Module 4
Dynamic Programming

Dr. Natarajan Meghanathan
Professor of Computer Science
Jackson State University
Jackson, MS 39217
E-mail: natarajan.meghanathan@jsums.edu

Introduction to Dynamic Programming

Dynamic Programming is a general algorithm design technique for
solving problems defined by recurrences with overlapping sub problems

“Programming” here means “planning”
Main idea:

set up a recurrence relating a solution to a larger instance to
solutions of some smaller instances

solve smaller instances once
record solutions in a table
extract solution to the initial instance from that table

Dynamic programming can be interpreted as a special variety of
space-and-time tradeoff (store the results of smaller instances
and solve a larger instance more quickly rather than repeatedly
solving the smaller instances more than once).

Example: Fibonacci series 0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55

F(n) = F(n-1) + F(n-2), forn > 1. F(0)=0; F(1) = 1

— F(6) = F(5) + F(4).

— F(5) = F(4) + F(3). Note that we do not solve F(4) twice. We find F(4) only
once and use that to compute F(5) and F(6).

Coin-Collecting Problem

Problem Statement: Several coins are placed in cells of an nx m
board, no more than one coin per cell. A robot, located in the upper left
cell of the board, needs to collect as many of the coins as possible and
bring them to the bottom right cell. On each step, the robot can move
either one cell to the right or one cell down from its current location.
When the robot visits a cell with a coin, it always picks up that coin.
Design an algorithm to find the maximum number of coins the robot can
collect and a path it needs to follow to do this.

Solution: Let F(i, j) be the largest number of coins the robot can collect
and bring to the cell (i, j) in the ith row and jth column of the board. It
can reach this cell either from the adjacent cell (i-1, j) above it or from
the adjacent cell (i, j-1) to the left of it.

The largest numbers of coins that can be brought to these cells are F(i-
1,]) and Fi, j-1) respectively. Of course, there are no adjacent cells to
the left of the first column and above the first row. For such cells, we
assume there are 0 neighbors.

Hence, the largest number of coins the robot can bring to cell (i, j) is the
maximum of the two numbers F(i-1, j) and F(i, j-1), plus the one

possible coin at cell (i, j) itself.

Coin-Collecting Problem

Recurrence
F[‘! J}=m3x{F{:_]—! J}! F{!!j_ 1}}+Fﬂj for]-E:EH- 15.’5”1

FlO,j)=0forl<j<m and F(@G.00=0 forl<i <n,

where c; = 1 if there is a coin in cell (i,) and c; = 0 otherwise.

ALGORITHM RobotCoinCollection(C[l..n, 1..m])
/[l Applies dynamic programming to compute the largest number of
/fcoins a robot can collect on an n x m board by starting at (1, 1)
[fand moving right and down from upper left to down right corner
[Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
/{for cells with and without a coin, respectively
[{Output: Largest number of coins the robot can bring to cell (n, m)
F[1,1]« C[1,1]; forj < 2tomdo F[1, j]« F[1, j — 1]+ C[1, j]

fori « 2tondo - .
F[i, 1] « F[i — 1, 1]+ C[i, 1] Time Complexn_y. O(nm)
Space Complexity: ©(nm)

for j < 2tom do
F[i, j] «max(F[i — 1, j], F[i, j — 1]) + C[i, j]
return F[n, m]

Coin-Collecting Problem

Tracing back the optimal path:

It is possible to trace the computations backwards to get an optimal
path.

If F(i-1, j) > F(i,]-1), an optimal path to cell (i, j) must come down from
the adjacent cell above it;

If F(i-1, J) < F(i, }-1), an optimal path to cell (i, j) must come from the
adjacent cell on the left;

If F(i-1,) = F(i, j-1), it can reach cell (i, j) from either direction. Ties can
be ignored by giving preference to coming from the adjacent cell above.

If there is only one choice, i.e., either F(i-1, j) or F(i, j-1) are not
available, use the other available choice.

The optimal path can be obtained in ©(n+m) time.

3

b

Coin-Collecting Problem: Ex-1

L |

O

O | 0]0|5 |5
4 |4 (7|7 |7
4 (4| 9|9 (16
4 (12| 12| 12| 18
9 (12| 12| 18| 18

Coin-Collecting Problem: Ex-1 (1)

3

b

L |

0|0 |0 0|5 |5

=

0 ‘4 4| 7|7 |7

0 ‘4 4199 |16

0 | 4 1f 12| 12| 18

9 19 |12 12| 18|18
—tp ——) =)

C

2

3

4

B

B

7° Oy
O5 O3
S o2
4 60 $
Dg @
D3 7'::3'

|

2

3

oin-Collecting Problem: Ex-2

0

7

7

7

7

11

0

7

12

15

15

15

0

15

15

15

15

17

4

15

21

21

22

22

13

15

21

26

26

26

13

18

21

26

33

33

Coin-Collecting Problem: Ex-2 (1)

4

5

B

7

7

11

|

2

3

4

B

B

15

15

15

T7°

©4

O5

3

15

15

17

21

22

22

13

26

26

26

13

26

-

33

33

=)

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula:
(@a+b)"=Cn,0)ad’ +...+Cnka" b +...+ Cn,na’b"

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) forn >k >0
Cn0)=1, C(n;n)=1 forn=0

Value of C(n,k) can be computed by filling a table:
012... k1 k

01
1111 |
nC. = n!
Y k¥ (n—k)!
n-1 C(n-1,k-1) C(n-1,k)
n C(n,k)

+4

Computing C(12,5)

—
Mmook =0

—i
fJ —

I -
a1 2 3 4 5
1
1 1
1 2001
1 3 3 1
1 4 Bl 4 1
1 S 10(10 5 1
1 Bl 15| 20| 15 =
1 21| 35| 35| 21
1 a3 28| s&| FO] Sk
1 9 & 84|126] 126
1 10 45[(120|210] 252
1 11| 8515 |33530] 462
1 12| Be|Z220[495] 792

Computing C(n,k): pseudocode
and analysis

ALGORITHM Binomial(n. k)

//[Computes C(n, k) by the dynamic programming algorithm
/[Input: A pair of nonnegative integersn > k > 0
//Output: The value of C(n, k)
fori < Otondo
for j < 0to min(i, k) do
if j=0o0r, =i
Cli, j] <1

else C[i, j]< Cli —1,j—=1]+C[i — 1, j]

return C|n, k]

Time efficiency: O(nk)
Space efficiency: O(nk)

Longest Common
Subsequence (LCS) Problem

LCS Problem: Overview

The LCS problem is to find the longest
subsequence common to all sequences in a set of
sequences (often just two).

Note that a subsequence is different from a
substring in the sense that a subsequence need not
be consecutive terms of the original sequence.

An algorithm for the LCS problem could be used to
find the longest common subsequence between the
DNA strands of two organisms.

~or a given length of the two DNA strands, the
onger the common subsequence, the more similar
and closer (evolutionarily) are the two organisms.

Example: X = ATGCAC Y = CAGATCCA
— LCS(X, Y) = ATCA.

LCS Problem: |dea

Let the two sequences to compare be X of length m and Y of length n.
We want to find the LCS(X[1...m], Y[1...n]).
If X[m] = Y[n], then we can simply discard the last character (that is
common) from both the sequences and find the LCS of X[1...m-1] and
Y[1...n-1], such that

LCS(X[1...m], Y[1...n]) = LCS(X[1...m-1], Y[1...n-1]) + 1.
If X[m] # Y[n], then the longest common subsequence of the two
sequences can be at most either X[m] or Y[n]; but not both. Hence, we
can say that:

LCS(X[1...m], Y[1...n])

= Max {LCS(X[1...m-1], Y[1...n]), LCS(X[1...m], Y[1...n-1])}

Dvnamic Programming Formulation

Define: LCS[i][j]l = Length of the LCS of sequence X[1...i] and Y[1...j]
Thus, LCSJi][0] = 0 for all i LCS|0][j] = 0 for all j
The goal is to find LCS[m][n]

LCS[i-1][j -1]+1 X[i]=Y[/]

~estilsl= {Max{LCS[E] [/ =11, LCSTi =101 71} Al=T1/]

LCS Example 1 (1)

GACTAATA

ATGACTATAA
GACTAATA

X
Y

Match

unmatch

Max(L’, L)

+| Ol k\
(i :
o
O O
O™ I N NN NI T|O|O© ||~
—1 A
1\2233\45\666
0\122334\55\6\6
0\122334\55\5\5
01\2223\44\444
01112\333333
O™ | O | ™| N|N|JAN|N|N|AN| N
iy gy A
|| || ™| Y™ ¥
000\00000000
A OO 0O FACEFEF KK

LCS Example 1 (2)

ATGACTATAA
GACTAATA

GACTAATA

X
Y

<< , < nuu.
- - - nMu
1 T IWJ
| ol = O c
00O < <
o)
O ¢ 0] 5
©
T S 2
A- ﬂ
0\122334\567\/
o JI\ML AN|| &N 2¢W4 .4\M4 < | <
Ol™| ™| ™I AN M MMM MDD M
10| O ||| || -
|10 OO |0OCO|O0C|O0|O0|0O0]| O
< <
A -0 € OFACIEFEF KK

LCS Example 2 (1)

TGACTAC

TGACTAC
ACTGATGC

X
Y

oO|l|N|O|w||T|T |0
o|lr-|N|w|| |||
0\1 N | 3\3 <t || <
ofr 2\2 N|[A]w ||
oO|lr-lr||N|[]™ 3\3
0\0 of|r 2\2 N NN
o|lo|o 1\1 - 1\1 -
o|o 0\0 o|olo|o|o

< O FOCC -0 0O

LCS Example 2 (2)

. O

T

< < ©

, O <

- "

OO ©

< < <

o A

- -

™ | QN NI ‘5
\1 AN 3%4 <

™ | QN ™

o]

T GACTAC

ojojolofolofo]o

TGACTAC
ACTGATGC

X
Y

Afo|oO

C

2
3|3(4]|4]|4

3
-
G(o|1]2[2]2
S
SN
31414

2133
213|3|4|4|4

s

Glo|1]2

0({0(0O|1
1

S

Tl0/[1
Afo]1
T|o[™
Clo|1]2

-
@ %
Spa\h/ <<
N ET K¢
S Se &
E nm u
> >
Olo|l~|N|N]|OD]|O|O| |||
AT
C01\2 2233\444
A0\11222\333\44
T011\2222333\4
G0111\2\22\3333
L |O]|r|™]|]r]|]|]|N|]N|N]|]N]|N
A 7 i
o|lolo|lo|lo|lo|lol|lolo|lo|o
< O F OO « 0 € |-

o & s
N L= 83 oo
Cm@\mm o
LaOOGG o .
> 5 o
11] ox ¢ °
CR
- -
, O <
G- "n
< 8
C.
Olo|l~| NN
MM
AN| N
A01\ NV T T
= \ N|MD]|OD]|M | X
||| AN]J]N]|N \
—
=]] \
\ ol IR B
O|O0|O| O \11
|0 |O| O
< O FOG0 .
< O 0O < -

