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Theoretical Network Models
• In this module, we will see the theoretical models using 

which one could generate complex networks resembling 
those of real-world networks.

• The theoretical models we will see are as follows
– Random Networks

• Erdos Renyi Model (ER Model)

– Scale-Free Networks

• Barabasi Albert Model (BA Model)

• Bianconi-Barabasi (BB Model)

– Small-World Networks

• Watts-Strogatz Model (WS Model)

• We will see the generation of the networks based on the 
above models and analyze their characteristics.



Random Networks
• A random network is the one in which there is a 

certain probability for a link between any two nodes 
in the network. 

• Erdos-Renyi Model (ER) Model

– The probability for a link between any two nodes is the 

same. 

– Called the G(N, p) model where N is the number of nodes 

and ‘p’ is the probability for a link between any two nodes

– Highly theoretical model and it is primarily used to 

determine whether the links in a real-world network are 

formed due to random interactions of nodes or due to the 

preference of nodes to communicate or attach to certain 

nodes.



ER Model
• Step 1: Start with N 

isolated nodes
• Step 2: For a particular 

node pair (u, v), 
generate a random 
number r. If r ≤ p, then, 
add the link (u, v) to 
the network.

• Repeat Step 2 for each 
of the N(N-1)/2 node 
pairs.

• Each random network 
we generate with the 
same parameters (N, 
p) will look slightly 
different.
– The number of links L 

is likely to be 
different.

N = 12 nodes, p = 1/6

L = 8                    L = 10                      L = 7

N = 100 nodes, p = 1/6

Source: Figure 3.3a: Barabasi



Generation of ER-Random Network

Let plink = 0.524

Index Pairs Random Val Edge
1 0, 1 0.6335 N
2 0, 2 0.7478 N

3 0, 3 0.1721 Y
4 0, 4 0.9234 N
5 0, 5 0.8563 N
6 0, 6 0.3141 Y
7 1, 2 0.1594 Y
8 1, 3 0.2945 Y
9 1, 4 0.2227 Y
10 1, 5 0.0343 Y
11 1, 6 0.7621 N
12 2, 3 0.8595 N

13 2, 4 0.3091 Y
14 2, 5 0.5312 N
15 2, 6 0.1834 Y
16 3, 4 0.4194 Y
17 3, 5 0.2549 Y
18 3, 6 0.6974 N
19 4, 5 0.0968 Y
20 4, 6 0.4486 Y
21 5, 6 0.2983 Y
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Avg. Degree 
<K> 
= (2 + 4 + 3 + 4 + 5 + 4 + 4) / 7

= 3.71 



ER Model: Poisson Degree Distribution

• In a network of N nodes, the maximum number of links for a 
node with its neighbors is N-1 and each of these links can 
occur with a probability p.
– Average degree of a node <K> = (N-1)p

– Standard deviation for the degree of a node σk = sqrt(<K>)

• There could be a maximum N(N-1)/2 links in a random 
network of N nodes and each of these links can occur with a 
probability p.
– Average number of links <L> = {N(N-1)/2}*p

• From the above, we can easily see that
<K> = 2 * <L> / N 

Poisson degree distribution

K ����

<K>

For larger networks, we simply
use: <K> ~ Np



Generating a Poisson Degree Distribution

N = 10, p = 0.3
�<k> = p(N-1)
�<k> = 0.3*9 = 2.7

K ����

p
k
�� ��



Generating a Poisson Degree Distribution

N = 10, p = 0.7
�<k> = p(N-1)
�<k> = 0.7*9 = 6.3
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ER Model

Poisson Distribution

Random Network
N = 100 Nodes; plink = 0.1

Average Degree <K>
9.9 (Poisson); 9.93 (ER)

Standard Deviation SD(K)
3.14 (Poisson); 3.28 (ER)

Degree Distribution: ER Model vs. Poisson

SD(K)

Sqrt(<K>)



Clustering Coefficient
• In a random network evolved under the ER: G(N, p) model:

– For a node i with ki neighbors, the expected number of links 
connecting the neighbors is p*ki(ki -1)/2.

– Clustering coefficient is the ratio of the actual (also the expected 
value) number of links to that of the maximum number of links 
connecting the neighbors.

– Thus, the average clustering coefficient <C> for an ER: G(N, p)-
based random network is simply ‘p’ = <C> = <K> / N.

– Unlike real-world networks, the clustering coefficient is not dependent 
on degree distribution.

• Networks Actual  Random: ER-G(N, p)
Prison 

Friendships 0.31 0.0134

Co-authorships
Math 0.15 0.00002

Biology 0.09 0.00001

Economy 0.19 0.00002

WWW
Web links 0.11 0.002



Clustering Coefficients for 
Real Networks

Each circle corresponds to a real

network. 

Directed networks were made

undirected to calculate C.

For ER-random networks, the average

clustering coefficient decreases as

1/N. In contrast, for real networks,

<C> has only a weak dependence

on N.

Real networks have a much higher

Clustering coefficient than expected

for a ER-random network of similar N 

and L.

<
C

>
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K
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Clustering for Real Networks

C(k) is measured by averaging the local clustering coefficient of all nodes

with the same degree k. 

According to the ER-Random Network theory model, C(k) is independent of the 

individual node degrees. However, we find that C(k) decreases as k increases.

Nodes with fewer neighbors have larger local clustering coefficients and vice-versa



Real Networks are not ER-Random

• Degree distribution: 
– ER-Random networks –Poisson distribution, esp. for k << N. 

• Highly connected nodes (hubs) are effectively forbidden.

– Real networks: More highly connected nodes, compared to that 
predicted with random model.

• Connectedness:
– ER-Random networks: One single giant component exists only if 

<k> > ln N (i.e., p > (ln N)/N)

– Real networks: One single giant component exists for several  
networks with <k> < ln N.

• Average Path Length (small world property):
– For both ER-random and real networks, the average path length 

scales as ln N / ln <k>.

• Clustering coefficient:
– ER-Random model: Local clustering coefficient is independent of 

the node’s degree and <C> depends on the system size as 1/N.

– Real networks: <C> decreases with increase in node degrees 
and is largely independent of the system size.



Real Networks are not ER-Random

• Except for the small world property (avg. path length ~ 
lnN/ln<K>), the properties observed for real-world 
networks are not matching with that observed for ER-
random networks.

• Then why study random graph theory (ER-model)?

• If a certain property is observed for real-world networks, 
we can refer to the random graph theory and analyze 
whether the property is observed by chance (like the 
small world property). 

• If the property observed does not coincide with that of 
the random networks (like the local clustering 
coefficient), we need to further analyze the real-world 
network for the existence of the property because it did 
not just happen by chance.

• Establish useful benchmarks (e.g., diameter, degree 
distribution)



Generation of ER-Random Network
0

1 2

3 4

5

6

Avg. Degree <K>
= (2 + 3 + 3 + 5 + 3 + 4 + 2) / 7
= 3.14 

ER Model plink = <K> / (N-1)
plink = 3.14 / 6 = 0.524

Index Pairs Random Val Edge
1 0, 1 0.6335 N
2 0, 2 0.7478 N
3 0, 3 0.1721 Y
4 0, 4 0.9234 N
5 0, 5 0.8563 N
6 0, 6 0.3141 Y
7 1, 2 0.1594 Y

8 1, 3 0.2945 Y
9 1, 4 0.2227 Y
10 1, 5 0.0343 Y
11 1, 6 0.7621 N
12 2, 3 0.8595 N
13 2, 4 0.3091 Y
14 2, 5 0.5312 N
15 2, 6 0.1834 Y
16 3, 4 0.4194 Y
17 3, 5 0.2549 Y

18 3, 6 0.6974 N
19 4, 5 0.0968 Y
20 4, 6 0.4486 Y
21 5, 6 0.2983 Y

0
3

6

1

2 4

5
Avg. Degree 
<K> 
= (2 + 4 + 3 + 4 + 5 + 4 + 4) / 7

= 3.71 



Generation of ER-Random Network (contd…)

0

1 2

3 4
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6
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Given Network

ER-Random
Network

Degree #Nodes Prob.
2 2 2/7 = 0.286
3 3 3/7 = 0.428

4 1 1/7 = 0.143
5 1 1/7 = 0.143

Degree #Nodes Prob.
2 1 1/7 = 0.143
3 1 1/7 = 0.143

4 4 4/7 = 0.571
5 1 1/7 = 0.143

Degree Nodes LCC Avg <LCC>
2 0, 6 1, 1                 1.0
3 1, 2, 4 2/3, 2/3, 2/3    0.67

4 5 3/6                  0.5
5 3 4/10 0.4

Degree Nodes LCC Avg <LCC>

2 0 0.0               0.0
3 2 2/3 0.67
4 1, 3, 5, 6 4/6, 3/6        0.542

4/6, 2/6   
5 4 6/10 0.6



Problem Example 1

• Consider a random network generated according 
to the G(N, p) model where the total number of 
nodes is 12 and the probability that there are links 
between any two nodes is 0.20.  Determine the 
following:

– The average number of links in the network

– The average node degree

– The standard deviation of the node degree

– The average path length (distance between any two 
nodes in the network)

– The average local clustering coefficient for any node in 
the network.

– The expected local clustering coefficient for a node that 
has exactly 5 neighbors.



Problem Example 1: Solution
• There are N = 12 nodes

• Prob[link between any two nodes] = p = 0.2

Max. possible number of links between any two nodes is (N)(N-1)/2 = 
(12*11/2) = 66

(2) The average number of links in the network = p * N(N-1)/2

= 0.2 * 66 = 13.2

(3) Average node degree = p*(N-1) = 0.2 * 11 = 2.2

(4) Standard deviation of node degree = sqrt(<K>) 

=  sqrt(2.2) = 1.48

(5) Average path length = ln N / ln <k> = ln(12) / ln(2.2) = 3.15

(6) Avg. Local clustering coefficient for any node in the network = p = 0.2.

(7) The expected local clustering coefficient for a node in a random network 
is independent of its number of neighbors. Hence, the answer is 0.2



Scale-Free Networks
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Scale-Free Networks
• Scale-free networks follows a Power-law distribution.

• P(k) ~ k-γ, where γ is the degree exponent (> 1)

• P(k) = Ck-γ, where C is the proportionality constant

ζ(γ) = ∑
∞

=

−

1k

k
γ ζ(γ) is called the

Riemann-Zeta

Function

Assuming the degree distribution is discrete

K

P(K)



Proportionality Constant (Discrete)
γ

K
-γγγγ
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Computation of P(K) = CK–γ Values

γ
C

K



Power-Law Distribution (Discrete)

K ����

P
(K

) 
�� ��

γ = 3

γ = 2

For larger values of the 
Degree exponent (γ), the
chances of observing 

a hub with a larger degree
decreases.

Example (Let N = 100)
Kmin = 1
γ Kmax

1.5 10,000 (ruled out)
2.0 100
2.5 21.55
3.0 10
3.5 6.31



Power Law (Discrete): Avg. Degree
γ

<K>

C

K

K
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Why Power-Law is said to be scale-free?
• Kurtosis is a measure of 

how “heavy-tailed” a 
distribution is. 

• A probability distribution 
is generally said to be 
scale-free (i.e., heavy-
tailed) if its kurtosis is 
quite high (typically larger 
than 3). 

• Scale-free distributions 
also have a standard 
deviation that is 
comparable or even 
larger than the mean.
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K is the degree; 

<K> is the mean degree

The Kurtosis and SD formula are applied 
for all values (# samples: N) of K for which 
there is a non-zero probability of finding a 
vertex with the particular degree

Standard 
Deviation, SD (K) = 
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Power-Law (Discrete): Degree (Avg. and SD)

γ����

<K>

SD(K)



Scale-free 
networks lack an 

intrinsic scale

• For any bounded distribution (e.g. a Poisson or
• a Gaussian distribution) the degree of a randomly chosen node 

will be in the vicinity of <k>. Hence <k> serves as the network’s 
scale.

• In a scale-free network the second moment diverges, hence the 
degree of a randomly chosen node can be arbitrarily different from 
<k>. Thus, a scale-free network lacks an intrinsic scale (and 
hence gets its name).

Source: Figure 4.7 Barabasi



Example 1: Power-law
• Consider a network modeled using the power-law, P(K) = 

CK-γ. Determine the power-law exponent γ and the constant 
C if the network has approximately 4% of nodes with degree 
4 and 10% of nodes with degree 3.

• Solution:

• P(K) = CK-γ� ln P(K) = lnC + (-γ)lnK

• Given that P(3) = 0.10 and P(4)  = 0.04

ln(0.10) = lnC + (-γ)ln(3) � -2.303 = lnC + (-γ)*1.098 

ln(0.04) = lnC + (-γ)ln(4) � -3.219 = lnC + (-γ)*1.386 
Solving for γ, we get γ = (3.219 – 2.303)/(1.386 – 1.098) = 3.18

Substituting for γ = 3.18 in the Power-law equation for one of the two 
degrees, we get C = P(4) / 4-γ. = 0.04 / 4–3.18

We get C = 3.286



Example 2: Analyzing a Degree 
Distribution for Scale-Free Property

Given the following adjacency list for the vertices, determine whether the
Degree distribution could be classified to exhibit “scale-free” property.

0    1
0    2
0    3

0    4
0    5
0    7
0    8
1    3
1    5
1    6
1    9
3    4
4    6

4    7
5    9
7    8

0 ���� 1, 2, 3, 4, 5, 7, 8
1 ���� 0, 3, 5, 6, 9
2 ���� 0
3 ���� 0, 1, 4
4 ���� 0, 3, 6, 7
5 ���� 0, 1, 9

6 ���� 1, 4
7 ���� 0, 4, 8
8 ���� 0, 7
9 ���� 1, 5

ID Degree
0 7
1 5
2 1
3 3
4 4

5 3
6 2
7 3
8 2
9 2

Degree   #Nodes  P(K)
1 1 1/10 = 0.1
2 3 3/10 = 0.3
3 3 3/10 = 0.3
4 1 1/10 = 0.1
5 1 1/10 = 0.1

7 1 1/10 = 0.1

Avg. 
Degree = ∑

k

KPK )(*

Avg. Degree, <K>
= (1)(0.1) + (2)(0.3) + (3)(0.3)
+ (4)(0.1) + (5)(0.1) + (7)(0.1)
= 3.2



Example 2(1): Analyzing a Degree 
Distribution for Scale-Free Property

Degree (K)   P(K) (K-<K>)2 (K-<K>)4 P(K)*(K-<K>)2 P(K)*(K-<K>)4

1 0.1 4.84             23.43 0.484 2.343  
2 0.3          1.44               2.07 0.432 0.621
3 0.3          0.04             0.0016             0.012   0.00048
4 0.1          0.64             0.4096 0.064                  0.04096
5 0.1          3.24             10.498            0.324    1.0498
7 0.1         14.44            208.51            1.444     20.851

<K> = 3.2

76.2)(*)(
2 =><−∑

K

KKKPSD(K) =

∑ ><−
K

KKKP
4

)(*)( = 24.906

Kurtosis(K) =

4

4
)(*)(

SD

KKKP

K

∑ ><−

= 1.661

=  -------------- = 3.27
24.906

(1.661)4

Since the Kurtosis (K) = 3.27
is greater than 3, we say the 
Degree distribution is heavy-
tailed.



Example 3: Analyzing a Degree 
Distribution for Scale-Free Property

Given the following adjacency list for the vertices, determine whether the
Degree distribution could be classified to exhibit “scale-free” property.

0   1
0   2
0   3

0   4
0   5
1   2
1   4
1   6
1   9
2   3
2   8
3   6
3   8

4   5
4   7
4   9
5   7

0 ���� 1, 2, 3, 4, 5
1 ���� 0, 2, 4, 6, 9
2 ���� 0, 1, 3, 8
3 ���� 0, 2, 6, 8
4 ���� 0, 1, 5, 7, 9
5 ���� 0, 4, 7

6 ���� 1, 3
7 ���� 4, 5
8 ���� 2, 3
9 ���� 1, 4

ID Degree
0 5
1 5
2 4
3 4
4 5

5 3
6 2
7 2
8 2
9 2

Degree   #Nodes  P(K)
2 4 4/10 = 0.4
3 1 1/10 = 0.1
4 2 2/10 = 0.2
5 3 3/10 = 0.3

Avg. 
Degree = ∑

k

KPK )(*

Avg. Degree, <K>
= (2)(0.4) + (3)(0.1) + (4)(0.2)
+ (5)(0.3) = 3.4



Example 3(1): Analyzing a Degree 
Distribution for Scale-Free Property

Degree (K)   P(K) (K-<K>)2 (K-<K>)4 P(K)*(K-<K>)2 P(K)*(K-<K>)4

2 0.4          1.96               3.842 0.784 1.5368
3 0.1          0.16               0.0256           0.016   0.00256
4 0.2          0.36               0.1296 0.072                  0.02592
5 0.3          2.56               6.5536           0.768   1.9661

<K> = 3.4

64.1)(*)(
2 =><−∑

K

KKKPSD(K) =

∑ ><−
K

KKKP
4

)(*)( = 3.5313

Kurtosis(K) =

4

4
)(*)(

SD

KKKP

K

∑ ><−

= 1.281

=  -------------- = 1.31
3.5313

(1.281)4

Since the Kurtosis (K) = 1.31
Is lower than 3, we say the 
Degree distribution is NOT 
heavy-tailed. 



Example 4: Predicting the Nature of 
Degree Distribution

Given the following probability degree distribution:
1) Draw a plot of the degree distribution and determine if the degree 
distribution follows a power-law or Poisson? 
2) Determine the parameters of the degree distribution you decided.

K P(K)
1 0.794
2 0.119

3 0.039
4 0.018
5 0.010
6 0.006
7 0.004
8 0.003
9 0.002
10 0.001

K ����

P
(K

) 
�� ��

It looks clearly like a power-law distribution.



Example 4(1): Predicting the Nature 
of Degree Distribution

K P(K) lnK lnP(K)
1 0.794 0 -0.23
2 0.119 0.69 -2.13

3 0.039 1.10 -3.24
4 0.018 1.39 -4.02
5 0.010 1.61 -4.61
6 0.006 1.79 -5.12
7 0.004 1.95 -5.52
8 0.003 2.08 -5.81
9 0.002 2.20 -6.21
10 0.001 2.30 -6.91

P(K) = C*K–γγγγ

lnP(K) = lnC + (-γ*lnK) : Compared to  Y = (slope)*X + constant;   
slope = - γ ; constant = lnC; 

We will use curve (line) fitting in Excel to find the slope and constant

lnK

ln
P

(K
)

Constant = lnC = –0.1873

C = e–0.1873 = 2.718–0.1873

C = 0.829
lnP(K) = (-γ*lnK) + lnC

γ = 2.7755P(K) = 0.829*K–2.7755



Example 5: Predicting the Nature of 
Degree Distribution

Given the following probability degree distribution:
1) Draw a plot of the degree distribution and determine if the degree 
distribution follows a power-law or Poisson? 
2) Determine the parameters of the degree distribution you decided.

K P(K)
0 0.015
1 0.163

2 0.132
3 0.185
4 0.194
5 0.163
6 0.114
7 0.068
8 0.036
9 0.017
10 0.007

P
(K

) 
�� ��

It looks clearly like a Poisson distribution.

K ����



Avg. Degree <K> =                             = 4.154∑
k

KPK )(*

981.3)(*)(
2 =><−∑

K

KKKP
SD(K) = = 1.995

Kurtosis(K) =

4

4
)(*)(

SD

KKKP

K

∑ ><−
=  -------------- = 2.852

45.181

(1.995)4

Kurtosis of Poisson distribution is expected to be close to 3
Kurtosis of Heavy-tailed Power-law distribution is expected to be (much) larger than 3.



Where does the Power-Law 
distribution start for real networks?

• If P(x) = C X–γ, then Xmin needs to be certainly greater than 
0, because X–γ is infinite at X = 0. 

• Some real-world distributions exhibit power-law only from a 
minimum value (xmin).

Source:MEJ �Newman, 
Power laws, Pareto distributions and 
Zipf’s law, Contemporary Physics 46, 

323–351 (2005) 



Some Power-Law Exponents of Real-
World Data



Power-Law Distribution (Discrete)

K ����

P
(K

) 
�� ��

γ = 3

γ = 2

For larger values of the 
Degree exponent (γ), the
chances of observing 

a hub with a larger degree
decreases.

Example (Let N = 100)
Kmin = 1
γ Kmax

1.5 10,000 (ruled out)
2.0 100
2.5 21.55
3.0 10
3.5 6.31



Average Distance: Power-Law

Anomalous regime: Hub and

spoke configuration; average 

distance independent of N.

Ultra small world regime

Hubs still reduce the path length

the lnN dependence on N (as

in random networks) starts

Small world property: Hubs are

not sufficiently large and numerous

to have impact on path length

The scale-free property shrinks the average path lengths as well as changes

the dependence of <d> on the system size. The smaller γ, the shorter are the

distances between the nodes.



Network Regimes based on SD(K)
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Scale-Free Regime

A
n

o
m

a
lo

u
s

R
e
g

im
e

R
a
n

d
o

m

R
e
g

im
e

SD(K) ≤ Sqrt(<K>)

We refer to the regime as scale-free
if γ ≥ 2 and SD(K) > Sqrt(<K>)
We also say the second moment 

<K2> ~ [SD(K)]2 diverges in this regime



Source: Figure 4.14 Barabasi



Large Standard 

Deviation for 

Real Networks

Source: Figure 4.8 Barabasi



Example: Power-Law, Avg. Path Length

• Consider a scale-free network of N = 100 nodes modeled 

using the power-law, P(K) = CK-γ. The minimum and 
maximum degrees of the nodes in the network are kmin = 3 

and kmax = 60 respectively. Find the power-law exponent 

(γ), the power-law constant C and the average path length.

60 = 3 * (100)(1/γγγγ-1)

1/(γ-1) = ln(60/3) / ln(100)
γ-1 = ln(100) / ln(20) = 1.54
γ = 2.54

In this case:

∑
=

−

=
60

3

1

k

k

C
γ

Using an Excel Spreadsheet to calculate the value
of the summation, we get:

∑
=

−
60

3k

k
γ

= 0.15333

C =  1/0.1533 = 6.52

Avg. Path Length
= ln ln(N) / ln (γ-1)
= ln ln(100) / ln(2.54-1)

= 3.54



Barabasi Albert (BA) Model

• BA model is a model for generating networks 
with power-law degree distribution.

• The model is defined as follows:
– We start with m0 nodes, the links between which are 

chosen arbitrarily, as long as each node has at least 
one link.

– The network develops as per the following growth and 
preferential attachment properties:

• Growth: At each time step, we add a new node with m (≤ m0) 
links that connect the new node to m nodes already in the 
network.

• Preferential Attachment: The probability π(k) that one of the 
links of the new node connects to node i depends on the 
degree ki of node i as:

a node with larger degree has 

good chances of getting connected 

to even more nodes.



BA Model
Example 
(m = 2)

Source: Figure 5.4
Barabasi



BA Model: Time-dependent Degree of a Node

• In the BA model, a node has a chance to increase its degree 

each time a new node enters the network.

• Let ki be a time-dependent continuous real variable (ki is the 

degree of node i that enters the network at time ti)

• The degree of node i at any time instant t ≥ ti is given by: 

where β = ½ is called 

the network’s 
dynamical exponent.

Observations:

1) The degree of each node increases following the above power law.

2) Each new node has more nodes to link than the previous nodes. 

In other words, with time, each node competes for links with an increasing 

pool of nodes.



Time Dependent Degree of a Node
• The earlier node i was added, the higher is its degree 

ki(t). 
– Hence, hubs are large not because they grow faster, but 

because they arrived earlier.

– The growth in the degrees is sub linear (β < 1).

• The rate at which node i acquires new links is given by 
the derivative:

• Indicating that older nodes acquire more links in a unit 
time (as they have smaller ti), as well as that the rate at 
which a node acquires links decreases with time as t-1/2. 
Hence, less and less links go to a node with time.

• Thus, the BA model offers a dynamical description of a 
network’s evolution: in real networks, nodes arrive one 
after the other, connecting to the earlier nodes.
– This sets up a competition for links during which the older nodes 

have an advantage over the younger nodes, eventually turning 
into hubs.



Time-Dependent Variation of Degree Centrality

Concave Down

Increasing



Nature of Functions

Concave Up (the rate of increase or decrease increases with time)

Concave Down (the rate of increase or decrease decreases with time)



Time-Dependent Variation of Betweenness 
Centrality

Concave Up

Increasing

N. Meghanathan, "Time-Dependent Variation of the Centrality Measures of the Nodes during the 

Evolution of a Scale-Free Network," Journal of Networks, vol. 10, no. 7, pp. 431-442, July 2015.
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw1007431442/10670



Bianconi-Barabasi (BB) Model
Motivation

• The Barabasi-Albert model leads to a scenario where the 
late nodes can never turn into the largest hubs.

• In reality, a node’s growth does not depend on the 
node’s age only.
– Instead web pages, companies or actors have intrinsic qualities 

that influence the rate at which they acquire links.

• Some show up late and nevertheless grab most links within a short 
timeframe.

• Example: Though, Facebook came later than Google, Facebook is 
the most linked node in the Internet.

• The goal of this model is to understand how the 
differences in the node’s ability to acquire links, and 
other processes not captured by the Barabasi-Albert 
model, like node and link deletion or aging, affect the 
network topology. 



Bianconi-Barabasi (BB) Model 
• Fitness – the intrinsic property of a node that propels 

more nodes towards it.

• The Barabasi-Albert model assumed that a node’s 
growth rate is determined solely by its degree.

• The BB model incorporates the role of fitness and 
assumes that preferential attachment is driven by the 
product of a node’s fitness, η, and its degree k.

• Growth: In each timestep, a new node j with m links and 
fitness ηj is added to the system, where ηj is a random 
number chosen from a distribution ρ(η) [for example: 
uniform distribution].
– Once assigned, a node’s fitness does not change.

• Preferential Attachment: The probability that a link of a 
new node connects to a pre-existing node i is 
proportional to the product of node i’s degree ki and its 
fitness ηi.



BA Model vs. BB Model

BB Model

where β(ηi) is a fitness-dependent 

dynamic exponent of node i.

A node with a 

higher fitness will 

increase its 

degree faster.



Example-1: BA & BB Model
• Consider the following degree distribution of the nodes and their 

fitness. 

• Determine the probability with which each node is likely to get the 
first link with a newly joining node under the BA and BB models.

• Let a new node join the network with 2 links under the BA and BB
models. Determine which nodes are likely to get connected to the
new node.

ID D
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F
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ID D
e

g
re

e

Probability of a node 
getting the first link

Cumulative
Probability

BA Model

(First Link)

Generate a random number
I got 0.2429 using the 
Random number generator

Program I gave you.

Node 2 gets selected for
the first link



Example-1: BA & BB Model
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ID D
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g
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e

Probability of a node 
getting the second link

Cumulative
Probability

BA Model

(Second Link)

Generate a random number
I got 0.0022 using the 
Random number generator
Program I gave you.

Node 1 gets selected for
the second link

The newly joining node gets connected nodes 2 and 1 (first and second link
respectively)



Example-1: BA & BB Model
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BB Model

(First Link)
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Generate a random number
I got 0.2584 using the 
Random number generator

Program I gave you.

Node 3 gets selected for
the first link



Example-1: BA & BB Model
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Probability of a node 
getting the second link

Cumulative
Probability

BB Model

(Second Link)
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e
s

s
Generate a random number
I got 0.4885 using the 
Random number generator

Program I gave you.

Node 4 gets selected for
the second link

The newly joining node gets connected 
nodes 3 and 4 (first and second link
respectively)



Example-2: BA Model

• At some time unit t, if the degree of a node 

that joined the network at time 10 units is 50, 

compute the degree of the node that joined 

the network at time 100 units.

• Solution:

• K10(t) = m(t/10)1/2 = 50

� m*t1/2 = 50 * 101/2 = 158.11

• K100(t) = m(t/100)1/2 = mt1/2 / 1001/2

= 158.11/10 = 15.81



Example-3: BA Model
• Consider a scale-free network that has evolved according to 

the BA model. Let there be two nodes P and Q such that the 
rate at which node P acquires new links is twice the rate at 
which node Q acquires new links. If node P joined the 
network at time 100 units, find the time at which node Q 
joined the network.

• Solution:

dKi(t)
-------

dt
P

=

dKi(t)
2* -------

dt
Q Time at which node

Q joined the network
is 400 units.



Example-4: BB Model
• Consider the BB model for scale-free networks . 

• Let the parameter β(ηi) for any node i be equal to the fitness of node i, ηi. 

Consider two nodes A and B such that the fitness of node B is twice the 

fitness of node A.

• Node A joins the network at time 10 units and node B joins the network at 

time 100 units. 

• If the degree of the nodes increase for every time unit (when a new node 

joins), what is the minimum value of the time unit starting from 

which the degree of node B would always be greater than the 

degree of node A? 
KA (t, 10) = m (t/10)ηηηηA

KB (t, 100) = m (t/100)ηηηηB

Given that: ηB = 2*ηA

We want to find the minimum value of 
time instant t for which KB(t,100) > KA(t,10)

m (t/100)ηηηηB > m (t/10)ηηηηA

tηηηηB / 100ηηηηB > tηηηηA / 10ηηηηA

tηηηηB / tηηηηA > 100ηηηηB / 10ηηηηA

t2ηηηηA / tηηηηA > 1002ηηηηA / 10ηηηηA = 104ηηηηA / 10ηηηηA

tηηηηA > 103ηηηηA

Hence, t > 103
���� t > 1000 time units



Example-5: BB Model
• Consider the BB model for scale-free networks . 

• Let the degree of a node A be 50 at time 100 units. If the fitness of node 

A is 2, compute the degree of node A at time 400 units.

KA(100, tA) = 50 = m ( 100 / tA)2

KA(400, tA) = ?

KA(400, tA) = m ( 400 / tA)2

From KA(100, tA) = 50
We get,

22
100

50
=

A
t

m

KA(400, tA) = 
2

2
400*

A
t

m

KA(400, tA) = 
2

2
400*

100

50

KA(400, tA) = 50*16 = 800



Example-6: BA Model
• At time 500 units, the following is the degree distribution of the nodes that 

joined at the time units indicated below. Determine the number of links 
added per node introduction (m) and the network’s dynamical exponent (β). 
Estimate the degree of a node that joined the network at time 40 units.

Node joining Degree at ln(t/ti) ln{ki(t)}
Time, ti Time t = 500 ln(500/ti)
10 28 3.912 3.332

25 18 2.996 2.890
50 13 2.302 2.565
75 10 1.897 2.302
100 9 1.609 2.197
125 8 1.386 2.079
150 7 1.204 1.946

ln{ki(t)} = lnm + β*{ln(t/ti)}

Y          =   Q      + (slope)*X



Example-6 (1): BA Model

ln(t/ti)

ln
{k

i(
t)

}

lnm = 1.3651

m = 2.718^1.361 = 3.9 ~ 4 links

β = 0.5067

ln{ki(t)} = lnm + β*{ln(t/ti)}

At time t = 500 units,
Degree of the node that joined the network at ti = 40 units
= 4 * (500/40)^0.5067 = 14.38 ~ 14.



Example-7: BB Model
• A node joined the network at time 10 units. Given below is the degree of the node 

at various time units. Determine the number of links added per node introduction 
and the fitness of the node. Under the BB model of evolution, assume the 
dynamical exponent value for a node is equal to the fitness of the node itself. 
Estimate the degree of the node at time 250 units.

Time Unit Degree at ln(t/ti) ln{ki(t)}
t Time t ln(t/10)
50 52 1.609 3.951

75 93 2.015 4.533
100 142 2.302 4.956
125 196 2.526 5.278
150 256 2.708 5.545
175 320 2.862 5.768
200 388 2.996 5.961

ln{ki(t)} = lnm + ηi*{ln(t/ti)}

Y          =   Q      + (slope)*X

Given ti = 10
β(ηi) = ηi



Example-7 (1): BB Model

ln(t/ti)

ln
{k

i(
t)

} ln{ki(t)} = lnm + β*{ln(t/ti)}

lnm = 1.6116

m = 2.718^1.6116 = 5.0 ~ 5 links

ηi = 1.452

At time t = 250 units,
Degree of the node that joined the network at ti = 10 units
= 5 * (250/10)^1.452 = 535.5 ~ 536.



Small World Networks
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Small-World Networks

• A small-world network is a type of graph in which most 

nodes are not neighbors of one another, but most nodes 
can be reached from every other by a small number of hops.

• Specifically, a small-world network is defined to be a 

network where the typical distance L (the number of hops) 

between two randomly chosen nodes grows proportionally 
to the logarithm of the number of nodes in the network. 

• Examples of Small-World Networks:

– Road maps, food chains, electric power grids, metabolite processing 

networks, networks of brain neurons, voter networks, telephone call 

graphs, gene regulatory networks.



Small Worlds

0 1Randomness

(Regular graph) (Small-world network) (Random graph)

• Two major properties of small world networks
– High average clustering coefficient

• The neighbors of a node are connected to each other

• Nodes’ contacts in a social network tend to know each other.

– Short average shortest path length
• Shorter paths between any two nodes in the network



Small Worlds
• Note that for the same number of nodes and edges, we 

could create:
– Random graphs (with edges arbitrarily inserted between any two 

nodes) and 

– Regular graphs (with some specific pattern of how edges are inserted 
between nodes)

• Regular graphs tend to have relatively high average 
clustering coefficient

• Random graphs tend to have relatively low average shortest 
path length

• We could bring the best of the two graphs by generating a 
small world network as follows:
– Remove a small fraction of the edges in a regular graph and re-insert 

them between any two randomly chosen nodes. This will not 
appreciably affect the average clustering coefficient of the nodes; but 
would significantly lower the average lengths of the shortest paths.



WS Model • Watts and Strogatz (WS) Model: 
The WS model interpolates 
between an ER graph and a 
regular ring lattice.
– Let N be the number of nodes and 

K (assumed to be even) be the 
mean degree.

– Assume N >> K >> ln(N) >> 1.

– There is a rewiring parameter β (0 
≤ β ≤ 1).

– Initially, let there be a regular ring 
lattice of N nodes, with K neighbors 
(K/2 neighbors on each side).

– For every node ni = n0, n1, …, nN-1, 
rewire the edge (ni, nj), where i < j, 
with probability β. Rewiring is done 
by replacing (ni, nj) with (ni, nk) 
where nk is chosen uniform-
randomly among all possible nodes 
that avoid self-looping and link 
duplication.

β = 0 ���� Regular ring lattice
β = 1 ���� Random network



WS Model for Grid Lattice (2-dim)

We have a nxn two-dimensional grid.

The nodes are identified with lattice points

i.e., a node v is identified with the 

lattice point (i, j) with i, j = {1, 2, …, n}

For every node u, we remove one of 

its associated edges to the neighbor 

nodes with a probability β and connect

the node to a randomly chosen node

v, as long as there is no self-loops

and link duplication.



WS Model Illustration

1

2
3

4

5
6

Given Network
Links (u, v): u < v
1 – 2
1 – 6
2 – 3
3 – 4 

4 – 5
5 – 6

Let the rewiring
Probability (β) be 0.7

Link Random #   Selected
1 – 2 0.933 NO        
1 – 6 0.907             NO

2 – 3 0.541 YES      
3 – 4 0.346 YES
4 – 5 0.835             NO
5 – 6 0.361            YES

We select a link for rewiring
if the random number 
generated for the link is less 

than or equal to
the rewiring probability

Rewiring (#1): Link 2 – 3

1

2
3

4

5
6

We cannot pick vertices 3 and 1
as they are connected to vertex 2 
in the original graph.

The candidates are: 4, 5, 6
There is a 1/3 probability for each 
of them to be considered.

Cand.  Prob. Cum Prob.
4 1/3     1/3 = 0.33
5 1/3     2/3 = 0.67
6 1/3     3/3 = 1.00

Generate a random
Number = 0.422

Vertex 2 is rewired
to Vertex 5.



WS Model Illustration (1)

1

2
3

4

5
6

Given Network

After Rewiring # 1

Link Random #   Selected
1 – 2 0.933 NO        
1 – 6 0.907             NO

2 – 3 0.541 YES      
3 – 4 0.346 YES
4 – 5 0.835             NO
5 – 6 0.361            YES

We select a link for rewiring
if the random number 
generated for the link is less 

than or equal to
the rewiring probability

Rewiring (#2): Link 3 – 4

1

2
3

4

5
6

We cannot pick vertices 4 and 2
as they are connected to vertex 3 
in the original graph.

The candidates are: 1, 5, 6
There is a 1/3 probability for each 
of them to be considered.

Cand.  Prob. Cum Prob.
1 1/3     1/3 = 0.33
5 1/3     2/3 = 0.67
6 1/3     3/3 = 1.00

Generate a random
Number = 0.665

Vertex 3 is rewired
to Vertex 5.

1

2
3

4

5
6



WS Model Illustration (2)

1

2
3

4

5
6

Given Network

After Rewiring # 2

Link Random #   Selected
1 – 2 0.933 NO        
1 – 6 0.907             NO

2 – 3 0.541 YES      
3 – 4 0.346 YES
4 – 5 0.835             NO
5 – 6 0.361            YES

We select a link for rewiring
if the random number 
generated for the link is less 

than or equal to
the rewiring probability

Rewiring (#3): Link 5 – 6

1

2
3

4

5
6

We cannot pick vertices 6 and 4
as they are connected to vertex 5 
in the original graph as well cannot

pick vertices 2 and 3 as they are 
connected to vertex 5 in the rewired
graph. Hence, the only candidate
vertex available is vertex 1.

Cand.  Prob. Cum Prob.
1 1/1     1/1 = 1.0Generate a random

Number = 0.763

Vertex 5 is rewired
to Vertex 1.

1

2
3

4

5
6



1

2
3

4

5
6

Given Network Rewiring # 1

1

2
3

4

5
6

Rewiring # 2

1

2
3

4

5
6

Rewiring # 3

1

2
3

4

5
6

1

2
3

4

5
6

1   2   3   4   5   6
1  0   1   2   3   2   1
2  1   0   1   2   3   2

3 2   1   0   1   2   3
4 3   2   1   0   1   2
5  2   3   2   1   0   1
6  1   2   3   2   1   0

Sum
9

9
9
9
9
9

Avg. Path
Length
= 54/ (6*5)
= 1.8

1

2
3

4

5
6

1   2   3   4   5   6
1  0   1   2   2   1   1
2  1   0   2   2   1   2

3 2   2   0   2   1   3
4 2   2   2   0   1   3
5  1   1   1   1   0   2
6  1   2   3   3   2   0

Sum
7

8
10
10
6
11

Avg. Path
Length
= 52/ (6*5)

= 1.73



Limitations of the WS Model
• The WS model introduced the notion of random edges to infuse shorter 

path lengths amidst larger clustering coefficient. 

• However, the long-range edges span between any two nodes in the 
network and do not mimic the edges of different lengths seen in real-
world networks (like in the US road map or airline map).
– Path lengths could not be as small as they are in real networks.

– Need some edges to nodes that are few hops away, rather than edges to 
some arbitrarily chosen nodes.

1

2
3

4

5
6

Given Network After Rewiring # 1

1

2
3

4

5
6

Vertex 5 is chosen for rewiring to 
Vertex 2 even though the two vertices
are three hops away. There were two 

Candidate Vertices (4 and 6) two hops away.

1

2
3

4

5
6

Avg. Path
Length
= 52/ (6*5)
= 1.73

After Rewiring # 3

The number of paths of length 3
(i.e., 3 hops) reduced from 3 to 2
Original Net: (1, 4); (2, 5); (3, 6)

Rewired Net: (3, 6); (4, 6)



Small-World Network: WS Model
• The underlying lattice structure of the model produces a 

locally clustered network, and the random links dramatically 
reduce the average path lengths 

• The algorithm introduces about (βNK/2) non-lattice edges.

• Average Path Length (β):
– Ring lattice L(0) = (N/2K) >> 1

– Random graph L(1) = (ln N / ln K)

– For 0 < β < 1, the average path length reduces significantly even for 
smaller values of β. 

• Clustering Coefficient (β):

– For 0 < β < 1, the clustering coefficient remains close to that of the 
regular lattice for low and moderate values of β and falls only at 
relatively high β.

• For low-moderate values of β, we thus capture the small-world 
phenomenon where the average path length falls rapidly, while the 
clustering coefficient remains fairly high.
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Avg. Path Length and Clus. Coeff.
N = 20 nodes; K = 4

Avg. Path Length

Ring Lattice (Regular Net) 

= N / 2K = 20 / (2*4) = 2.5

Random Network
= ln N / ln K = ln(20)/ln(4) = 2.16
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3 (4 – 2)    
C(0) = ---------------

4 (4 – 1)  

3 * 2    
C(0) = --------- = 0.5

4 * 3  

C’(0.1) = 0.5 * (1 – 0.1)3 = 0.3645
C’(0.2) = 0.5 * (1 – 0.2)3 = 0.256
C’(0.5) = 0.5 * (1 – 0.5)3 = 0.0625
C’(0.9) = 0.5 * (1 – 0.9)3 = 0.0005



Rewiring Prob. Vs. Clus. Coeff.

Rewiring Probability, β
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Enhancement to the WS Model
• In addition to the re-wiring parameter β, another 

parameter called the clustering exponent (q) is 
introduced.

• An (u, v) edge is selected for re-wiring with a 
probability β. After being selected, we do not 
randomly re-wire u with a node w. Instead, we pick 
a pair (u, w) for re-wiring with a probability of [d(u, 
w)-q] / 2logn, where 
– For optimal results, q must be the dimensionality of the 

network modeled. For a ring lattice, q = 1.

– n is the number of nodes in the network.

– d(u, w) is the minimum number of hops between u and w 
in the original network layout (before enhancement)

• The ring lattice is a single-dimension network

• A grid is a two-dimensional  network. 



Example 1: Small-World Model
• Consider a regular ring lattice of degree 8 for every node. 

This regular graph is transformed to a small-world network 
by arbitrarily re-wiring the edges with probability β. Let the 
clustering coefficient of the small-world network generated 
out of this re-wiring be 0.4. Determine the re-wiring 
probability β.

3 (8 – 2)       3*6
C(0) = --------------- = ------ = 0.643

4 (8 – 1)       4*7

C’(β) = 0.4 = 0.643 * (1 – β)3

(1 – β)3 = 0.4/0.643 = 0.622

1 – β = (0.622)1/3

1 – β = 0.854

β = 0.146
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1          2         3

7          8         9

4 5 6

1    2    3    4    5   6    7   8   9
1   0    1    2    1    2   3    2   3   4
2         0    1    2    1   2    3   2   3 
3               0    3    2   1    4   3   2 
4                     0    1   2    1   2   3
5                           0   1    2   1   2 

6                                0    3   2   1
7                                      0   1   2 
8                                           0   1
9                                                0

Dist. Orig. Prob. Pairs
1    0.524 (1, 2); (1, 4); (2, 3); (2, 5); (3, 6); (4, 5); 

(4, 7); (5, 6); (5, 8); (6, 9); (7, 8); (8, 9)
2 0.131 (1, 3); (1, 5); (1, 7); (2, 4); (2, 6); (2, 8);

(3, 5); (3, 9); (4, 6); (4, 8); (5, 7); (5, 9); 

(6, 8); (7, 9)
3 0.058 (1, 6); (1, 8); (2, 7); (2, 9); (3, 4); (3, 8);

(4, 9); (6, 7)
4 0.033 (1, 9); (3, 7)

Prob. for a pair (u, w)
at a distance d(u, w) is

[d(u, w)-q] / 2logn

We have q = 2 
and n = 9

d(u, w) [d(u, w)-q] / 2logn
1 (1^-2) / (2 * log 9) = 0.524
2 (2^-2) / (2 * log 9) = 0.131

3 (3^-2) / (2 * log 9) = 0.058 

4                (4^-2) / (2 * log 9) = 0.033

Ex -2: Enhanced Small-World Model



1          2         3

7          8         9

4 5 6

Dist.  Orig. Prob.Pairs
1 0.524 (1, 2); (1, 4); (2, 3); (2, 5); 

(3, 6); (4, 5); (4, 7); (5, 6); 
(5, 8); (6, 9); (7, 8); (8, 9)

2 0.131 (1, 3); (1, 5); (1, 7); (2, 4); 
(2, 6); (2, 8); (3, 5); (3, 9); 

(4, 6); (4, 8); (5, 7); (5, 9); 
(6, 8); (7, 9)

3 0.058 (1, 6); (1, 8); (2, 7); (2, 9); 
(3, 4); (3, 8); (4, 9); (6, 7)

4 0.033 (1, 9); (3, 7)

Assume we want to rewire the edge 1 – 2
The pairs that could be considered are 
(everything except (1, 2) and (1, 4)):

(1, 3); (1, 5); (1, 6); (1, 7); (1, 8); (1, 9)

Pair Orig. Prob.    Scaled Prob.   Cum. Scaled Prob.

1 – 3 0.131 0.242 0.242
1 – 5 0.131 0.242 0.484
1 – 6 0.058 0.107 0.591
1 – 7 0.131 0.242 0.833
1 – 8 0.058 0.107 0.940
1 – 9 0.033 0.060 1.000
Sum 0.542

Scaled Prob. = Orig. Prob. / 0.542

Generate a random 
number: 0.2525

We will rewire node 1
to node 5.



1    2    3    4    5   6    7   8
1   0    1    2    1    2   2    2   3
2         0    1    1    1   2    2   2 
3               0    2    1   3    2   2 
4                     0    2   1    1   2
5                           0   2    1   1 

6                                0    1   2
7                                      0   1 
8                                           0

Dist. Orig. Prob. Pairs
1    0.554 (1, 2); (1, 4); (2, 3); (2, 4); (2, 5); (3, 5);  

(4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
2 0.277 (1, 3); (1, 5); (1, 6); (1, 7); (2, 6); (2, 7); 

(2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);  

(5, 6); (6, 8)
3 0.185 (1, 8); (3, 6)

Prob. for a pair (u, w)
at a distance d(u, w) is

[d(u, w)-q] / 2logn

We have q = 1 
and n = 8

d(u, w) [d(u, w)-q] / 2logn
1 (1^-1) / (2 * log 8) = 0.554
2 (2^-1) / (2 * log 8) = 0.277

3 (3^-1) / (2 * log 8) = 0.185 

Ex -3: Enhanced Small-World Model
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Assume we want to rewire the edge 3 – 5 
The pairs that could be considered are 
(1, 3); (3, 4); (3, 6); (3, 7); (3, 8)

Pair Orig. Prob.    Scaled Prob.   Cum. Scaled Prob.
1 – 3 0.277 0.214 0.214

3 – 4 0.277 0.214 0.428
3 – 6 0.185 0.143 0.571
3 – 7 0.277 0.214 0.785
3 – 8 0.277 0.214 0.999
Sum 1.293

Scaled Prob. = Orig. Prob. / 1.293

Generate a random 
number: 0.9338

We will rewire node 3
to node 8.
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Dist. Orig. Prob. Pairs
1    0.554 (1, 2); (1, 4); (2, 3); (2, 4); (2, 5); (3, 5);  

(4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
2 0.277 (1, 3); (1, 5); (1, 6); (1, 7); (2, 6); (2, 7); 

(2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);  
(5, 6); (6, 8)

3 0.185 (1, 8); (3, 6)



Assume we want to rewire the edge 5 – 7
The pairs that could be considered are 
(1, 5); (4, 5); (5, 6)

Pair Orig. Prob.    Scaled Prob.   Cum. Scaled Prob.
1 – 5 0.277 0.333 0.333

4 – 5 0.277 0.333 0.667
5 – 6 0.277 0.333 1.000
Sum 0.831

Scaled Prob. = Orig. Prob. / 0.831

Generate a random 
number: 0.9113

We will rewire node 5
to node 6.
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Dist. Orig. Prob. Pairs
1    0.554 (1, 2); (1, 4); (2, 3); (2, 4); (2, 5); (3, 5);  

(4, 6); (4, 7); (5, 7); (5, 8); (6, 7); (7, 8)
2 0.277 (1, 3); (1, 5); (1, 6); (1, 7); (2, 6); (2, 7); 

(2, 8); (3, 4); (3, 7); (3, 8); (4, 5); (4, 8);  
(5, 6); (6, 8)

3 0.185 (1, 8); (3, 6)



Ex-4: Enhanced WS Model
• Consider the enhanced WS model for small-world networks. 

Let there be a regular graph that is transformed to a small-
world network. For every edge (u, v) selected for re-wiring, 
the probability that a node w of distance 2 hops to u is 
picked for re-wiring is 0.2 and the probability that a node w' 
of distance 4 hops to u is picked for re-wiring is 0.08. Find 
the value for the parameter q in the enhanced WS model.

Prob. for a pair (u, w)
at a distance d(u, w) is

[d(u, w)-q] / 2logn

Given: P(u, w) = 0.2 = 2–q / 2logn …… (1)
P(u, w’) = 0.08 = 4–q / 2logn …. (2)

(1)        0.2         2-q            4q

----- ���� ------- = -------- ���� -------- = 2.5

(2)        0.08       4-q             2q

(22)q         22q

---------- = -------- = 2q

2q             2q

= 2.5

q = ln(2.5) / ln (2) = 1.322


