
Centrality Metrics

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

E-mail: natarajan.meghanathan@jsums.edu

Centrality
• Tells us which nodes are important in a network based on

the topological structure of the network (instead of using
the offline information about the nodes: e.g., popularity of
nodes)
– How influential a person is within a social network

– Which genes play a crucial role in regulating systems and
processes

– Infrastructure networks: if the node is removed, it would critically
impede the functioning of the network.

Y Z

Nodes X and Z have higher

Degree

Node Y is more central from

the point of view of

Betweenness – to reach from

one end to the other

Closeness – can reach every

other vertex in the

fewest number of hops

X

Centrality Metrics

• Degree-based Centrality Metrics
– Degree Centrality: measure of the number of vertices adjacent to a vertex

(degree)

– Eigenvector Centrality: measure of the degree of the vertex as well as

the degree of its neighbors

• Shortest-path based Centrality Metrics
– Betweeness Centrality: measure of the number of shortest paths a node is

part of

– Closeness Centrality: measure of how close is a vertex to the other

vertices [sum of the shortest path distances]

– Farness Centrality: captures the variation of the shortest path distances

of a vertex to every other vertex

• Hybrid Centrality Metrics
– Local Clustering Coefficient based Degree Centrality: Nodes having a

lower local clustering coefficient, but larger degree, lie on the shortest

paths for several of their neighbor nodes.

Degree Centrality

Weakness: Very likely that more than one vertex has the same degree and not

possible to uniquely rank the vertices

Time Complexity: Θ(V2)

Eigenvector
Centrality (1)

Power Iteration Method

Time Complexity: Θ(V3)

Eigenvector
Centrality (2)

After 7 iterations

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Iteration 1

Let X0 =
1

1

1

1
1

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

1

1

1

1

=

1

2

2

3

2

Normalized Value = 4.69

≡

0.213

0.426

0.426

0.639

0.426

Iteration 2

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

0.213

0.426

0.426

0.639

0.426

=

0.426

0.852

1.065

1.278

1.065

Normalized Value = 2.19

0.195

0.389

0.486

0.584

0.486

≡

EigenVector Centrality Example (1)

1

2

3

4

5

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Let X0 =
1

1

1

1
1

Iteration 3

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

=

0.389

0.779

1.07

1.361

1.07

Normalized Value = 2.21

0.195

0.389

0.486

0.584

0.486

0.176

0.352

0.484

0.616

0.484

≡

Iteration 4

0 1 0 0 0

1 0 0 1 0

0 0 0 1 1

0 1 1 0 1

0 0 1 1 0

Normalized Value = 2.21 converges

0.176

0.352

0.484

0.616

0.484

0.352

0.792

1.100

1.320

1.100

=

0.176

0.352

0.484

0.616

0.484

Eigen Vector

Centrality

1

2

3

4

5

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 1

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

1

1

1

1

1

1

2

2

1

3

1

1

=

Normalized Value = 4.472

0.447

0.447

0.224

0.671

0.224

0.224

Iteration 2

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.674

0.447

0.447

0.224

0.671

0.224
0.224

0.671

0.671

0.447

0.895

0.671
0.671

0.401

0.401

0.267

0.535

0.401
0.401

=

≡

≡

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 3

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1.872

0.401

0.401

0.267

0.535

0.401
0.401

0.668

0.936

0.401

1.203

0.535

0.535

0.357

0.500

0.214

0.643

0.286

0.286

Iteration 4

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901

0.357

0.500

0.214

0.643

0.286

0.286

0.714

1.000

0.357

1.072

0.643

0.643

0.376

0.526

0.188

0.564

0.338

0.338

≡

≡

=

=

EigenVector Centrality Example (2)

1

2

3

4

5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Let X0 =

1

1

1

1
1

1

6

Iteration 5

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

Normalized Value = 1. 901 converges

0.376

0.526

0.188

0.564

0.338

0.338

0.714

0.940

0.376

1.202

0.564

0.564

0.376

0.494

0.198

0.632

0.297

0.297

≡=

0.376

0.494

0.198

0.632

0.297
0.297

EigenVector

Centrality

Node

Ranking

4

2

1

5

6

3

Note that we typically

stop when the EigenVector

values converge.

For exam purposes,

we will Stop when

the Normalized value

converges.

Closeness and Farness Centrality

1 23

6 7

8

4

5

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

0 1 1 1 1 2 3 2

1 0 2 2 2 1 2 1

1 2 0 2 2 3 4 3

1 2 2 0 2 3 4 3

1 2 2 2 0 3 4 3

2 1 3 3 3 0 1 2

3 2 4 4 4 1 0 3
2 1 3 3 3 2 3 0

Distance Matrix Principal

Eigenvector

δ1 =

[0.2527

0.2518

0.3771

0.3771

0.3771

0.3278

0.4439

0.3763]

Ranking of Nodes

Score Node ID

0.2518 2

0.2527 1

0.3278 6

0.3763 8

0.3771 3

0.3771 4

0.3771 5

0.4439 7
Sum of

distances
11

11

17

17

17

15

21

17

Principal

Eigenvalue

η1 = 16.315

Closeness
Farness

Time Complexity: Θ(VE + V2)

Betweeness Centrality

• We will now discuss how to find the total number of
shortest paths between any two vertices j and k as well as
to find out how many of these shortest paths go through a
vertex i (j ≠ k ≠ i).

• Use Breadth First Search (BFS) to find the shortest path
tree from vertex j to every other vertex k
– Root vertex j is at level 0

– Vertices that are 1-hop away from j are at level 1; 2-hops away
from j are at level 2, and so on.

– The number of shortest paths from j to a vertex k at level p is the
sum of the number of shortest paths from j to the neighbors of k in
the original graph that are at level p-1

– The number of shortest paths from j to k that go through vertex i is
the maximum of the number of shortest paths from j to i and the
number of shortest paths from k to i.

Time Complexity: Θ(VE + V2)
(j < k for undirected graphs)

Betweenness
Centrality Example

BWC for node 0: 0.0

BWC for node 1

Pair (0, 5): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (2, 5): ���� 1 / 3

BWC (1) = 2.333

BWC for node 4

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (2, 5) ���� 1 / 3

Pair (2, 6) ���� 1 / 1

Pair (2, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2

BWC (2) = 4.333

BWC for node 3

Pair (2, 5) ���� 1 / 3

BWC (3) = 0.333

BWC for node 5

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (1, 3) ���� 1 / 2

Pair (1, 4) ���� 1 / 2

Pair (1, 6) ���� 1 / 1

Pair (1, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2
BWC (5) = 5.0

BWC for node 6: 0.0
BWC for node 7: 0.0

BWC for node 2

Pair (0, 3): ���� 1 / 1

Pair (0, 4): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (1, 3): ���� 1 / 2

Pair (1, 4): ���� 1 / 2
BWC (2): 4.0

ID BWC
0 0.0

1 2.333

2 4.0

3 0.333

4 4.333

5 5.0

6 0.0

7 0.0

For vertices

1, 6 and 7

BWC = 0

a b c g

d f e

a b c g

d f e

0

1

1

2 3

3 4

a b c g

d f e

1

1

1

2 2

2 4

Levels of

Vertices on

the BFS tree

shortest paths

from the root

to the other

vertices

a b c g

d f e

01

1
2

3

34

a b c g

d f e

11

1
2

2

24

shortest paths from a to g that go through c

is the maximum (# shortest paths from a to c,

shortest paths from g to c)

= max (2, 1) = 2

BWC (‘c’ with respect to pair a-g) = 2/4

0

1

2

3

4

5

6 7

To determine how many

Shortest paths from nodes

1 to 7 that go through

node 4.

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

To determine how many Shortest paths from nodes

1 to 7 that go through node 4: = Max(2, 1) = 2

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

0

1

2

3

4

5

6 7

1

1 1

2

2

2

2 2

0

1

2

3

4

5

6 7

2

1 1

1

1

1

1 1

BFS Tree

rooted at

Vertex 1

BFS Tree

rooted at

Vertex 7

shortest paths

from vertex 1 to

the other vertices

shortest paths

from vertex 7 to

the other vertices

BWC(node 4 with respect to pair 1-7) = 2/2

Ego Network
• The ego network is

node-specific.
• The ego network for

a node comprises of
the node and its
neighbors as
vertices and the
links connecting the
node and/or its
neighbors as edges.

• The BWC of a vertex
computed on the
entire graph is
directly related to the
LCCDC of the vertex
computed on its ego
network (see next
few slides).
– Could be used to

rank the vertices.

Local Clustering Coefficient-based
Degree Centrality (LCCDC)

• Local Clustering Coefficient (LCC) of a node is the ratio of the number
of edges connecting the neighbors of the node to that of the maximum
number of edges between the neighbors of the node.

• A node having a lower LCC and a larger degree is more likely needed
to connect its neighbor nodes on the shortest path, compared to that of
a node having a larger LCC and a larger degree.

• LCCDC (v) = (1 – LCC(v)) * degree(v)

• LCCDC can be used as an alternate metric for ranking the vertices in a
graph in lieu of BWC.

• The LCCDC metric for a vertex can also be computed on the
egocentric network graph of the vertex.

A maximum of 4(4-1)/2 = 6 edges is possible among

the neighbors of node 2.

There are actually 2 edges among the neighbors.

LCC(2) = 2/6 = 1/3.

Degree(2) = 4.

LCCDC(2) = [1 – LCC(2)] * Degree(2)

= [1 – 1/3] * 4 = 8/3 = 2.67.

Note: LCC of a vertex

with Degree 1 is 1.0

LCCDC Example

Vertex Degree Max. Edges Actual Edges LCC 1-LCC LCCDC

among neighbs among neighbs

0 2 2(2-1)/2 = 1 1 1.0 0.0 0.0

1 3 3(3-1)/2 = 3 1 0.33 0.67 2.0

2 4 4(4-1)/2 = 6 2 0.33 0.67 2.67

3 3 3(3-1)/2 = 3 2 0.67 0.33 1.0

4 5 5(5-1)/2 = 10 5 0.5 0.5 2.5

5 5 5(5-1)/2 = 10 4 0.4 0.6 3.0

6 3 3(3-1)/2 = 3 3 1.0 0.0 0.0
7 3 3(3-1)/2 = 3 3 1.0 0.0 0.0

Vertex LCCDC BWC

0 0.0 0.0

1 2.0 2.33

2 2.67 4.0

3 1.0 0.33

4 2.5 4.33

5 3.0 5.0

6 0.0 0.0

7 0.0 0.0

Spearman’s Rank-based Correlation
• We could find the similarity of the ranking of the vertices in

a graph with respect to two different centrality metrics
using the Spearman’s rank-based correlation measure.

• We follow the convention of assigning the rank values from
1 to n for a graph of n vertices, even though the vertex IDs
range from 0 to n-1.

• To obtain the rank for a vertex based on the list of values
for a centrality metric, we first sort the values (in ascending
order).
– If there is any tie, we break the tie in favor of the vertex with a lower

ID; we will thus be able to arrive at a tentative, but unique, rank
value for each vertex with respect to the centrality metric.

• We determine a final ranking of the vertices as follows:
– For vertices with unique value of the centrality metric, the final

ranking is the same as the tentative ranking.

– For vertices with an identical value for the centrality metric, the final
ranking is assigned to be the average of their tentative rankings.

Spearman’s Rank-based Correlation

)1(

6

1),(
2

1

2

−
−=
∑

=

nn

d

LBSCC

n

i

i di is the difference in the final

ranking for vertex i in the two datasets

Correlation between BWC and LCCDC

Concordant, Discordant Pairs
• Let B and L be the two centrality metrics of

interest.

• For any two vertices vi and vj:
– vi and vj are concordant if:

• B(vi) > B(vj) and L(vi) > L(vj)

• B(vi) < B(vj) and L(vi) < L(vj)

• B(vi) = B(vj) and L(vi) = L(vj)

– vi and vj are discordant if:
• B(vi) > B(vj) and L(vi) < L(vj)

• B(vi) < B(vj) and L(vi) > L(vj)

)1(
2

1

.#.#
),(

−

−
=

nn

pairsdisc pairsconc
LBKCCKendall’s Concordance

based Correlation Coefficient

N. Meghanathan, "Correlation Coefficient Analysis of Centrality Metrics for Complex Network
Graphs," Proceedings of the 4th Computer Science Online Conference, (CSOC-2015), Intelligent

Systems in Cybernetics and Automation Theory: Advances in Intelligent Systems and Computing,

Vol. 348, pp. 11-20, April 27-30, 2015

Concordance-based Correlation

Pair LCCDC BWC C/D

Vi, Vj (Vi, Vj) (Vi, Vj)

0, 1 (0, 2) (0, 2.33) C

0, 2 (0, 2.67) (0, 4) C

0, 3 (0, 1) (0, 0.33) C

0, 4 (0, 2.5) (0, 4.33) C

0, 5 (0, 3) (0, 5) C

0, 6 (0, 0) (0, 0) C

0, 7 (0, 0) (0, 0) C

1, 2 (2, 2.67) (2.33, 4) C

1, 3 (2, 1) (2.33, 0.33) C

Pair LCCDC BWC

Vi, Vj (Vi, Vj) (Vi, Vj)

1, 4 (2, 2.5) (2.33, 4.33) C

1, 5 (2, 3) (2.33, 5) C

1, 6 (2, 0) (2.33, 0) C

1, 7 (2, 0) (2.33, 0) C

2, 3 (2.67, 1) (4, 0.33) C

2, 4 (2.67, 2.5) (4, 4.33) D

2, 5 (2.67, 3) (4, 5) C

2, 6 (2.67, 0) (4, 0) C

2, 7 (2.67, 0) (4, 0) C

3, 4 (1, 2.5) (0.33, 4.33) C

3, 5 (1, 3) (0.33, 5) C

3, 6 (1, 0) (0.33, 0) C

3, 7 (1, 0) (0.33, 0) C

4, 5 (2.5, 3) (4.33, 5) C

4, 6 (2.5, 0) (4.33, 0) C

4, 7 (2.5, 0) (4.33, 0) C

5, 6 (3, 0) (5, 0) C

5, 7 (3, 0) (5, 0) C

6, 7 (0, 0) (0, 0) C

C – Concordant

D – Discordant

KCC = (27 – 1)/28

= 0.93

Vertex LCCDC BWC

0 0.0 0.0

1 2.0 2.33

2 2.67 4.0

3 1.0 0.33

4 2.5 4.33

5 3.0 5.0

6 0.0 0.0

7 0.0 0.0

Link Analysis-based Ranking

• We want to rank a node in a graph based on the
number of edges pointing to it and/or leaving it as
well as based on the rank of the nodes at the other
end of these edges.

• Used primarily in web search
– We model the web as a graph: the pages as nodes and

the edges are directed edges – a page citing (having a
link to) another page.

• Hubs and Authorities (HITS) algorithm

• PageRank algorithm

Hypertext Induced Topic Search
(HITS) Algorithm

• Hub: Node that points to lots of pages
– Yahoo like directory

• Authority: Node to which several other nodes point to
– The larger the number of nodes pointing to a node, the

more authoritative is the view presented by a node on a
particular subject

• The HITS algorithm assigns two scores for each
page:
– Authority: an estimate of the value of the contents of the

page
– Hub: an estimate of the value of its links to other pages

• A page is considered to be more authoritative if it is
referenced by many hub pages that are relevant to a
search query

• A page is a hub page for a search query if it points to
many authoritative pages for that query

• Good authoritative and hub pages reinforce one
another.

HUB

Auth

ority

A variant of HITS is used by Ask.com

Finding Pages for a Query in HITS
• Initial Work
• Step 1: Submit query q to a similarity-based engine and

record the top n, i.e., the root set RS(q) pages.
• Step 2: Expand set RS(q) into the base set BS(q) to

include pages pointed by RS(q) pages

• Step 3: Also include into BS(q), the pages pointing to
RS(q) pages.

• Run the HITS algorithm
– For each page pj, compute the authority and hub score of pj

through a sequence of iterations.

• After obtaining the final authority and hub scores for
each page, display the search results in the decreasing
order of the authority scores. Pages having zero authority
scores (nodes with no incoming links – strictly hubs) are
listed in the decreasing order of their hub scores.
– Note: nodes that are strictly hubs still contribute to the authority of

the nodes that it points to.

HITS Algorithm
• Let E be the set of links in BS(q) and a link from page pi to pj is

denoted by the pair (i, j).

• A: Authority Update Step H: Hub Update Step

• After each iteration i, we scale the ‘a’ and ‘h’ values:

• As can be noted above, the two steps are interwined: one uses the

values computed from the other.

– In this course, we will follow the asynchronous mode of

computation, according to which the authority values are updated

first for a given iteration i and then the hub values are updated.

• The hub values at iteration i are using the authority values just

computed in iteration i (rather than iteration i – 1).

∑
∈

=
Eji

ij phpa
),(

)()(∑
∈

=
Ekj

kj paph
),(

)()(

()∑
=

k k

i

j

i

j

i

pa

pa
pa

2)(

)(

)(

)(

)(
)(

()2)(

)(

)(

)(

)(
)(

∑
=

k k

i

j

i

j

i

ph

ph
ph

HITS Example (1)1

2

3 4

It # 1

a = [3 1 2 0] h = [0 5 3 6]

After Normalization,

a = [0.80 0.27 0.53 0] h = [0 0.59 0.36 0.72]

It # 2

a = [1.67 0.72 1.31 0] h = [0 2.98 1.67 3.7]

After Normalization,

a = [0.745 0.32 0.58 0] h = [0 0.59 0.33 0.73]

It #3

a = [1.65 0.73 1.32 0] h = [0 2.97 1.65 3.7]

After Normalization,

a = [0.74 0.32 0.59 0] h = [0 0.59 0.33 0.73]

Order Pages

Listed after

Search

1

3

2

4

Initial

a = [1 1 1 1] h = [1 1 1 1]

HITS Example (2)

1

2

3

4

5

It # 1

a = [1 0 0 3 2] h = [5 3 5 1 0]

After Normalization,

a = [0.26 0 0 0.80 0.53] h = [0.64 0.38 0.64 0.12 0]

It # 2

a = [0.12 0 0 1.66 1.28] h = [2.94 1.66 2.94 0.12 0]

After Normalization,

a = [0.057 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.027 0]

It # 3

a = [0.027 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.027 0]

After Normalization,

a = [0.0126 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.006 0]

Initial

a = [1 1 1 1 1] h = [1 1 1 1 1]

Order Pages

Listed after

Search

4

5

1

3

2

It # 4

a = [0.006 0 0 1.69 1.32] h = [3.01 1.69 3.01 0.006 0]
After Normalization,

a = [0.003 0 0 0.79 0.61] h = [0.66 0.37 0.66 0.001 0]

HITS Example (3)

1 2

3 4

It # 1

a = [0 3 1 1] h = [3 1 4 3]

After Normalization,

a = [0 0.91 0.30 0.30] h = [0.51 0.17 0.68 0.51]

It # 2

a = [0 1.70 0.17 0.68] h = [1.70 0.17 2.38 1.70]

After Normalization,

a = [0 0.92 0.09 0.37] h = [0.50 0.05 0.70 0.50]

It # 3

a = [0 1.70 0.05 0.70] h = [1.70 0.05 2.4 1.70]

After Normalization,

a = [0 0.92 0.027 0.38] h = [0.50 0.014 0.70 0.50]

It # 4

a = [0 1.70 0.014 0.70] h = [1.70 0.014 2.4 1.70]
After Normalization,
a = [0 0.92 0.008 0.38] h = [0.50 0.004 0.71 0.50]

Order Pages

Listed after

Search

2

4

3

1

Initial

a = [1 1 1 1] h = [1 1 1 1]

PageRank
• The basic idea is to analyze the link structure of the web to

figure out which pages are more authoritative (important) in
terms of quality.

• It is a content-independent scheme.

• If Page A has a hyperlink to Page B, it can be considered
as a vote of A for B.
– If multiple pages link to B, then page B is likely to be a good page.

• A page is likely to be good if several other good pages link
to it (a bit of recursive definition).
– Not all pages that link to B are of equal importance.

– A single link from CNN or Yahoo may be worth several times

• The web pages are first searched based on the content.
The retrieved web pages are then listed based on their
rank (computed on the original web, unlike HITS that is run
on a graph of the retrieved pages).

• The Page Rank of the web pages are indexed
(recomputed) for every regular time period.

PageRank

(Random Web Surfer)
• Web – graph of pages with the

hyperlinks as directed edges.

• Analogy used to explain PageRank
algorithm (Random Web Surfer)

• User starts browsing on a random page

• Picks a random out-going link listed in
that page and goes there (with a
probability ‘d’, also called damping
factor)
– Repeated forever

• The surfer jumps to a random page with
probability 1-d.
– Without this characteristic, there could be a

possibility that someone could just end up
oscillating between two pages B and C as in
the traversing sequence below for the graph
shown aside:

G � E � F � E � D � B � C

B

C

E

FD

A

G

H
I

J

K

Lets say d = 0.85.

To decide the next page

to move, the surfer simply

generates a random

number, r. If r <= 0.85,

then the surfer randomly

chooses an out-going link

from the existing page.

Otherwise, jumps to a

randomly chosen page

among all the pages,

including the current page.

PageRank Algorithm
• PageRank of Page X is the

probability that the surfer is at page
X at a randomly selected time.
– Basically the proportion of time, the

surfer would spend at page X.

• PageRank Algorithm
• Initial: Every node in the graph gets

the same pagerank. PR(X) = 100% /
N, where N is the number of nodes.

• At any time, at the end of each
iteration, the page rank of all nodes
add up to 100%.

• Actually, the initial pagerank value of
a node is the pagerank at any time, if
there are no edges in the graph. We
have 100% / N chance of jumping to
any node in the graph at any time.

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

PageRank Algorithm

• Page Rank of Node X is the probability of being at
node X at the current time.

• How can we visit node X from where we are?

– (1-d) term: Random Jump: The probability of ending

up at node X because of a random jump from some

node, including node X, is 1/N.

– However, such a random jump itself could occur with a

probability of (1-d).

– This amounts to a probability of (1-d)/N to be at node X

due to a random jump.

Page Rank of

Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank Algorithm

• Page Rank of Node X is the probability of being at node X
at the current time.

• How can we visit node X from where we are?
– d term: Edge Traversal from a Neighbor:

– We could visit node X from one of the nodes that point to node X.

– Lets say, we are at node Y in the previous iteration. The probability
of being at node Y in the previous iteration is PR(Y). We can visit
any of Y’s neighbors.

– The probability of visiting node X among the Out(Y) out-going links
of node Y is PR(Y) * (1 / Out(Y)) = PR(Y) / Out(Y).

– Likewise, we could visit X from any of its neighbors.

– All the probabilities of visiting X from any of its neighbors have to be
added, because visiting X from any of its neighbors is independent
of the neighbors.

– The whole event of visiting from a neighbor occurs with a prob. ‘d’

Page Rank of

Node X

Assuming

there are NO

Sink nodes
∑

>−

+
−

=
xy yOut

yPR
d

N

d
xPR

)(

)(100*)1(
)(

PageRank

• Since Page Rank PR(X) denotes the probability of
being at node X at any time, the sum of the Page
Ranks of all the nodes at any time should be
equal to 1.

• We can also interpret the traversal from a node Y
to node X as node Y contributing a part of its PR
to node X (node Y equally shares its PR to the
nodes connected to it through its out-going links).

• Implementation:
– Note that (unlike HITS) we need to use the page rank

values of the nodes from the previous iteration to
update the page rank values of the nodes in the current
iteration.

• Need to maintain two arrays at any time t: PR(t-1) and PR(t)

Calculating PageRank of
Node B

9.1

Initial PageRank

of Nodes

9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B

Iteration 1

9.1

9.1

4.5
4.5

3.0

4.54.5

4.5

B
A

D

C

F

E

G

H
I

J

K G

H
I

D

C

F

E

For any iteration,

PR(B) = 0.15 * 9.1 +

0.85 * [PR(C) + ½ PR(D) +

⅓ PR(E) + ½ PR(F) +

½ PR (G) + ½ PR(H) + ½ PR(I)]

Assume the damping factor d = 0.85 For Iteration 1,

Substituting the PR values of

the nodes (initial values),

we get PR(B) ≈ 31

Final PageRank Values for the
Sample Graph

9.1
9.1

9.1

9.1 9.1

9.1

9.1

9.1

9.19.1

9.1

B
A

D

C

F

E

G

H
I

J

K

3.3 38.4
34.3

3.9 3.9

8.1

1.6

1.6

1.61.6

1.6

BA

D

C

F

E

G

H
I

J

K

PageRank: More Observations
• Algorithm converges (few iterations sufficient)

• For an arbitrary graph, it is pretty difficult to figure out the
final page rank values of the nodes.

• Certain inferences could be however made.

• For our sample graph:
– For nodes that do not have any in-links pointing to them,

the only way we will end up at these nodes is through a random
jump: this happens with a probability (1-d)/N.
In our case, it is (1-0.85)* 100/11 = 1.6%.

– Two nodes with links from the same node (symmetric in-links)
have the same PR. (nodes D and F) and it will be higher than
those nodes without any in-links.

– One in-link from a node with high PR value contributes significantly
to the PR value of a node compared to the in-links from several
low PR nodes.

• In our sample graph, an in-link from node B contributes significantly
for node C compared to the several in-links that node E gets from the
low-PR nodes. So, the quality of the in-links matters more than the
number of in-links.

A B

C D
Note that there are NO sink nodes

(nodes without any out-going links)

PR(A) = (1-d)*100/4

PR(B) = (1-d)*100/4 + d*[PR(A) + 1/2 * PR(C) + PR(D)]

PR(C) = (1-d)*100/4 + d*[PR(B)]

PR(D) = (1-d)*100/4 + d*[1/2*PR(C)]

Initial

PR(A) = 25

PR(B) = 25

PR(C) = 25

PR(D) = 25

It # 1

PR(A) = 3.75

PR(B) = 56.88

PR(C) = 25

PR(D) = 14.38

Assume damping
Factor d = 0.85

It # 2

PR(A) = 3.75

PR(B) = 29.79

PR(C) = 52.10

PR(D) = 14.38

It # 3

PR(A) = 3.75

PR(B) = 41.30

PR(C) = 29.07

PR(D) = 25.89

It # 4

PR(A) = 3.75

PR(B) = 41.29

PR(C) = 38.86

PR(D) = 16.10

It # 5

PR(A) = 3.75

PR(B) = 37.14

PR(C) = 38.85

PR(D) = 20.27

It # 6

PR(A) = 3.75

PR(B) = 40.68

PR(C) = 35.32

PR(D) = 20.26

It # 7

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 38.33

PR(D) = 18.76

It # 8

PR(A) = 3.75

PR(B) = 39.17

PR(C) = 37.04

PR(D) = 20.04

It # 9

PR(A) = 3.75

PR(B) = 39.71

PR(C) = 37.04

PR(D) = 19.49

It # 10

PR(A) = 3.75
PR(B) = 39.25
PR(C) = 37.5

PR(D) = 19.49

Ranking

B

C
D

A

Page Rank Example (1)

Page Rank Example (2)
A

B C D

PR(A) = (1-d)*100/4 + d*[½*PR(B) + ½*PR(C) + PR(D)]

PR(B) = (1-d)*100/4 + d*[PR(A)]

PR(C) = (1-d)*100/4 + d*[½*PR(B)]

PR(D) = (1-d)*100/4 + d*[½*PR(C)]

Initial

PR(A) 25

PR(B) 25

PR(C) 25

PR(D) 25

It # 1

PR(A) 46.25

PR(B) 25

PR(C) 14.38

PR(D) 14.38

It # 2

PR(A) 32.71

PR(B) 43.06

PR(C) 14.38

PR(D) 9.86

It # 3

PR(A) 36.54

PR(B) 31.55

PR(C) 22.05

PR(D) 9.86

It # 4

PR(A) 34.91

PR(B) 34.81

PR(C) 17.16

PR(D) 13.12

It # 5

PR(A) 36.99

PR(B) 33.42

PR(C) 18.54

PR(D) 11.04

It # 6

PR(A) 35.22

PR(B) 35.12

PR(C) 17.95

PR(D) 11.63

It # 7

PR(A) 36.19

PR(B) 33.68

PR(C) 18.68

PR(D) 11.38

It # 8

PR(A) 35.68

PR(B) 34.51

PR(C) 18.06

PR(D) 11.69

It # 9

PR(A) 36.03

PR(B) 34.08

PR(C) 18.42

PR(D) 11.43

Node Ranking: A B C D

Page Rank: Graph with Sink Nodes
Motivating Example

• Consider the graph: A � B

• Let d = 0.85

• PR(A) = 0.15*100/2 PR(B) = 0.15*100/2 + 0.85*PR(A)

• Initial: PR(A) = 50, PR(B) = 50

• Iteration 1:

– PR(A) = 0.15*100/2 = 7.5

– PR(B) = 0.15*100/2 + 0.85 * 50 = 50.0

– PR(A) + PR(B) = 57.5

– Note that the PR values do not add up to 100.

– This is because, B is not giving back the PR that it receives from A

to any other node in the graph. The (0.85*50 = 42.5) value of PR

that B receives from A is basically lost.

– Once we get to B, there is no way to get out of B other than random

jump to A and this happens only with probability (1-d).

Page Rank: Sink Nodes (Solution)
• Assume implicitly that the sink node is connected to every node in the

graph (including itself).

– The sink node equally shares its PR with every node in the graph,
including itself.

– If z is a sink node, with the above scheme, out(z) = N, the number
of nodes in the graph.

• The probability of getting to node X at a given time is still the two terms
below:

• Random jump from any node (probability, 1-d)

• Visit from a node with in-link to node X (probability, d)

Page Rank

of Node X

the second term of the original Page Rank formula is now broken between

that of nodes with explicit out-going links to one or more selected nodes and

the sink nodes with implicit out-going links to all nodes.

Explicit out-going

links to certain nodes

Implicit out-going

links to all nodes

(sink nodes)

∑ ∑
>− >−

++
−

=
xy z N

zPR
d

yOut

yPR
d

N

d
xPR

ϕ

)(

)(

)(100*)1(
)(

Consolidated PageRank Formula

A

B

C D

PR(A) = (1-d)*100/4 + d [PR(B)/2 + PR(C)/1 + PR(D)/3] + (d)*[PR(A)/4]

PR(B) = (1-d)*100/4 + d [PR(D)/3] + (d)*[PR(A)/4]

PR(C) = (1-d)*100/4 + d [PR(B)/2 + PR(D)/3] + (d)*[PR(A)/4]

PR(D) = (1-d)*100/4 + (d)*[PR(A)/4]

Initial

PR(A) 25

PR(B) 25
PR(C) 25

PR(D) 25

It # 1

PR(A) 48.02

PR(B) 16.15
PR(C) 26.77

PR(D) 9.063

It # 2

PR(A) 46.14

PR(B) 16.52
PR(C) 23.386

PR(D) 13.954

It # 3

PR(A) 44.41

PR(B) 17.51
PR(C) 24.53

PR(D) 13.55

It # 4

PR(A) 45.32

PR(B) 17.03
PR(C) 24.47

PR(D) 13.18

Page Rank Example (3)

Node Ranking: A, C, B, D

∑ ∑
>− >−

++
−

=
xy z N

zPR
d

yOut

yPR
d

N

d
xPR

ϕ

)(

)(

)(100*)1(
)(

Page Rank Example (4)

A B

C D
PR(A) = 0.15*100/4 + 0.85*{PR(B)/4}

PR(B) = 0.15*100/4 + 0.85*{PR(A) + PR(C)/2 + PR(D)} +

0.85*{PR(B)/4}

PR(C) = 0.15*100/4 + 0.85*{PR(B)/4}

PR(D) = 0.15*100/4 + 0.85*{PR(C)/2} + 0.85*{PR(B)/4}

Rank

B

D

A, C

The example shows that though both A and C differ with respect to

the number of outgoing edges, their Page Rank value is the same.

The Page Rank of a vertex is dependent only on the incoming

edges and where they are from.

