



PageRank: More Observations
• Algorithm converges (few iterations sufficient)

• For an arbitrary graph, it is pretty difficult to figure out the
final page rank values of the nodes.

• Certain inferences could be however made.

• For our sample graph:
– For nodes that do not have any in-links pointing to them, 

the only way we will end up at these nodes is through a random 
jump: this happens with a probability (1-d)/N.                                                   
In our case, it is (1-0.85)* 100/11 = 1.6%. 

– Two nodes with links from the same node (symmetric in-links) 
have the same PR. (nodes D and F) and it will be higher than 
those nodes without any in-links.

– One in-link from a node with high PR value contributes significantly 
to the PR value of a node compared to the in-links from several 
low PR nodes. 

• In our sample graph, an in-link from node B contributes significantly 
for node C compared to the several in-links that node E gets from the 
low-PR nodes. So, the quality of the in-links matters more than the 
number of in-links.



A B

C D
Note that there are NO sink nodes 

(nodes without any out-going links)

PR(A) = (1-d)*100/4

PR(B) = (1-d)*100/4 + d*[ PR(A) + 1/2 * PR(C) + PR(D) ]

PR(C) = (1-d)*100/4 + d*[PR(B)]

PR(D) = (1-d)*100/4 + d*[1/2*PR(C) ]

Initial

PR(A) = 25

PR(B) = 25

PR(C) = 25

PR(D) = 25

It # 1

PR(A) = 3.75

PR(B) = 56.88

PR(C) = 25

PR(D) = 14.38

Assume damping 
Factor d = 0.85

It # 2

PR(A) = 3.75 

PR(B) = 29.79

PR(C) = 52.10

PR(D) = 14.38

It # 3

PR(A) = 3.75 

PR(B) = 41.30 

PR(C) = 29.07

PR(D) = 25.89

It # 4

PR(A) = 3.75 

PR(B) = 41.29 

PR(C) = 38.86

PR(D) = 16.10

It # 5

PR(A) = 3.75 

PR(B) = 37.14

PR(C) = 38.85 

PR(D) = 20.27

It # 6

PR(A) = 3.75 

PR(B) = 40.68

PR(C) = 35.32 

PR(D) = 20.26

It # 7

PR(A) = 3.75 

PR(B) = 39.17

PR(C) = 38.33

PR(D) = 18.76

It # 8

PR(A) = 3.75 

PR(B) = 39.17

PR(C) = 37.04

PR(D) = 20.04

It # 9

PR(A) = 3.75 

PR(B) = 39.71

PR(C) = 37.04

PR(D) = 19.49

It # 10

PR(A) = 3.75 
PR(B) = 39.25
PR(C) = 37.5

PR(D) = 19.49 

Ranking

B

C
D

A

Page Rank Example (1)



Page Rank Example (2)
A

B C D

PR(A) = (1-d)*100/4 + d*[½*PR(B) + ½*PR(C) + PR(D)]

PR(B) = (1-d)*100/4 + d*[PR(A)]

PR(C) = (1-d)*100/4 + d*[½*PR(B)]

PR(D) = (1-d)*100/4 + d*[½*PR(C)]

Initial

PR(A) 25

PR(B) 25

PR(C) 25

PR(D) 25

It # 1

PR(A) 46.25

PR(B) 25

PR(C) 14.38

PR(D) 14.38

It # 2

PR(A) 32.71

PR(B) 43.06

PR(C) 14.38

PR(D) 9.86

It # 3

PR(A) 36.54

PR(B) 31.55

PR(C) 22.05

PR(D) 9.86

It # 4

PR(A) 34.91

PR(B) 34.81

PR(C) 17.16

PR(D) 13.12

It # 5

PR(A) 36.99

PR(B) 33.42

PR(C) 18.54

PR(D) 11.04

It # 6

PR(A) 35.22

PR(B) 35.12

PR(C) 17.95

PR(D) 11.63

It # 7

PR(A) 36.19

PR(B) 33.68

PR(C) 18.68

PR(D) 11.38

It # 8

PR(A) 35.68

PR(B) 34.51

PR(C) 18.06

PR(D) 11.69

It # 9

PR(A) 36.03

PR(B) 34.08

PR(C) 18.42

PR(D) 11.43

Node Ranking: A  B  C  D



Page Rank: Graph with Sink Nodes
Motivating Example

• Consider the graph: A � B

• Let d = 0.85

• PR(A) = 0.15*100/2                   PR(B) = 0.15*100/2 + 0.85*PR(A)

• Initial: PR(A) = 50, PR(B) = 50

• Iteration 1: 

– PR(A) = 0.15*100/2 = 7.5

– PR(B) = 0.15*100/2 + 0.85 * 50 = 50.0

– PR(A) + PR(B) = 57.5

– Note that the PR values do not add up to 100.

– This is because, B is not giving back the PR that it receives from A 

to any other node in the graph. The (0.85*50 = 42.5) value of PR

that B receives from A is basically lost.

– Once we get to B, there is no way to get out of B other than random 

jump to A and this happens only with probability (1-d).



Page Rank: Sink Nodes (Solution)
• Assume implicitly that the sink node is connected to every node in the 

graph (including itself).

– The sink node equally shares its PR with every node in the graph, 
including itself.

– If z is a sink node, with the above scheme, out(z) = N, the number 
of nodes in the graph.

• The probability of getting to node X at a given time is still the two terms 
below:

• Random jump from any node (probability, 1-d)

• Visit from a node with in-link to node X (probability, d)

Page Rank

of Node X

the second term of the original Page Rank formula is now broken between 

that of nodes with explicit out-going links to one or more selected nodes and 

the sink nodes with implicit out-going links to all nodes.

Explicit out-going

links to certain nodes

Implicit out-going

links to all nodes

(sink nodes)

∑ ∑
>− >−

++
−

=
xy z N

zPR
d

yOut

yPR
d

N

d
xPR

ϕ

)(

)(

)(100*)1(
)(



Consolidated PageRank Formula

A

B

C D

PR(A) = (1-d)*100/4 + d [ PR(B)/2 + PR(C)/1 + PR(D)/3] + (d)*[PR(A)/4]

PR(B) = (1-d)*100/4 + d [PR(D)/3] + (d)*[PR(A)/4]

PR(C) = (1-d)*100/4 + d [PR(B)/2 + PR(D)/3] + (d)*[PR(A)/4]

PR(D) = (1-d)*100/4 + (d)*[PR(A)/4]

Initial

PR(A) 25

PR(B) 25
PR(C) 25

PR(D) 25

It # 1

PR(A) 48.02

PR(B) 16.15
PR(C) 26.77

PR(D) 9.063

It # 2

PR(A) 46.14

PR(B) 16.52
PR(C) 23.386

PR(D) 13.954

It # 3

PR(A) 44.41

PR(B) 17.51
PR(C) 24.53

PR(D) 13.55

It # 4

PR(A) 45.32

PR(B) 17.03
PR(C) 24.47

PR(D) 13.18

Page Rank Example (3)

Node Ranking: A, C, B, D
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Page Rank Example (4)

A B

C D
PR(A) = 0.15*100/4 + 0.85*{PR(B)/4}

PR(B) = 0.15*100/4 + 0.85*{PR(A) + PR(C)/2 + PR(D)} + 

0.85*{PR(B)/4}

PR(C) = 0.15*100/4 + 0.85*{PR(B)/4}

PR(D) = 0.15*100/4 + 0.85*{PR(C)/2} + 0.85*{PR(B)/4}

Rank

B

D

A, C

The example shows that though both A and C differ with respect to

the number of outgoing edges, their Page Rank value is the same.

The Page Rank of a vertex is dependent only on the incoming

edges and where they are from.


