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What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a 

problem, i.e., for obtaining a required output for any legitimate input in 
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm 
cannot be compromised

– The range of inputs for which an algorithm works has to be 
specified carefully.

– The same algorithm can be represented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with 
dramatically different speeds

Problem

Algorithm

ComputerInput Output



The Analysis Framework
• Time efficiency (time complexity): indicates how fast an algorithm 

runs

• Space efficiency (space complexity): refers to the amount of 

memory units required by the algorithm in addition to the space 

needed for its input and output

• Algorithms that have non-appreciable space complexity are said to 

be in-place.

• The time efficiency of an algorithm is typically as a function of the 

input size (one or more input parameters)

– Algorithms that input a collection of values: 

• The time efficiency of sorting a list of integers is represented in terms of the 
number of integers (n) in the list

• For matrix multiplication, the input size is typically referred as n*n.

• For graphs, the input size is the set of Vertices (V) and edges (E).

– Algorithms that input only one value:

• The time efficiency depends on the magnitude of the integer. In such cases, 
the algorithm efficiency is represented as the number of bits 1+
needed to represent the integer n

 n2log



Units for Measuring Running Time
• The running time of an algorithm is to be measured with a unit that is 

independent of the extraneous factors like the processor speed, 

quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the 

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total 

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s 

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being 
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is 

executed on inputs of size n.



Examples to 

Illustrate Basic

Operations

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

Best Case: 1 comparison

Worst Case: ‘n’ comparisons

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

Best Case: n-1 comparisons

Worst Case: n-1 comparisons

Note: Average Case number of 

Basic operations is the expected 

number of basic operations 

considered as a random variable 

under some assumption about 

the probability distribution of all 

possible inputs



Why Time Complexity is important? 

Motivating Example

• An integer ‘n’ is prime if it is divisible (i.e., the remainder 
is 0) only by 1 and itself.

• Algorithm A (naïve) Algorithm B (optimal)
Input n Input n

Begin Begin

for i = 2 to n-1 for i = 2 to √n

if (n mod i == 0)                          if (n mod i == 0)

return “n is not prime” return “n is not prime”

end if                                                   end if

end for                                              end for

“return n is prime” “return n is prime”

End                                                      End

Best-case: 1 division Best-case: 1 division

Worst-case: (n-1) – 2 + 1                   Worst-case: √n – 2 +1

= n-2 divisions   = √n – 1 divisions 

For larger n: ≈ n                                 For larger n: √n 



Comparison of ‘n’ and ‘√n’

Input size (n) Algorithm A (n) Algorithm B(√n)

1 1 1

10 10 3.16

100 100 10

1000 1000 31.62

10000 10000 100

100000 100000 316.23

1000000 1000000 1000

10000000 10000000 3162.28



Orders of Growth
• We are more interested in the order of growth on the number of times 

the basic operation is executed on the input size of an algorithm.

• Because, for smaller inputs, it is difficult to distinguish efficient 

algorithms vs. inefficient ones. 

• For example, if the number of basic operations of two algorithms to 

solve a particular problem are n and n2 respectively, then 

– if n = 3, then we may say there is not much difference between requiring 

3 basic operations and 9 basic operations and the two algorithms have 

about the same running time. 

– On the other hand, if n = 10000, then it does makes a difference whether 

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions



Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer

c is a positive constant (> 0)

and n0 is a non-negative integer

t(n) = Ω(g(n))

t(n) ≥ c*g(n) for all n ≥ n0

Note: If t(n) = O(g(n)) � g(n) = Ω(t(n));        also,  if t(n) = Ω(g(n)) � g(n) = O(t(n))



Asymptotic Notations: Intro
2n ≤ 0.05 n2

for n ≥ 40
c = 0.05, n0 = 40

2n = O(n2)

More generally,

n = O(n2).

0.05n2 ≥ 2n 

for n ≥ 40

c = 2, n0 = 40

0.05n2 = Ω(n)
More generally,

n2 = Ω(n)



Asymptotic Notations: Formal Intro

c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0



Asymptotic Notations: Intro

2n ≤ 5n

for n ≥ 1

2n = O(n)

2n ≥ n

for n ≥ 1

2n = Ω(n)

n

5n

2n

n As 2n = O(n) 
and 2n = Ω(n), 
we say
2n = Θ(n)



Relationship and Difference between 
Big-O and Big-Θ

• If f(n) = Θ(g(n)), then f(n) = O(g(n)).

• If f(n) = O(g(n)), then f(n) need not be Θ(g(n)).

• Note: To come up with the Big-O/Θ term, we exclude the lower order 
terms of the expression for the time complexity and consider only the 
most dominating term. Even for the most dominating term, we omit
any constant coefficient and only include the variable part inside the 
asymptotic notation.

• Big-Θ provides a tight bound (useful for precise analysis); whereas, 
Big-O provides an upper bound (useful for worst-case analysis).

• Examples:

(1) 5n2 + 7n + 2 = Θ(n2)
– Also, 5n2 + 7n + 2 = O(n2)

(2) 5n2 + 7n + 2 = O(n3), 

Also, 5n2 + 7n + 2 = O(n4), But, 5n2 + 7n + 2 ≠ Θ(n3) and ≠ Θ(n4) 

• The Big-O complexity of an algorithm can be technically more than 
one value, but the Big-Θ of an algorithm can be only one value and it 
provides a tight bound. For example, if an algorithm has a complexity 
of O(n3), its time complexity can technically be also considered as 
O(n4).



When to use 
Big-O and 

Big-Θ
• If the best-case and 

worst-case time 
complexity of an 
algorithm is guaranteed 
to be of a certain 
polynomial all the time, 
then we will use Big-Θ. 

• If the time complexity of 
an algorithm could 
fluctuate from a best-
case to worst-case of 
different rates, we will 
use Big-O notation as it 
is not possible to come 
up with a Big-Θ for such 
algorithms.

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

O(n) only

and not

Θ(n)

Θ(n)

�It is also

O(n)



Another Example to Decide 
whether Big-O or Big-Θ

Skeleton of a pseudo code

Input size: n

Begin Algorithm

If (certain condition) then

for (i = 1 to n) do

print a statement in unit time

end for

else

for (i = 1 to n) do

for (j = 1 to n) do

print a statement in unit time

end for

end for

End Algorithm

Best Case

The condition in the if block 

is true

-- Loop run ‘n’ times

Worst Case

The condition in the if block

is false

-- Loop run ‘n2’ times

Time Complexity: O(n2)

It is not possible to come up

with a Θ-based time complexity

for this algorithm.



Data processed by an Algorithm
• The design and development as well as the time and 

storage complexities of an algorithm for a problem 
depend on how we store and process the data on which 
the algorithm is run.

• For example: if the words in a dictionary are not sorted, it 
would take a humongously long time to come up with an 
algorithm to search for a word in the dictionary.

• Sometimes, the data need not be linear (like a 
dictionary) and need to be hierarchical (like a road map 
or file system).

• Layman example
– Abstract view of a car (any user should expect these features for 

any car): Should be able to start the car, turn steering, press 
brake to stop and press gas to accelerate, change gear, etc.

– Implementation (responsibility of the manufacturer and not the 
user): How each of the above is implemented? Varies with the 
targeted gas efficiency, usage purpose, etc.  



Abstract Data Type (ADT) vs. 
Data Structures

• Data processed by an algorithm could be 
represented at two levels:
– Abstract level (also called logical or user level): 

merely state the possible values for the data and what 
operations/functions the algorithm will call to store 
and access the data

– Implementation level (also called system level): deals 
with how the implementation should be done to 
perform the functions defined for the data at the 
abstract level.

• The abstract (logical) representation of data is 
commonly referred to as Abstract Data Type 
(ADT)

• The term “data structure” is considered to 
represent the implementation model of an ADT.



Common ADTs and the Data 
Structures for their Implementation

• List, Stack, Queue

– Arrays, Linked List

• Priority Queue

– Heap

• Dictionary

– Hash Table, Binary Search Tree

• Graph

– Adjacency List, Adjacency Matrix 



List ADT

• Data type

– Store a given number of elements of any data 
type

• Functions/Operations

– Create an initial empty list

– Test whether or not a list is empty

– Read element based on its position in the list.

– Insert, delete or modify an entity at a specific 
position in the list

10 23 13 17

0    1    2    3 



Stack ADT
• Data type

– Store a given number of elements of any data type

• Unique characteristic: Last In First Out (LIFO)

• Functions/Operations

– Insert

• Push an element to the top of the stack

– Delete

• Pop the last element that was pushed 

– Read

• Peek at the last element that was pushed

– Check if empty
10

23

13

Peek

10

23

13

17

Push

10

23

13

17

Pop



Queue ADT
• Data type

– Store a given number of elements of any data type

• Unique characteristic: First In First Out (FIFO)
• Functions/Operations

– Insert
• Enqueue: Append an element to the end of queue

– Delete
• Dequeue: Remove the element at the head of the queue 

– Read
• Peek: Look at the element at the head of the queue

– Check if empty

10 23 13

head tail

peek

10 23 13 17

head tail

Enqueue

10 23 13 17

head tail

Dequeue



Recursion
• Recursion: A function calling itself.

• Recursions are represented using a recurrence relation 
(incl. a base or terminating condition)

• Example 1

• Factorial (n) = n * Factorial(n-1) for n > 0

• Factorial (n) = 1 for n = 0

Factorial(n)

if (n == 0)

return 1;

else

return n * Factorial(n-1)  

Factorial(5) = 5 * Factorial(4)

Factorial(4) = 4 * Factorial(3)

Factorial(3) = 3 * Factorial(2)

Factorial(2) = 2 * Factorial(1)

Factorial(1) = 1 * Factorial(0)

Factorial(0) = 1



Recursion
• Example 2: Fibonacci Series

• F(n) = F(n-1) + F(n-2) for n > 1

• F(0) = 0 and F(1) = 1

F(n)

if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return F(n-1) + F(n-2)  


