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Theoretical Network Models

 In this module, we will see the theoretical models using
which one could generate complex networks resembling

those of real-world networks.

 The theoretical models we will see are as follows

— Random Networks
« Erdos Renyi Model (ER Model)

— Scale-Free Networks
« Barabasi Albert Model (BA Model)

« Bianconi-Barabasi (BB Model)

— Small-World Networks
« Watts-Strogatz Model (WS Model)

« We will see the generation of the networks based on the
above models and analyze their characteristics.



Random Networks

A random network is the one in which there is a

certain probability for a link between any two nodes
in the network.

« Erdos-Renyi Model (ER) Model

— The probabillity for a link between any two nodes is the
same.

— Called the G(N, p) model where N is the number of nodes
and ‘p’ is the probability for a link between any two nodes

— Highly theoretical model and it is primarily used to
determine whether the links in a real-world network are

formed due to random interactions of nodes or due to the

preference of nodes to communicate or attach to certain
nodes.



ER Model
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Generation of ER-Random Network

Let plink = 0.524

Avg. Degree

2
<K>
=(2+4+3+4+5+4+4)/7
=3.71

Index

Ooo~NoOCOTBhWN =

Pairs

0,1

oo, b,ALWOORRWOMNMNOORWNDN

O ,P,OOOMMNMNMNMNDNNA A 24 2144000000

Random Val

0.6335
0.7478
0.1721
0.9234
0.8563
0.3141
0.1594
0.2945
0.2227
0.0343
0.7621
0.8595
0.3091
0.5312
0.1834
0.4194
0.2549
0.6974
0.0968
0.4486
0.2983

Edge

<< < Z << <L Z<ZZ< << < <ZZ<Z2Z



ER Model: Poisson Degree Distribution

* In a network of N nodes, the maximum number of links for a
node with its neighbors is N-1 and each of these links can
occur with a probabillity p. For larger networks, we simply
— Average degree of a node <K> = (N-1)p US€: <K>~Np
— Standard deviation for the degree of a node oy = sqrt(<K>)

* There could be a maximum N(N-1)/2 links in a random
network of N nodes and each of these links can occur with a
probability p.

— Average number of links <L> = {N(N-1)/2}*p

« From the above, we can easily see that
<K>=2*<L>/N A

Poisson degree distribution
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Generating a Poisson Degree Distribution
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Generating a Poisson Degree Distribution
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Degree Distribution: ER Model vs. Poisson

0.14 - :
0.13 -
0.12 - A\ S ER Model
0.11 - ; Poisson Distribution
0.10 - l
0.09 - | Random Network
N ; N = 100 Nodes; plink = 0.1
. 0.08 - :
Q. 0.07 - ! Average Degree <K>
0.06 - ; 9.9 (Poisson); 9.93 (ER)
|
0.05 - : Standard Deviation SD(K)
0.04 - SD(K): 3.14 (Poisson); 3.28 (ER)
0.03 - ISqrt(<K=)
| .
0.02 - I
0.01 - :
000 - |I | . | | |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
K->



Clustering Coefficient

 In a random network evolved under the ER: G(N, p) model:

For a node / with k; neighbors, the expected number of links
connecting the ne|ghbors is p*kik;-1)/2.

Clustering coefficient is the ratio of the actual (also the expected
value) number of links to that of the maximum number of links
connecting the neighbors.

Thus, the average clustering coefficient <C> for an ER: G(N, p)-
based random network is simply ‘p’ = <C> = <K>/ N.

Unlike real-world networks, the clustering coefficient is not dependent
on degree distribution.

* Networks Actual Random: ER-G(N, p)
Prison
Friendships 0.31 0.0134
Co-authorships
Math 0.15 0.00002
Biology 0.09 0.00001
Economy 0.19 0.00002
WWW

Web links 0.11 0.002



Clustering Coefficients for
Real Networks
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Each circle corresponds to a real
network.

Directed networks were made
undirected to calculate C.

For ER-random networks, the average
clustering coefficient decreases as
1/N. In contrast, for real networks,
<C> has only a weak dependence

on N.

Real networks have a much higher
Clustering coefficient than expected
for a ER-random network of similar N
and L.



Clustering for Real Networks
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C(k) is measured by averaging the local clustering coefficient of all nodes
with the same degree k.
According to the ER-Random Network theory model, C(k) is independent of the
individual node degrees. However, we find that C(k) decreases as k increases.
Nodes with fewer neighbors have larger local clustering coefficients and vice-versa



Real Networks are not ER-Random

« Degree distribution:
— ER-Random networks —Poisson distribution, esp. for k << N.
 Highly connected nodes (hubs) are effectively forbidden.
— Real networks: More highly connected nodes, compared to that
predicted with random model.
« (Connectedness:

— ER-Random networks: One single giant component exists only if
<k>>In N (i.e., p > (In N)/N)

— Real networks: One single giant component exists for several
networks with <k> < In N.
* Average Path Length (small world property):
— For both ER-random and real networks, the average path length
scales as In N/ In <k>.
 Clustering coefficient:

— ER-Random model: Local clustering coefficient is independent of
the node’s degree and <C> depends on the system size as 1/N.

— Real networks: <C> decreases with increase in node degrees
and is largely independent of the system size.



Real Networks are not ER-Random

Except for the small world property (avg. path length ~
INN/In<K>), the properties observed for real-world
networks are not matching with that observed for ER-
random networks.

Then why study random graph theory (ER-model)?

If a certain property is observed for real-world networks,
we can refer to the random graph theory and analyze
whether the property is observed by chance (like the
small world property).

If the property observed does not coincide with that of
the random networks (like the local clustering
coefficient), we need to further analyze the real-world
network for the existence of the property because it did
not just happen by chance.

Establish useful benchmarks (e.g., diameter, degree
distribution)



Generation of ER-Random Network

0

1

Avg. Degree <K>
=(2+3+3+5+3+4+2)/7

=3.14

ER Model plink = <K> / (N-1)
pIink =3.14/6 = 0.524

Avg. Degree 2

<K>

=(2+4+3+4+5+4+4)/7

= 3.71

(6

Index

Pairs

0,1

PP WWWNNNNA A4 4400000
OOUIOUROURWOUBRWNOOGDRWN

Random Val

0.6335
0.7478
0.1721
0.9234
0.8563
0.3141
0.1594
0.2945
0.2227
0.0343
0.7621
0.8595
0.3091
0.5312
0.1834
0.4194
0.2549
0.6974
0.0968
0.4486
0.2983

Edge

<< <Z << <Z<ZZ< << < <ZZ<Z2Z



Generation of ER-Random Network (contd.. )

Given Network

Degree #Nodes Prob.

aLwWN

Degree Nodes LCC
1, 1 1.0
2/3,2/3,2/3 0.67
3/6 0.5
4/10 0.4

2

3
4
5

2

3
1
1

0,6
1,2,4

2/7 = 0.286
3/7 = 0.428
1/7 =0.143
1/7 =0.143

Avg <LCC>

Network

Degree #Nodes Prob.

2 1
3 1
4 4
5 1
Degree Nodes
2 0
3 2
4 1,3,5,6

5 4

1/7 =0.143
1/7 = 0.143
4/7 = 0.571
1/7 = 0.143

LCC Avg <LCC>
0.0 0.0

2/3 0.67

4/6, 3/6 0.542
4/6, 2/6

6/10 0.6



Problem Example 1

Consider a random network generated according
to the G(N, p) model where the total number of
nodes is 12 and the probability that there are links
between any two nodes is 0.20. Determine the
following:

The average number of links in the network

The average node degree

The standard deviation of the node degree

The average path length (distance between any two
nodes in the network)

The average local clustering coefficient for any node in
the network.

The expected local clustering coefficient for a node that
has exactly 5 neighbors.



Problem Example 1: Solution

. There are N = 12 nodes
. Prob[link between any two nodes] = p = 0.2

Max. possible number of links between any two nodes is (N)(N-1)/2 =
(12*11/2) = 66

(2) The average number of links in the network = p * N(N-1)/2
=0.2"66=13.2
(3) Average node degree = p*(N-1) =0.2* 11 =2.2
(4) Standard deviation of node degree = sgrt(<K>)
= sqrt(2.2) = 1.48

(5) Average path length =In N /In <k> =1In(12) / In(2.2) = 3.15
(6) Avg. Local clustering coefficient for any node in the network = p = 0.2.

(7) The expected local clustering coefficient for a node in a random network
is independent of its number of neighbors. Hence, the answer is 0.2



Scale-Free Networks
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Scale-Free Networks

« Scale-free networks follows a Power-law distribution.
« P(k) ~ kY, where y is the degree exponent (> 1)
« P(k) = CkY, where C is the proportionality constant
Assuming the degree distribution is discrete
I | > .
_ _ —y  C(y) is called the
¢ z C(y) G(y) = zk Riemann-Zeta
2 kKoo T k=1 Function

P(K)




Proportionality Constant (Discrete)
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Computation of P(K) = CK~Y Values
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Power-Law Distribution (Discrete)

P(K) -
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K | y=2 | y=3

1 062700 | 0.83300
2 015675 | 0.10413
3 0.06967 0.03085
4 0.03919 0.01302
i) 0.02508 0.00666
6 0.01742 | 0.00386
7 0.01280 0.00243
8 0.00980 0.00163
9 0.00774 | 0.00114
10 0.00627 0.00083
1 0.00518 0.00063
12 0.00435 0.00048
13 0.00371 0.00038
14 0.00320 | 0.00030
15 0.00279 0.00025
16 0.00245 | 0.00020
17 0.00217 0.00017
18 0.00194 | 0.00014
19 0.00174 0.00012
20 0.00157 0.00010
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For larger values of the
Degree exponent (y), the
chances of observing

a hub with a larger degree

decreases.

Example (Let N = 100)
Kmin =1

Y Kmax

1.5 10,000 (ruled out)
2.0 100

2.5 21.55

3.0 10

3.5 6.31
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K*P(K)

Power Law (Discrete): Avg. Degree
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12 0.064 | 0.052 | 0.043 | 0.035| 0.028 | 0.022| 0.018 | 0.014] 0.012 | 0.009 | 0.007 | 0.006 | 0.005
13 0.059 | 0048 | 0.039 | 0031 | 0.025 |0.020| 0.016 | 0.013] 0.010 ) 0.008 | 0.006 | 0.005 [ 0.004
14| 0.055 | 0.045 | 0.036 | 0.029 | 0.023 | 0.018 | 0.014 | 0.011| 0.009 | 0.007 | 0.005 | 0.004 | 0.003
15 0.052 | 0.042 | 0.033 | 0.026 | 0.021 | 0.016 | 0.013 | 0.010| 0.008 | 0.006 | 0.005 | 0.004 | 0.003
16) 0.049 | 0039 | 0.031 | 0024 | 0.019 |0.015| 0.012 | 0.009] 0.007 | 0.005] 0.004 | 0.003 [ 0.003
17 0.047 | 0037 | 0.029 | 0023 | 0.018 |0.014| 0.011 | 0.006 | 0.006 | 0.005] 0.004 | 0.003 [ 0.002
18] 0.044 | 0035 | 0.027 | 0.021 | 0.016 | 0.013| 0.010 | 0.008 | 0.006 | 0.004 | 0.003 | 0.003 [ 0.002
19 0.042 | 0033 | 0.026 | 0.020 | 0.015 | 0.012| 0.009 | 0.007 | 0.005) 0.004 | 0.003 | 0.002 | D.002
\ 200 0.040 | 0031 | 0.024 | 0.019| 0.014 | 0.011 | 0.008 | 0.006 | 0.005 | 0.004 | 0.003 | 0.002 | 0.002
<K> 2.441 | 2.256 | 2.090| 1.947 | 1.825 |1.717| 1.626 | 1.548| 1.481 | 1.422| 1.373| 1.330| 1.292




Why Power-Law is said to be scale- free?

Kurtosis is a measure of . E[K—-< K >]
how “heavy-tailed” a Kurtoszs[K] =

distribution is. Kis the degree; 2
K th n degree _
A probability distribution - e mean degree Bl K— < K >12

is generally said to be

scale-free (i.e., heavy-  giandard 1 & 5
tailed) if its kurtosis is Deavri‘a:ilgn, SD (K) = 1| n Z(K— <K >)

quite high (typically larger N k.pK)>0

than 3).

Scale-free distributions (1 2
also have a standard SD(K) = \/; P(K)*(K-<Kk >)

deviation that is
comparable or even 4
larger than the mean. Y P(K)*(K—<K >)

Kurtosis(K) = _X
4

SD

The Kurtosis and SD formula are applied
for all values (# samples: N) of K for which
there is a non-zero probability of finding a
vertex with the particular degree



Power-Law (Discrete): Degree (Avg. and SD)

3.2 -
3.0 - SD(K)
2.8 -
2.6 -
g; | <K>
2.0 4
1.8 -
1.6 -
14 -
1.2 -
1.0 -
0.8 -
0.6 -
04 -
0.2 -
D-U | | | ] | | | | | | | | | | | | | | | | |

10 12 14 16 18 20 22 24 26 28 30 3.2
Yy~




Source: Figure 4.7 Barabasi Scal e_free
networks lack an
intrinsic scale

Randomly chosen node: k = (k)= (k)"
Scale: (k)

Scale-free network
\'_—b Randomly chosen node: &k = <!T(>i 00

k (k) is meaningless as ‘scale’

For any bounded distribution (e.g. a Poisson or

a Gaussian distribution) the degree of a randomly chosen node
will Ibe In the vicinity of <k>. Hence <k> serves as the network’s
scale.

In a scale-free network the second moment diverges, hence the
degree of a randomly chosen node can be arbitrarily different from
<k>. Thus, a scale-free network lacks an intrinsic scale (and
hence gets its name).



Example 1: Power-law

« Consider a network modeled using the power-law, P(K) =
CKY. Determine the power-law exponent y and the constant
C if the network has approximately 4% of nodes with degree
4 and 10% of nodes with degree 3.

« Solution:
 P(K) = CKY = In P(K) = InC + (-y)InK
« Giventhat P(3) =0.10 and P(4) = 0.04
IN(0.10) = InC + (-y)In(3) = -2.303 = InC + (-y)*1.098
IN(0.04) = InC + (-y)In(4) & -3.219 = InC + (-y)*1.386
Solving for y, we get y = (3.219 — 2.303)/(1.386 — 1.098) = 3.18

Substituting for y = 3.18 in the Power-law equation for one of the two
degrees, we get C = P(4)/4Y. =0.04 /4318

We get C = 3.286
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Example 2: Analyzing a Degree
Distribution for Scale-Free Property

Given the following adjacency list for the vertices, determine whether the
Degree distribution could be classified to exhibit “scale-free” property.

ONO,OOOGIWONOGR,WN=

0->1,2,3,4,5,7,8
1->0,3,56,9
2->0

3->0,1,4
4->0,3,6,7
5-2>0,1,9
6->1,4
7->0,4,8
8-2>0,7

9->1,5

coooxlc»m.hoom—noa

Degree

NMNMNOMNMWOWRW-=-OIN

Degree #Nodes P(K)

1 1/10 = 0.1
3/10 =0.3
3/10 = 0.3
1/10 = 0.1
1/10 = 0.1
1/10 = 0.1

G G O Y % J §

NORLOWODN

Degree =

Avg. ZK * P(K)

Avg. Degree, <K>

= (1)(0.1) + (2)(0.3) + (3)(0.3)
+ (4)(0.1) + (5)(0.1) + (7)(0.1)
= 3.2




Example 2(1): Analyzing a Degree
Distribution for Scale-Free Property

<K>=3.2
Degree (K) P(K) (K-<K>)2 (K-<K>)4 P(K)*(K-<K>)2 P(K)*(K-<K>)4
1 0.1 4.84 23.43 0.484 2.343
2 0.3 1.44 2.07 0.432 0.621
3 0.3 0.04 0.0016 0.012 0.00048
4 0.1 0.64 0.4096 0.064 0.04096
5 0.1 3.24 10.498 0.324 1.0498
7 0.1 14.44 208.51 1.444 20.851

SD(K) = \/ZP(K)*(K—<K>)2 =+2.76 =1.661
K

_Since the Kurtosis (K) = 3.27
Z P(K) % (K— < K >)4 — 24.906 is greater than 3, we say the
K

Degree distribution is heavy-
tailed.

S PR)*(K=<K > 5008
Kurtosis(K) = _k SR =3.27
sp4 (1.661)4




OLrRA,rRA,LOVOLOUOMNMMN=-SA - =2 200000

NONOOOOOOOWOWOORAMNOAOARLWN=

Example 3: Analyzing a Degree
Distribution for Scale-Free Property

Given the following adjacency list for the vertices, determine whether the
Degree distribution could be classified to exhibit “scale-free” property.

0->1,2,
1-2>0,2,
2->0,1,
3-2>0,2
4->0,1,
5->0,4,
6->1,3
7>4,5
82>2,3
9->1,4

3,
4,
3,
6,
5
7

4
6
8
8
7

5
, 9

, 9

coooxlc»m.hoom—noa

Degree

NMNMNMNMMNOOGOORERREOIO

Degree #Nodes P(K)

2 4 4/10=0.4
3 1 1/10 = 0.1
4 2 2/10=0.2
5 3 3/10 =0.3

Avg. ZK * P(K)

Degree =
k

Avg. Degree, <K>
= (2)(0.4) + (3)(0.1) + (4)(0.2)
+(5)(0.3) = 3.4




Example 3(1): Analyzing a Degree
Distribution for Scale-Free Property

<K>=3.4
Degree (K) P(K) (K-<K>)2
2 0.4 1.96
3 0.1 0.16
4 0.2 0.36
5 0.3 2.56

0.0256
0.1296
6.5536

(K-<K>)¥  P(K)*(K-<K>)2  P(K)*(K-<K>)?

0.784 1.5368
0.016 0.00256
0.072 0.02592
0.768 1.9661

SD(K) = \/;P(K)*(K—<K>)2 —

v1.64 =1.281

Since the Kurtosis (K) = 1.31

Degree distribution is NOT

ZP(K)*(K— <K >)4 — 3.5313 | Is lower than 3, we say the
K

Y P(K)*(K-< K >)*

Kurtosis(K) = _X

SD

4

heavy-tailed.

(1.281)3



Example 4: Predicting the Nature of

Degree Distribution

Given the following probability degree distribution:

1) Draw a plot of the degree distribution and determine if the degree
distribution follows a power-law or Poisson?

2) Determine the parameters of the degree distribution you decided.

A

P(K)

0.794
0.119
0.039
0.018
0.010
0.006
0.004
0.003
0.002
0.001

OO0 ~NOCOGBRh,WN=

o

P(K) >

1

0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0

0 1 2 3 4 5 6 7 8 9 10

K->

It looks clearly like a power-law distribution.



Example 4(1): Predicting the Nature
of Degree Distribution

P(K) = C*K™Y
InP(K) = InC + (-y*InK) : Compared to Y = (slope)*X + constant;

P(K)
0.794
0.119
0.039
0.018
0.010
0.006
0.004
0.003
0.002
10 0.001

O©COoONOOGILAEWN =X

Constant = InC = -0.1873

InK
0
0.69
1.10
1.39
1.61
1.79
1.95
2.08
2.20
2.30

slope = - y ; constant = InC;
We will use curve (line) fitting in Excel to find the slope and constant

InP(K)
-0.23
-2.13
-3.24
-4.02
-4.61
-5.12
-5.52
-5.81
-6.21
-6.91

C = ¢~0-1873 _ 5 71g-0.1873

InP(K)

C =0.829

P(K) = 0.829*K=2:7755

0

-1

-2

InK

F o S

}\Q{O.40.60.8 112141618 2 222426

AN

N

AN

——Series1
—Linear (Series1)

N

N

y = -2.7755x - 0.1873 \\

InP(K) = (-y*InK) + InC

y =2.775

[N ™ J

5
J



Example 5: Predicting the Nature of

Degree Distribution

Given the following probability degree distribution:

1) Draw a plot of the degree distribution and determine if the degree
distribution follows a power-law or Poisson?

2) Determine the parameters of the degree distribution you decided.

A

P(K)
0.015
0.163
0.132
0.185
0.194
0.163
0.114
0.068
0.036
0.017
0 0.007

- o0 ~NOGOCOGBhA~,WDMN-=-0

0.26 -
0.24 -
0.22 -

K->

0 1 2 3 4 5 6 7 8 9 10 11

It looks clearly like a Poisson distribution.



K P(K) | KP(K) |[K-<K>)"2|(K<K=)*4] P(K)(K-<K>)*2] P(K)(K <K>)*4
0 0.015 0.000 17.256 297 .760 0.259 4.466
1 0.063 0.063 9.948 98.957 0.627 6.233
2 0.132 0.265 4.640 21.527 0.614 2.8438
3 0.185 0.556 1.332 1.773 0.247 0.328
4 0.194 0778 0.024 0.001 0.005 0.000
5 0.163 0817 0.716 0.512 0117 0.084
b 0.114 0.686 3.408 11.613 0.390 1.328
| 0.069 0.480 8.100 65.605 0.556 4.501
g 0.036 0.288 14.792 218.795 0.533 7.880
9 0.017 0.151 23.484 551.485 0.395 9.269
10 0.007 0.071 MA76 | 1167.980 0.241 8.245
SUM 1 4154 3.981 45.181
Avg. Degree <K> = ZK *P(K)=4.154
SD(K) = \/Z P(K)*(K—< K >)* =+/3.981 =1.995
2 P(K)*(K-<K > 45.181
Kurtosis(K) = _k SR R—— =2.852
sp4 (1.995)"

Kurtosis of Poisson distribution is expected to be close to 3
Kurtosis of Heavy-tailed Power-law distribution is expected to be (much) larger than 3.




Where does the Power-Law
distribution start for real networks?

« If P(x) = C XY, then Xmin needs to be certainly greater than

0, because X7V is infinite at X = 0.

« Some real-world distributions exhibit power-law only from a
minimum value (X.,,)-

10"

citations

10"

Source:MEJ Newman,

Power laws, Pareto distributions and
Zipf’s law, Contemporary Physics 46,
323-351 (2005)



Some Power-Law Exponents of Real-

World Data
Xemin exponent ¥
frequency of use of words 1 2.20
number of citations to papers 100 3.04
number of hits on web sites 1 2.40
copies of books sold inthe US |2 000 000 3.51
telephone calls received 10 2.22
magnitude of earthquakes 3.8 3.04
diameter of moon craters 0.01 3.14
intensity of solar flares 200 1.83
intensity of wars 3 1.80
net worth of Americans $600m 2.09
frequency of family names 10 000 1.94
population of US cities 40 000 2.30




Power-Law Distribution (Discrete)

P(K) -

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0.0

K | y=2 | y=3

1 062700 | 0.83300
2 015675 | 0.10413
3 0.06967 0.03085
4 0.03919 0.01302
i) 0.02508 0.00666
6 0.01742 | 0.00386
7 0.01280 0.00243
8 0.00980 0.00163
9 0.00774 | 0.00114
10 0.00627 0.00083
1 0.00518 0.00063
12 0.00435 0.00048
13 0.00371 0.00038
14 0.00320 | 0.00030
15 0.00279 0.00025
16 0.00245 | 0.00020
17 0.00217 0.00017
18 0.00194 | 0.00014
19 0.00174 0.00012
20 0.00157 0.00010

K->

k

FICEX

]

N

~ k

FHLLH

For larger values of the
Degree exponent (y), the
chances of observing

a hub with a larger degree

decreases.

Example (Let N = 100)
Kmin =1

Y Kmax

1.5 10,000 (ruled out)
2.0 100

2.5 21.55

3.0 10

3.5 6.31

01 2 3 45 6 7 8 910111213 14 1516 17 18 19 20



Average Distance: Power-Law

cCONst if +=2 Anomalous regime: Hub and
' S spoke configuration; average
InlnN distance independent of N.
if2<y <3, |
Vv — ra small world regime
In(y —1) Ult Il world
/

d -~

Hubs still reduce the path length

InN

i =3 the InN dependence on N (as
inln N / ' in random networks) starts
-r . Small world property: Hubs are
InN if v >3
| .

not sufficiently large and numerous
to have impact on path length

The scale-free property shrinks the average path lengths as well as changes
the dependence of <d> on the system size. The smaller y, the shorter are the
distances between the nodes.



Network Regimes based on SD(K)

321 SD(K)
2:8 - Scale-Free Regime

26 “ <K>
2.4 -

ndom
egime

N
N
]

©
c oc
SD(K) = Sqrt(<K>)

< K >

We refer to the regime as scale-free

if y 2 2 and SD(K) > Sqrt(<K>)

We also say the second moment

<K2> ~ [SD(K)]2 diverges in this regime

O = =) = = = N
CCOoON~OMOO
[l

0.6 -

Anomalous
Regime

1.71.819202122232425262728293.03.13.23.3
A



No large network
can exist here

{k) DIVERGES

(k“} DIVERGES

Source: Figure 4.14 Barabasi

Most real networks
are in this regime

(k} FINITE

{k*} DIVERGES

Imdistinguishable
from a random network

(k) FINITE

(k?) FINITE
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(k) Source: Figure 4.8 Barabasi



Example: Power-Law, Avg. Path Length

« Consider a scale-free network of N = 100 nodes modeled
using the power-law, P(K) = CK. The minimum and
maximum degrees of the nodes in the network are kmin = 3
and kmax = 60 respectively. Find the power-law exponent
(v), the power-law constant C and the average path length.

60 = 3 * (100)(1/v-1) | |
1/(y-1) = In(60/3) / In(100) C =— = —

]

F ~k _ N'Y  v1=In(100)/In(20) = 1.54 Sk <(r)
FHRCEX FrLiF y = 2.54 s
In this case: .= Using an Excel Spreadsheet to calculate the value
] of the summation, we get:
C — 60 60 Avg. Path Length
_ k-?’ - 0.15333 = In In(N) / In (y-1)
E k=7 Z 0.153 = In In(100) / In(2.54-1)
— k=3 = 3.54

C = 1/0.1533 =6.52



Barabasi Albert (BA) Model

 BA model is a model for generating networks
with power-law degree distribution.

 The model is defined as follows:

— We start with m, nodes, the links between which are
chosen arbitrari?y, as long as each node has at least

one link.
— The network develops as per the following growth and

preferential attachment properties:

- Growth: At each time step, we add a new node with m (< m)
links that connect the new node to m nodes already in the
network.

» Preferential Attachment: The probability 1r(k) that one of the
links of the new node connects to node / depends on the

to even more nodes.

degree k; of node / as: :
a node with larger degree has [I(k)=——
good chances of getting connected E I
J

7



BA Model
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BA Model: Time-dependent Degree of a Node

« In the BA model, a node has a chance to increase its degree
each time a new node enters the network.

+ Let k; be a time-dependent continuous real variable (k; is the
degree of node i that enters the network at time t)

« The degree of node i at any time instantt 2t is given by:

f g where 3 = V2 s called

F(I.(T) =Hl|— the network’s
; dynamical exponent.

Observations:

1) The degree of each node increases following the above power law.

2) Each new node has more nodes to link than the previous nodes.

In other words, with time, each node competes for links with an increasing

pool of nodes.




Time Dependent Degree of a Node

« The earlier node / was added, the higher is its degree
ki(t).
— Hence, hubs are large not because they grow faster, but
because they arrived earlier.
— The growth in the degrees is sub linear (B < 1).

« The rate at which node i acquires new links is given by
the derivative: dk.(1) m 1

di 2 it
* Indicating that older nodes acquire more links in a unit
time (as they have smaller t), as well as that the rate at

which a node acquires links decreases with time as t'/2,
Hence, less and less links go to a node with time.

« Thus, the BA model offers a dynamical description of a
network’s evolution: in real networks, nodes arrive one
after the other, connecting to the earlier nodes.

— This sets up a competition for links during which the older nodes
have an advantage over the younger nodes, eventually turning
into hubs.




Time-Dependent Variation of Degree Centrality
90 -

80 1 Concave Down 10
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Nature of Functions
Y A

Increasing Decreasing

. Negative Slope
Positive Slope

2 =1 >

0 J 0 T
Concave Up (the rate of increase or decrease increases with time)
. A~ l
Y J Negative Slope
Increasing
Positive Slope Decreasing

? b

0 £ 0 A

Concave Down (the rate of increase or decrease decreases with time)



Time-Dependent Variation of Betweenness
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N. Meghanathan, "Time-Dependent Variation of the Centrality Measures of the Nodes during the

Evolution of a Scale-Free Network," Journal of Networks, vol. 10, no. 7, pp. 431-442, July 2015.
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw1007431442/10670




Bianconi-Barabasi (BB) Model
Motivation

« The Barabasi-Albert model leads to a scenario where the
late nodes can never turn into the largest hubs.

 In reality, a node’s growth does not depend on the
node’s age only.

— Instead web pages, companies or actors have intrinsic qualities
that influence the rate at which they acquire links.

« Some show up late and nevertheless grab most links within a short
timeframe.

« Example: Though, Facebook came later than Google, Facebook is
the most linked node in the Internet.

* The goal of this model is to understand how the
differences in the node’s ability to acquire links, and
other processes not captured by the Barabasi-Albert

model, like node and link deletion or aging, affect the
network topology.



Bianconi-Barabasi (BB) Model

Fitness — the intrinsic property of a node that propels
more nodes towards it.

The Barabasi-Albert model assumed that a node’s
growth rate is determined solely by its degree.

The BB model incorporates the role of fithess and
assumes that preferential attachment is driven by the
product of a node’s fitness, n, and its degree k.

Growth: In each timestep, a new node j with m links and
fitness n; is added to the system, where n;is a random
number chosen from a distribution o(n) [for example:
uniform distribution].

— Once assigned, a node’s fitness does not change.

Preferential Attachment: The probability that a link of a
new node connects to a pre- eX|st|ng node /is
proportional to the product of node I's degree k; and its
fitness n. - n.k,

Sk,
J




BA Model vs. BB Model

BB Model

ok,
ot

Nk,
= M
Z nik;
k

where B(n;,) is a fitness-dependent
dynamic exponent of node i.

e 3|
& . n=0223
25| « 7 m=0.185
e 7= 10991
=
&
' 18 | bt
-l i & ...: ‘
T - g
- o _‘_' il B
el — 1 | i > . =, I
000 10000 a 2080 2000 000 8OO0 100060
Flmd| A node with a
kK (t.t.)=m|— higher fitness will
mt Tl t increase its
i degree faster.



Example-1: BA & BB Model

Consider the following degree distribution of the nodes and their

fitness.

Determine the probability with which each node is likely to get the
first link with a newly joining node under the BA and BB models.

Let a new node join the network with 2 links under the BA and BB
models. Determine which nodes are likely to get connected to the

new node. pga model Probability of a node (k) = k,
? o (First Link) 3 getting the first link i) = .
= @ D o l Cumula_t!ve E j
D 2 = 0 fProbablllty ]
1 1 5 1 1 10.05]0.05 Generate a random number
T 1 1 2 | 4 [020)0.25 | got 0.2429 using the
3 : - 3 5 [0.25] 0.50 Random number generator
4 3 [ 0.15] 0.65 Program | gave you.
4 | 3|10 5 | 3 |015] 0.80
J 3 : b 2 (010 0.90 Node 2 gets selected for
b 2 3 7 2 loa0] 1.00 the first link
7 2 | b Sum | 20




Example-1: BA & BB Model

Probability of a node

® o o getting the second link

@ 7 ] :

S o 5 l Cumula_t!ve BA Model
D 8 £ D ] /Probability (Second Link)
1 1 4] 1 1 0.06 | 0.06
7] 1 1 3 5 | 031 0.38 Generate a random number
3 5 7 1 3 1 0.19 | 0.56 | got 0.0022 using the

Random number generator

4 3 10 J 3 0.13 | 0.75 Program | gave you
A 3 a b 2 [ 013 | 0.88 '
b 2 3 f 2 1013 ] 1.00] Node 1 gets selected for
7 2 B sum | 16 the second link

The newly joining node gets connected nodes 2 and 1 (first and second link

respectively)



Example-1: BA & BB Model

o

Degree *
Fithess

Probability of a node
getting the second link

Cumulative
/Probability

0.04

0.04

16

0.11

0.15

=&\ Fithess

33

0.25

0.40

=k
=

30

0.21

0.61

24

0.17

0.79

18

0.13

0.91

BB Model
(First Link)
8 @
> c
b 8 £
1 1 5
2 4 4
3 5 [
4 3 10
5 3 8
b 2 9
[ 2 b

= ||| fa| L | R =

ra|mo|ee ||| || Degree

(=p ) R i=]l==

12

0.09

1.00

Sum

140

Generate a random number
| got 0.2584 using the
Random number generator
Program | gave you.

Node 3 gets selected for
the first link



Example-1: BA & BB Model

BB Model
(Second Link)

ID

Probability of a node

- | &=|n| Fithess

s
—

P | hd| L [La|en | = (=2 | Degree

= [T LA | | L | I =

oh | D] S

The newly joining node gets connected

nodes 3 and 4 (first and second link

respectively)

§ § % § getting the sec_ond link
D @ £ 8= / /gi’orﬂilfiﬂtve

A L Aic y
1 1 ] 2 | 005 0.05
2 |4 4 [16([015] 0.20
4 | 3 10 ( 30 (0.29| 0.49
o B g 24 (0.23] 0.71
6 | 2 9 (18 (047 0.89
7| 2 b 12 (011 1.00

Sum | 105

Generate a random number
| got 0.4885 using the
Random number generator
Program | gave you.

Node 4 gets selected for
the second link



Example-2: BA Model

At some time unit t, if the degree of a node
that joined the network at time 10 units is 50,
compute the degree of the node that joined
the network at time 100 units.

Solution:

K,o(t) = m(/10)2 = 50
= m*t"2=50* 1012 = 158.11

K,o0(t) = m(t/100)2 = mt'/2 / 100172
— 158.11/10 = 15.81




Example-3: BA Model

« Consider a scale-free network that has evolved according to
the BA model. Let there be two nodes P and Q such that the
rate at which node P acquires new links is twice the rate at
which node Q acquires new links. If node P joined the
network at time 100 units, find the time at which node Q
joined the network. 7k (1) m 1

Solution: ” 2 it
dKi(t) dKi(t)
....... I L p— 1 5 % 1
dt dt vy
P Q +/100 \/lo  Time at which node
Q joined the network
m 1 is 400 units.

L m o1
2 [t 2 Jtt lo =27 +100

fo=4%100= 400



Example-4: BB Model

Consider the BB model for scale-free networks .

Let the parameter B(ni) for any node i be equal to the fithess of node /, ni.
Consider two nodes A and B such that the fitness of node B is twice the
fitness of node A.

Node A joins the network at time 10 units and node B joins the network at
time 100 units.

If the degree of the nodes increase for every time unit (when a new node
joins), what is the minimum value of the time unit starting from
which the degree of node B would always be greater than the
degree of node A?

KA (t, 10) = m (t/10)NA

(1)
P KB (t, 100) = m (t/100)"E
k (t,t)=m|— Given that: nB = 2*nA
n . We want to find the minimum value of

time instant t for which KB(t,100) > KA(t,10)

m (t/100)"B > m (t/10)"A 5
t2NA /1A 5 100204/ 1074 = 1014 / 10NA
t18 /10078 > 1A /1004 A . 103nA

tB /A 5 10078 /1074 Hence, t > 103 3 t > 1000 time units



Example-5: BB Model

Consider the BB model for scale-free networks .
Let the degree of a node A be 50 at time 100 units. If the fithess of node

A is 2, compute the degree of node A at time 400 units.

I
kK (t.t.)y=m|—
i I f

I

ﬁ{ﬂg}

From KA(100, tA) = 50
We get,

m 50

t; 100

KA(100, tA) = 50 = m ( 100 / tA)2
KA(400, tA) = ?

KA(400, tA) = m ( 400 / tA)2

m

KA(400, tA) = —- * 400*
tA
KA(400, tA) = 582 *400°*

KA(400, tA) = 50*16 = 800



Example-6: BA Model

At time 500 units, the following is the degree distribution of the nodes that
joined at the time units indicated below. Determine the number of links

added per node introduction (m) and the network’s dynamical exponent ().
Estimate the degree of a node that joined the network at time 40 units.

Node joining Degree at
Time, ti Time t = 500
10 28
25 18
50 13
75 10
100 9
125 8
150 7
B
f
k(t)=m :-:‘_

In{ki(t)} = Inm + B*{In(t/ti)}

Y

Q

i

+ (slope)*X

In(t/ti)
In(500/ti)
3.912
2.996
2.302
1.897
1.609
1.386
1.204

In{ki(t)}

3.332
2.890
2.565
2.302
2.197
2.079
1.946



Example-6 (1): BA Model

4.0 - _ _
—_— In{ki(t)} = Inm + B*{In(t/ti)}
SRl y = 0.5067x + 1.3651
= 30 -
c
= 25 -
=01 Inm = 1.3651
15 - m = 2.718721.361 = 3.9 ~ 4 links
B = 0.5067
1.0 -
0.5 -
u-u I I I I I T I I | In(t/ti)
00 05 10 15 20 25 30 35 40 45
f P At time t = 500 units,
k:‘ (t)=m|— Degree of the node that joined the network at ti = 40 units

= 4 * (500/40)10.5067 = 14.38 ~ 14.



Example-7: BB Model

« A node joined the network at time 10 units. Given below is the degree of the node
at various time units. Determine the number of links added per node introduction
and the fitness of the node. Under the BB model of evolution, assume the
dynamical exponent value for a node is equal to the fitness of the node itself.
Estimate the degree of the node at time 250 units.

Time Unit
t

50

75

100

125

150

175

200

Giventi=10

B(ni) = ni

Rﬂr_(a‘,fi) =m|—

Degree at In(t/ti) In{ki(t)}

Time t In(t/10)

52 1.609 3.951

93 2.015 4.533

142 2.302 4.956

196 2.526 5.278

256 2.708 5.545

320 2.862 5.768

388 2.996 5.961

Bm;) _ _ _
t In{ki(t)} = Inm + ni*{In(t/ti)}

I

I

Y = Q + (slope)*X



Example-7 (1): BB Model

6.5 -
~= 6.0 1 y = 1.452x + 1.6116
* 55-
':z: 5.0 -
C 45
T 40-
3.5 4
3.0 - Inm=1.6116
2.5 - m =2.71821.6116 = 5.0 ~ 5 links
2.0 - ni =1.452
1.5 -
1.0 -
0.5 -
0.0 | | | | | , | In(t/tl)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bin;)
k (t,t)=m|—| Attimet=250 units,
i I Degree of the node that joined the network at ti = 10 units

I

=5 *(250/10)71.452 = 535.5 ~ 536.
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Small-World Networks

« A small-world network is a type of graph in which most
nodes are not neighbors of one another, but most nodes
can be reached from every other by a small number of hops.

« Specifically, a small-world network is defined to be a
network where the typical distance L (the number of hops)
between two randomly chosen nodes grows proportionally
to the logarithm of the number of nodes in the network.

« Examples of Small-World Networks:

— Road maps, food chains, electric power grids, metabolite processing
networks, networks of brain neurons, voter networks, telephone call
graphs, gene regulatory networks.



Small Worlds

« Two major properties of small world networks

— High average clustering coefficient

« The neighbors of a node are connected to each other

* Nodes’ contacts in a social network tend to know each other.
— Short average shortest path length

» Shorter paths between any two nodes in the network

L] L ] L ]
® L] L ]
. e g e o . e
® L [ 2
o ™ L4 [ . L]
L ] L ]
L] L L]
R L ] o L ]
L] L]
* e B * o o = ©
® . ® . ¢ .
¢ . ¢ . ¢ o
(Regular graph) (Small-world network) (Random graph)

0 Randomness

Y



Small Worlds

Note that for the same number of nodes and edges, we
could create:

— Random graphs (with edges arbitrarily inserted between any two
nodes) and

— Regular graphs (with some specific pattern of how edges are inserted
between nodes)

Regular graphs tend to have relatively high average

clustering coefficient

Random graphs tend to have relatively low average shortest
path length

We could bring the best of the two graphs by generating a
small world network as follows:

— Remove a small fraction of the edges in a regular graph and re-insert
them between any two randomly chosen nodes. This will not
appreciably affect the average clustering coefficient of the nodes; but
would significantly lower the average lengths of the shortest paths.



WS Model

« Watts and Strogatz (WS) Model:
The WS model interpolates
between an ER graph and a
regular ring lattice.

— Let N be the number of nodes and
K (assumed to be even) be the
mean degree.

— Assume N >> K >> In(N) >> 1.

— There is a rewiring parameter 3 (0
<B<1).

— Initially, let there be a regular ring
lattice of N nodes, with K neighbors
(K/2 neighbors on each side).

— For every node n.=ny, n,, ..., Ny,
rewire the edge (n,, nﬁ, where i < j,
with probability B. Rewiring is done
by replacing (n;, n) with (n;, ny)
where n, is chosen uniform-
randomly among all possible nodes
that avoid self-looping and link
duplication.

B = 0 = Regular ring lattice
B =1 = Random network



WS Model for Grid Lattice (2-dim)

Vam\

&"‘0"‘0"0"‘»

&"v‘!‘v‘:’x‘!‘v‘a
,':‘,':‘,':‘,’:‘,
0"‘0"‘0:‘0':0

We have a nxn two-dimensional grid.

The nodes are identified with lattice points
i.e., a node v is identified with the

lattice point (i, j) withi,j={1, 2, ..., n}

For every node u, we remove one of
its associated edges to the neighbor
nodes with a probability f and connect
the node to a randomly chosen node
v, as long as there is no self-loops
and link duplication.



) WS Model lllustration

Random # Selected

Given Network
Links (u,v):u<v
1-2

1-6

2-3
3-4
4-5
5-6

Let the rewiring

Probability (8) be 0.7

Vertex 2 is rewired Generate a rando
Number = 0.422

to Vertex 5.

Link
1-2
1-6

o WN
(.
(o) JNS) I R b

0.933
0.907
0.541
0.346
0.835
0.361

NO
NO
YES
YES
NO
YES

We select a link for rewiring
if the random number
generated for the link is less
than or equal to

the rewiring probability

Rewiring (#1): Link 2 -3

We cannot pick vertices 3 and 1

in the original graph.

o e o as they are connected to vertex 2

The candidates are: 4, 5,6

0 There is a 1/3 probability for each
0 e of them to be considered.

Cand. Prob. Cum Prob.

4 13 1/3 =033
m 5 13 2/3=067
—7 6 13 3/3=1.00



WS Model lllustration (1)

o Link

Given Network

-
I 11
OOk, WONDN

1B WM =
I

Random # Selected

0.933 NO e select a link for rewiring
0.907 NO " if the random number
0.541 YES  generated for the link is less
0.346 YES

NO than or equal to
ggg? YES the rewiring probability

Rewiring (#2): Link 3 - 4

We cannot pick vertices 4 and 2

in the original graph.
The candidates are: 1,5, 6

o e o as they are connected to vertex 3

N 0 There is a 1/3 probability for each
Atter Rewiring # 1 0 e of them to be considered.

Cand. Prob. Cum Prob.
1 1/3 1/3=0.33

Vertex 3 is rewired Generate a random/y 5 1/3 2/3=0.67
6

to Vertex 5. Number = 0.665

13 3/3=1.00



WS Model lllustration (2)

o Link
Given Network

—h
I

I
OOk, WONDN

1B WM =
I

Random # Selected

0.933 NO e select a link for rewiring
0.907 NO " if the random number
0.541 YES  generated for the link is less
0.346 YES

NO than or equal to
ggg? YES the rewiring probability

Rewiring (#3): Link 5 -6

We cannot pick vertices 6 and 4

o e o as they are connected to vertex 5

in the original graph as well cannot
pick vertices 2 and 3 as they are

N 0 connected to vertex 5 in the rewired
After Rewiring # 2 0 e graph. Hence, the only candidate

vertex available is vertex 1.
Cand. Prob. Cum Prob.

Vertex 5 is rewired Generate a random/ 1 171 1/1=1.0
to Vertex 1. Number = 0.763



Given Network Rewiring # 1 Rewiring # 2 Rewiring # 3
e e Avg. Path e Avg. Path
0 Length o o Length
= 54/ (6*5) = 52/ (6*5)
0 -1.8 =1.73
0p° AOR
123456 Sum 123456 Sum
1012321 9 1012211 7
2101232 9 2102212 8
3210123 9 3220213 10
4321012 9 4222013 10
6123210 9 6123320



Limitations of the WS Model

« The WS model introduced the notion of random edges to infuse shorter
path lengths amidst larger clustering coefficient.

- However, the long-range edges span between any two nodes in the
network and do not mimic the edges of different lengths seen in real-
world networks (like in the US road map or airline map).

— Path lengths could not be as small as they are in real networks.

— Need some edges to nodes that are few hops away, rather than edges to
some arbitrarily chosen nodes.

o e e Avg. Path
o o o o 0 Length

= 52/ (6*5)
=1.73
OVAVOROVAE OISO
Given Network  After Rewiring # 1 After Rewiring # 3
Vertex 5 is chosen for rewiring to The number of paths of length 3
Vertex 2 even though the two vertices (i.e., 3 hops) reduced from 3 to 2
are three hops away. There were two Original Net: (1, 4); (2, 5); (3, 6)

Candidate Vertices (4 and 6) two hops away. Rewired Net: (3, 6); (4, 6)



Small-World Network: WS Model

The underlying lattice structure of the model produces a
locally clustered network, and the random links dramatically
reduce the average path lengths

The algorithm introduces about (BNK/2) non-lattice edges.

Average Path Length (B):

— Ring lattice L(0) = (N/2K) >> 1

— Random graph L(1) = (In N/ In K)

— For 0 < B < 1, the average path length reduces significantly even for
smaller values of .

Clustering Coefficient (B):

3(K -2) o i1 AV
T C'(f)=C(0)*(1-5)

— For 0 < B < 1, the clustering coefficient remains close to that of the
regular lattice for low and moderate values of 8 and falls only at
relatively high 3.

For low-moderate values of 3, we thus capture the small-world
phenomenon where the average path length falls rapidly, while the
clustering coefficient remains fairly high.

C0)=



Avg. Path Length and Clus. Coeft.

N =20 nodes; K=4
Avqg. Path Length

Ring Lattice (Regular Net)
=N/2K=20/(2*4) = 2.5

Random Network
=In N/In K =1In(20)/In(4) = 2.16

C(0) = 3(K—2)
4(K —1) C'(B)=C)*(1-B)
C(0) = -f.ff‘.:..z.).-- C(0.1)=05*(1- 0.1)3 = 0.3645
C 4(4-1) C’(0.2) = 0.5 * (1 - 0.2)3 = 0.256
C’(0.5) = 0.5 * (1 — 0.5)° = 0.0625

3*2 C’(0.9) = 0.5 * (1 — 0.9)° = 0.0005
C(0) = -===----- =0.5

4*3




Clustering Coefficient, C’(B)

Rewiring Prob. Vs. Clus. Coefft.

C(0)

0.50
0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
0.05 -
0.00

0

0.1

t
0.2 03 04 05 06 07 08 0.9
Rewiring Probability, 8

t
1



Enhancement to the WS Model

 In addition to the re-wiring parameter 3, another
parameter called the clustering exponent (q) is
introduced.

* An (u, v) edge is selected for re-wiring with a
probability 3. After being selected, we do not
randomly re-wire u with a node w. Instead, we pick
a pair (u, w) for re-wiring with a probability of [d(u,
w)-9] / 2logn, where
— For optimal results, g must be the dimensionality of the

network modeled. For a ring lattice, q = 1.
— nis the number of nodes in the network.

— d(u, w) is the minimum number of hops between u and w
in the original network layout (before enhancement)
« The ring lattice is a single-dimension network
« A grid is a two-dimensional network.



Example 1: Small-World Model

« Consider a regular ring lattice of degree 8 for every node.
This regular graph is transformed to a small-world network
b?/ arbitrarily re-wiring the edges with probability 3. Let the
clustering coefficient of the small-world network generated
out of this re-wiring be 0.4. Determine the re-wiring
probability (3.

)= 3K =2 C'(B)=CO)*(1-B)
4K -1)
AN — A x (1 _ @\3
38-2) 36 C’(B) = 0.4 = 0.643 * (1 - B)
C(0) = ----m--mmmm- = =-nee- =0.643 (1 - B)3 = 0.4/0.643 = 0.622
4(8-1) 4*7

1-p=(0.622)13
1 -8 = 0.854

B = 0.146



Ex -2: Enhanced Small-World Model

Prob. for a pair (u, w)
at a distance d(u, w) is
[d(u, w) 9] / 2logn

We have q =2
andn=9

d(u, w) [d(u, w) 9]/ 2logn

1

2
3
4

1 2 3 1 2 3 4 56 7829
101 2 1 23 2314
2 01 212 323
3 0 3 21 432
4 012 123
5 01 212
6 0 3 2 1
7 012
7 8 9 8 0 1
9 0
Dist. Orig. Prob. Pairs
1 0524 (1, 2);(1,4);(2,3); (2, 5); (3, 6); (4, 5);
(4, 7); (5, 6); (5, 8); (6, 9); (7, 8); (8, 9)
2 0131 (1,3);(1,5);(1,7); (2, 4); (2, 6); (2, 8);
(3, 5); (3, 9); (4, 6); (4, 8); (5, 7); (5, 9);
(6, 8); (7, 9)
3 0.058 (1,6);(1,8);(2,7);(2,9); (3,4); (3, 8);
(4, 9); (6, 7)
4 0.033 (1,9);(3,7)

(17-2) / (2 * log 9) = 0.524
(27-2) / (2 * log 9) = 0.131
(37-2) / (2 * log 9) = 0.058
(47-2) / (2 * log 9) = 0.033



Dist. Orig. Prob.Pairs

1 0.524 (1,2); (1, 4); (2, 3); (2, 5);
(3, 6); (4, 5); (4, 7); (5, 6);
(5, 8);(6,9);(7,8);(8,9)

2 0.131 (1,3); (1, 5); (1, 7); (2, 4);
(2, 6); (2, 8); (3, 5); (3, 9);
(4, 6); (4, 8); (5, 7); (5, 9);
(6, 8);(7,9)

3 0.038 (1,6); (1, 8);(2,7); (2, 9);
(3,4); (3, 8);(4,9); (6,7)

4  0.033 (1,9);(3,7)

Assume we want to rewire the edge 1-2  Scaled Prob. = Orig. Prob. / 0.542
The pairs that could be considered are

(everything except (1, 2) and (1, 4)):

(1,3);(1,5); (1,6); (1, 7); (1, 8); (1, 9)

Orig. Prob. Scaled Prob. Cum. Scaled Prob.

Pair

1-3
1-5
1-6
1-7
1-8
1-9
Sum

0.131
0.131
0.058
0.131
0.058
0.033
0.542

0.242
0.242
0.107
0.242
0.107
0.060

0.242 Generate a random
0.484 « number: 0.2525
0.591

0.833 We will rewire node 1
0.940 to node 5.

1.000



Ex -3: Enhanced Small-World Model

Dist.

1 2 3 4 56 7 8
101 21 22 23
2 01112 22
3 0 2 13 22
4 0 21 12
5 02 11 ;
6 0 1 2 3
7 0 1
8 0
Orig. Prob. Pairs
0.554 (1,2);(1,4);(2,3); (2, 4); (2, 5); (3, 5);
(4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
0.277 (1,3);(1,5);(1,6); (1, 7); (2, 6); (2, 7);
(2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);
(5, 6); (6, 8)
0.185 (1, 8);(3, 6)

Prob. for a pair (u, w)
at a distance d(u, w) is
[d(u, w) 9] / 2logn

We have q =1
and nh =8

d(u, w) [d(u, w) 9]/ 2logn

(17-1) / (2 * log 8) = 0.554
(27-1) /(2 * log 8) = 0.277
(37-1) /(2 * log 8) = 0.185



Dist.

Orig. Prob. Pairs

0.554

0.277

0.185

(1,2); (1, 4); (2, 3); (2, 4); (2, 5); (3, 5);
(4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
(1,3); (1, 5); (1, 6); (1, 7); (2, 6); (2, 7);
(2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);
(5, 6); (6, 8)
(1, 8); (3, 6)

Assume we want to rewire the edge 3-5
The pairs that could be considered are

(1,3); (3, 4); (3,6); (3, 7); (3, 8)
Orig. Prob. Scaled Prob. Cum. Scaled Prob.

Pair
1-3
3-4

W W w
S 11 1
S o~NO®

0.277
0.277
0.185
0.277
0.277
1.293

0.214
0.214
0.143
0.214
0.214

Scaled Prob. = Orig. Prob. / 1.293

0.214

0.428

0.571

0.785 Generate a random
0.999€ number: 0.9338

We will rewire node 3
to node 8.




! 4 6 |Dist. Orig. Prob. Pairs
1 0.554 (1,2);(1,4);(2,3); (2, 4); (2, 5); (3, 5);
o (4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
712 0.277 (1,3);(1,9);(1,6);(1,7); (2, 6); (2, 7);
3 (2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);
5 8 (5, 6); (6, 8)
3 0.185 (1, 8);(3, 6)

Assume we want to rewire the edge 5 -7
The pairs that could be considered are

(1, 5); (4, 5); (5, 6) Scaled Prob. = Orig. Prob. / 0.831

Pair Orig. Prob. Scaled Prob. Cum. Scaled Prob.

1-5 0.277 0.333 0.333

4-5 0277 0.333 0.667

5-6 0.277 0.333 1.000

Sum  0.831 Generate a random
< number: 0.9113

We will rewire node 5
to node 6.



Ex-4: Enhanced WS Model

« Consider the enhanced WS model for small-world networks.
Let there be a regular graph that is transformed to a small-
world network. For every edge (u, v) selected for re-wiring,
the probabillity that a node w of distance 2 hops to u is
picked for re-wiring is 0.2 and the probability that a node w
of distance 4 hops to uis picked for re-wiring is 0.08. Find
the value for the parameter q in the enhanced WS model.

I

Prob. for a pair (u, w) (22)9 229
at adistanced(u,w)is = cceceeeee S — =24 =25
[d(u, w)9] / 2logn oq 29
Given: P(u, w) = 0.2 =2"9/2logn ...... (1) q=1In(2.5)/In (2) = 1.322

P(u, w’) = 0.08 =479/ 2logn .... (2)



