
Module 1:
Analyzing the Efficiency of

Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm
cannot be compromised

– The range of inputs for which an algorithm works has to be
specified carefully.

– The same algorithm can be represented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with
dramatically different speeds

Problem

Algorithm

ComputerInput Output

The Analysis Framework
• Time efficiency (time complexity): indicates how fast an algorithm

runs

• Space efficiency (space complexity): refers to the amount of

memory units required by the algorithm in addition to the space

needed for its input and output

• Algorithms that have non-appreciable space complexity are said to

be in-place.

• The time efficiency of an algorithm is typically as a function of the

input size (one or more input parameters)

– Algorithms that input a collection of values:

• The time efficiency of sorting a list of integers is represented in terms of the
number of integers (n) in the list

• For matrix multiplication, the input size is typically referred as n*n.

• For graphs, the input size is the set of Vertices (V) and edges (E).

– Algorithms that input only one value:

• The time efficiency depends on the magnitude of the integer. In such cases,
the algorithm efficiency is represented as the number of bits 1+
needed to represent the integer n

 n2log

Units for Measuring Running Time
• The running time of an algorithm is to be measured with a unit that is

independent of the extraneous factors like the processor speed,

quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is

executed on inputs of size n.

Examples for
Input Size and Basic Operations

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

Orders of Growth
• We are more interested in the order of growth on the number of times

the basic operation is executed on the input size of an algorithm.

• Because, for smaller inputs, it is difficult to distinguish efficient

algorithms vs. inefficient ones.

• For example, if the number of basic operations of two algorithms to

solve a particular problem are n and n2 respectively, then

– if n = 3, then we may say there is not much difference between requiring

3 basic operations and 9 basic operations and the two algorithms have

about the same running time.

– On the other hand, if n = 10000, then it does makes a difference whether

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions

Best-case, Average-case, Worst-case
• For many algorithms, the actual running time may not only

depend on the input size; but, also on the specifics of a
particular input.

– For example, sorting algorithms (like insertion sort) may run
faster on an input sequence that is almost-sorted rather than on a
randomly generated input sequence.

• Worst case: Cworst(n) – maximum number of times the basic
operation is executed over inputs of size n

• Best case: Cbest(n) – minimum # times over inputs of size n

• Average case: Cavg(n) – “average” over inputs of size n

– Number of times the basic operation will be executed on typical
input

– NOT the average of worst and best case

– Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs

Example for Worst and Best-Case
Analysis: Sequential Search

• Worst-Case: Cworst(n) = n

• Best-Case: Cbest(n) = 1

/* Assume the second condition will not

be executed if the first condition evaluates to

false */

Probability-based Average-Case
Analysis of Sequential Search

• If p is the probability of finding an element in the list, then (1-p) is the

probability of not finding an element in the list.

• Also, on an n-element list, the probability of finding the search key as

the ith element in the list is p/n for all values of 1 ≤i ≤ n

• If p = 1 (the element that we will search for always exists in the list),

then Cavg(n) = (n+1)/2. That is, on average, we visit half of the entries

in the list to search for any element in the list.

• If p = 0 (all the time, the element that we will search never exists),

then Cavg(n) = n. That is, we visit all the elements in the list.

YouTube Link: https://www.youtube.com/watch?v=8V-bHrPykrE

Asymptotic Notations: Intro

2n ≤ 0.05 n2

for n ≥ 40

2n = O(n2)

0.05n2 ≥ 2n

for n ≥ 40

0.05n2 = Ω(n)

Asymptotic Notations: Intro

2n ≤ 5n

for n ≥ 1

2n = O(n)

2n ≥ n

for n ≥ 1

2n = Ω(n)

n

5n

2n

n As 2n = O(n)
and 2n = Ω(n),
we say
2n = Θ(n)

Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer

c is a positive constant (> 0)

and n0 is a non-negative integer

t(n) = Ω(g(n))

t(n) ≥ c*g(n) for all n ≥ n0

Note: If t(n) = O(g(n)) � g(n) = Ω(t(n)); also, if t(n) = Ω(g(n)) � g(n) = O(t(n))

Asymptotic Notations: Formal Intro

c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0

Asymptotic Notations: Examples
• Let t(n) and g(n) be any non-negative functions defined on a set of all

real numbers.

• We say t(n) = O(g(n)) for all functions t(n) that have a lower or the

same order of growth as g(n), within a constant multiple as n � ∞.

– Examples:

• We say t(n) = Ω(g(n)) for all functions t(n) that have a higher or the

same order of growth as g(n), within a constant multiple as n � ∞.

– Examples:

• We say t(n) = Θ(g(n)) for all functions t(n) that have the same order of

growth as g(n), within a constant multiple as n � ∞.

– Examples: an2 + bn + c = Θ(n2);

n2 + logn = Θ(n2)

Useful Property of Asymptotic
Notations

• If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)) , then

t1(n) + t2(n) ∈ O(max{g1(n), g2(n)})

• If t1(n) ∈ Θ(g1(n)) and t2(n) ∈ Θ(g2(n)) , then

t1(n) + t2(n) ∈ Θ(max{g1(n), g2(n)})

• The property can be applied for the Ω notation with a
slight change: Replace the Max with the Min.

• If t1(n) ∈ Ω(g1(n)) and t2(n) ∈ Ω(g2(n)) , then

t1(n) + t2(n) ∈ Ω(min{g1(n), g2(n)})

Using Limits to Compare Order of Growth

The first case means t(n) = O(g(n)

if the second case is true, then t(n) = Θ(g(n))

The last case means t(n) = Ω(g(n))

L’Hopital’s Rule

Note: t’(n) and g’(n) are first-order derivatives of t(n) and g(n)

Stirling’s Formula

Example 1: To Determine the
Order of Growth

Example 1: To Determine the
Order of Growth (continued…)

Example 2: To Determine the
Order of Growth

Example 2: To Determine the
Order of Growth (continued…)

Examples to Compare the Order of Growth

Example 3: Compare the order of growth of log2n and logn2.

Some More Examples: Order of Growth

• a) (n2+1)10 : Informally, = (n2+1)10 ≈ n20.

Formally,

b)

c)

d)

Some More Examples: Order of Growth

log2n 2logn 6 logn 6 18

Lim ----------- = Lim ---------------- = ----------- = -------------- = Lim -------- = 0

n � ∞ n1/3 n � ∞ n*(1/3)n(-2/3) n(1/3) n*(1/3)n(-2/3) n � ∞ n(1/3)

The listing of the functions in the increasing

Order of growth is as follows:

Hence, log2n = O(n1/3)

Time Efficiency of Non-recursive
Algorithms: General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of size

n, if the number of times the basic operation gets executed

varies with specific instances (inputs)

• Set up a sum for the number of times the basic operation is

executed

• Simplify the sum using standard formulas and rules

Useful Summation Formulas and Rules

Σl≤i≤u1 = 1+1+…+1 = u - l + 1

In particular, Σl≤i≤n1 = n - 1 + 1 = n ∈ Θ(n)

Σ1≤i≤n i = 1+2+…+n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2)

Σ1≤i≤n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)

Σ0≤i≤n ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a ≠ 1

In particular, Σ0≤i≤n 2i = 20 + 21 +…+ 2n = 2n+1 - 1 ∈ Θ(2n)

Σ(ai ± bi) = Σai ± Σbi Σcai = cΣai Σl≤i≤uai = Σl≤i≤mai + Σm+1≤i≤uai

∑
=

+−=
u

li

lu)1(1

Examples on Summation
• 1 + 3 + 5 + 7 + …. + 999

• 2 + 4 + 8 + 16 + … + 1024

Example 1: Finding Max. Element

• The basic operation is the comparison executed on each repetition of
the loop.

• In this algorithm, the number of comparisons is the same for all arrays
of size n.

• The algorithm makes one comparison on each execution of the loop,
which is repeated for each value of the loop’s variable i within the
bounds 1 and n-1 (inclusively). Hence,

Note: Best case = Worst case for this problem

Example 2: Sequential Key Search

• Worst-Case: Cworst(n) = n = Θ(n)

• Best-Case: Cbest(n) = 1

/* Assume the second condition will not

be executed if the first condition evaluates to

false */

Example 3: Element Uniqueness Problem

Best-case situation:

If the two first elements of the array are the same, then we can exit
after one comparison. Best case = 1 comparison.

Worst-case situation:

• The basic operation is the comparison in the inner loop. The worst-
case happens for two-kinds of inputs:

– Arrays with no equal elements

– Arrays in which only the last two elements are the pair of equal
elements

Example 3: Element Uniqueness Problem
• For these kinds of inputs, one comparison is made for each repetition

of the innermost loop, i.e., for each value of the loop’s variable j
between its limits i+1 and n-1; and this is repeated for each value of the
outer loop i.e., for each value of the loop’s variable i between its limits 0
and n-2. Accordingly, we get,

= Θ(n2)

Example 4: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array

divided into two parts: A[0,…,i-1] and A[i…n-1].
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the
sorted sequence A[0…i-1] to insert v at the appropriate position.

• The scanning is proceeded from right to left (i.e., for index j
running from i-1 to 0) until we find the right position for v.

• During this scanning process, v = A[i] is compared with A[j].

• If A[j] > v, then we v has to be placed somewhere before A[j] in the
final sorted sequence. So, A[j] cannot be at its current position (in
the final sorted sequence) and has to move at least one position to
the right. So, we copy A[j] to A[j+1] and decrement the index j, so
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to
A[j+1]. This also provides the stable property, in case v = A[j].

Insertion Sort
Pseudo Code and Analysis

The comparison A[j] > v is the basic operation.

Worst Case (if the array is reverse-sorted): the element v at A[i] has to be moved

all the way to index 0, by scanning through the entire sequence A[0…i-1].

Best Case (if the array

is already sorted): the

element v at A[i] will be just

compared with A[i-1] and

since A[i-1] ≤ A[i] = v, we

retain v at A[i] itself and

do not scan the rest of the

sequence A[0…i-1]. There

is only one comparison

for each value of index i.

∑∑ ∑ ∑ ∑∑
−

= −=

−

=

−

=

−

=

−

=

−
==+−−==

1

1

0

1

1

1

1

1

1

1

1

0 2

)1(
10)1(11

n

i ij

n

i

n

i

n

i

i

j

nn
ii

)1(11)1(1
1

1

−=+−−=∑
−

=

nn
n

i

= Θ(n2)

= Θ(n)

Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half

of the sorted sequence A[0…i-1] to put A[i] at the proper position.

∑ ∑∑ ∑
−

=

−

=

−

=

−

−=

Θ=
+

=+
−

==
1

1

2
1

1

1

1

2/)1(

1

)(
2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

i

ij

n
ii

nC

Example: Given sequence (also initial): 45 23 8 12 90 21

Iteration 1 (v = 23):

45 45 8 12 90 21

23 45 8 12 90 21

Iteration 2 (v = 8):

23 45 45 12 90 21

23 23 45 12 90 21

8 23 45 12 90 21

Iteration 3 (v = 12):

8 23 45 45 90 21

8 23 23 45 90 21

8 12 23 45 90 21

Iteration 4 (v = 90):

8 12 23 45 90 21

9 12 23 45 90 21

Iteration 5 (v = 21):

9 12 23 45 90 90

9 12 23 45 45 90

9 12 23 23 45 90

9 12 21 23 45 90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1

Time Efficiency of Recursive
Algorithms: General Plan for Analysis

• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is executed may vary
on different inputs of the same size. (If it may, the worst, average, and
best cases must be investigated separately.)

• Set up a recurrence relation with an appropriate initial condition
expressing the number of times the basic op. is executed.

• Solve the recurrence (or, at the very least, establish its solution’s order
of growth) by backward substitutions or another method.

Recursive Evaluation of n!
Definition: n ! = 1 ∗∗∗∗ 2 ∗∗∗∗ … ∗∗∗∗(n-1) ∗∗∗∗ n for n ≥ 1 and 0! = 1

• Recursive definition of n!: F(n) = F(n-1) ∗∗∗∗ n for n ≥ 1 and

F(0) = 1

M(nM(n--1) = M(n1) = M(n--2) + 1; 2) + 1; M(nM(n--2) = M(n2) = M(n--3)+13)+1

M(nM(n) = [M(n) = [M(n--2)+1] + 1 = M(n2)+1] + 1 = M(n--2) + 2 = [M(n2) + 2 = [M(n--3)+1+2] = M(n3)+1+2] = M(n--3) + 33) + 3

= = M(nM(n--nn) + n = n) + n = n
Overall time Complexity: Θ(n)

YouTube Link: https://www.youtube.com/watch?v=K25MWuKKYAY

Counting the # Bits of an Integer

bits (n) = # bits() + 1; for n > 1

bits (1) = 1

Either Division or Addition could be considered the

Basic operation, as both are executed once for each

recursion. We will treat “addition” as the basic operation.

Let A(n) be the number of additions needed to compute # bits(n)

Additions

Since the recursive calls end when n is equal to 1 and there are no additions

made, the initial condition is: A(1) = 0.

Counting the # Bits of an Integer
Solution Approach: If we use the backward substitution method (as we did in

the previous two examples, we will get stuck for values of n that are not powers

of 2).

We proceed by setting n = 2k for k ≥ 0.

New recurrence

relation to solve:

Examples for

Solving

Recurrence

Relations

Master Theorem to Solve
Recurrence Relations

• Assuming that size n is a

power of b to simplify analysis,

we have the following

recurrence for the running

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that

accounts for the time spent on

dividing an instance of size n

into instances of size n/b and

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1 � a > bd

())()(
24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2 � a = bd

()nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3 � a < bd

()3
)(nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0 � a > bd

())()(
2log2 nnnT Θ=Θ=

Master Theorem: More Problems

Space-Time Tradeoff

In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimum

and/or constant amount of extra storage space to
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may

sometime overwrite an input to the desired output as the algorithm
executes (as in the case of in-place sorting algorithms); the output
space may sometimes be a constant (for example in the case of
string-matching algorithms).

• Algorithms that use significant amount of extra storage
space (sometimes, additional space as large as the input
– example: merge sort) are said to be out-of-place in
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms:
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort

and Quick Sort have a worst-case time complexity of Θ(n2).

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a
worst-case time complexity of Θ(nlogn).

Hashing
• A very efficient method for implementing a dictionary, i.e., a set with

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m;

– If the keys are letters of some alphabet, the position of the letter in the
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet,
then, the hash function could be:

Collisions and Collision Resolution

If h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions

but some collisions should be expected

• In this module, we will look at open hashing that

works for arrays of any size, irrespective of the

hash function.

Open Hashing

Open Hashing
• Inserting and Deleting from the hash table is of the same

complexity as searching.

• If hash function distributes keys uniformly, average length of
linked list will be α = n/m. This ratio is called load factor.

• Average-case number of key comparisons for a successful search
is α/2; Average-case number of key comparisons for an
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get
a linked list containing all the n elements hashing to the same
index. To avoid this, we need to be careful in selecting a proper
hashing function.

– Mod-based hashing functions with a prime integer as the divisor are more
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if the number of keys, n > the size of
the hash table, m.

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and
for each element in the smaller array: search if it is in the hash table for
the larger array. If even one element in the smaller array is not there in
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n)

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time.

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the
brute-force approach.

• Note: The above solution could also be used to find whether two sets are
disjoint or not. Even if one element in the smaller array is there in the
larger array, we could stop!

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 11) + 2 (for 3) +

1 (for 7) + 2 (for 1) = 6

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 1 (for 11) + 5 (for 3) +

6 (for 7) + 2 (for 1) = 14

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.

Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 22) + 0 (for 25) +

1 (for 27) + 3 (for 28) = 5

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 6 comparisons for each element * 4 = 24

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the
contiguous subsequences of length 2 or above as well as the
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element
in the hash table.

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44

45

55

57

34 43 32 33 91

93

42 31

33

34

35

36

37

41

41

42

43

44

32

33

34

35
36

Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i] // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while (j is in H) do

j = j + 1

end while

if (j – A[i] > 1) then // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each
element in the array)

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44
45

55

57

34 43 32 33 91

93

42 31

33

34

35
36
37

41

