
Module 2:
List ADT

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu



List ADT
• A collection of entities of the same data type
• List ADT (static)

– Functionalities (logical view)
• Store a given number of elements of a given data type

• Write/modify an element at a particular position

• Read an element at a particular position

• Implementation:
– Arrays: A contiguous block of memory of a certain 

size, allocated at the time of creation/initialization
• Time complexity to read and write/modify are Θ(1) each

10 23 13 17

0    1    2    3   …….  N-1 

Memory
address 2

0
0

2
0

4

2
0

8

2
1

2

Array index

A[0]

Array, A

A[2]

21…….

2
x

x



Code 1(C++): Static List 
Implementation using Arrays

#include <iostream>

using namespace std;



Code 1(Java): Static List 
Implementation using Arrays





Dynamic List ADT
• Limitations with Static List

– The list size is fixed (during initialization); cannot be increased or 
decreased.

– With a static list, the array is filled at the time of initialization and can 
be later only read or modified. A new element cannot be “inserted”
after the initialization phase.

• Key Features of a Dynamic List
– Be able to resize (increase or decrease) the list at run time. The list 

size need not be decided at the time of initialization. We could even 
start with an empty list and populate it as elements are to be added.

– Be able to insert or delete an element at a particular index at any time. 

• Performance Bottleneck
– When we increase the size of the list (i.e., increase the size of the 

array that stores the elements), the contents of the array need to be 
copied to a new memory block, element by element. � O(n) time.

– Hence, even though, we could increase the array size by one element 
at a time, the ‘copy’ operation is a performance bottleneck and the 
standard procedure is to double the size of the array (list) whenever 
the list gets full.

– A delete operation also takes O(n) time as elements are to be shifted 
one cell to the left.



Code 2: Code for Dynamic List 
ADT Implementation using Arrays

Variables and Constructor (C++)

isEmpty (C++)

Variables and Constructor (Java)

isEmpty (Java)



Code 2: Insert Function (C++ and Java)

Will take O(n) time each, where

n = maxSize + 1



Code 2: Resize Function (C++)

Have another pointer (a temporary ptr)

to refer to the starting address of 

the memory represented by the original

array

Allocating a new set of memory blocks to the ‘array’ variable

Copying back the contents pointed to by the 

temporary array pointer to the original array

If the array size is reduced from maxSize to s, only

the first ‘s’ elements are copied. Otherwise, all

the maxElements are copied

new value of maxSize



Code 2: Resize Function (Java)
Have another reference (a temporary ref)

to refer to the starting address of 

the memory represented by the original

array

Allocating a new set of memory blocks to the 

‘array’ variable

Copying back the contents pointed to by

the temporary array reference to the

original array

If the array size is reduced from maxSize to s, only

the first ‘s’ elements are copied. Otherwise, all

the maxElements are copied

new value of maxSize



Time complexity analysis for ‘Insert’: 
Dynamic List ADT as an Array

Insert operation
(i) Worst case: If the element is to be inserted as the first element in the array, 

then elements from index endOfArray(eoA) to index ‘0’ have to be shifted 

one position to the right. If eoA = n-1, then ‘n’ (indexes 0 to n-1) such 

shifting need to be done.

10 23 13 17

0    1    2    3   …….  eoA eoA+1

2
0

0

2
0

4

2
0

8

2
1

2

21…….

2
x

x

23 13 17

0    1    2    3 ….    i    i+1  i+2 ….eoA eoA+1

2
0

0

2
0

4

2
0

8

2
1

2

34…….

2
y
y

(ii) Best case: If the element is to be inserted at the end of the array, no shifting

is needed.

(iii) In general, if the element is to be inserted at index i, then the elements from 

index endOfArray(eoA) to index ‘i’ need to be shifted one cell to the right.

No change

Time complexity for insert operation: O(n)



Code 2: Other Auxiliary Functions
(for both C++ and Java)



Time complexity analysis for ‘Delete’: 
Dynamic List ADT as an Array

Delete operation
(i) Worst case: If the element to be deleted is the first element (at index 0) in 

the array, then the subsequent elements have to be shifted one position 

to the left, starting from index 1 to endOfArray (eoA) . If eoA = n-1, then 

n-1 such shifting need to be done.

10 23 13 17

0    1    2    3   …….  eoA

2
0

0

2
0

4

2
0

8

2
1

2

21…….

2
x

x

23 13 17

0    1    2    3 ….    i    i+1  i+2 …..  eoA

2
0

0

2
0

4

2
0

8

2
1

2

34…….

2
y
y

(ii) Best case: If the element to be deleted is at the end of the array, no shifting

is needed.

(iii) In general, if the element to be deleted is at index i, then the elements from 

index i+1 to endOfArray need to be shifted one cell to the left.

No change

Time complexity for delete operation: O(n)



Code 2: C++ main function

We will set the maximum size of the list to 1 

and double it as and when needed



Code 2: 

Java main 

function

We will set the maximum size 

of the list to 1 

and double it as and when needed



Pros and Cons of Implementing 
Dynamic List using Array

• Pros: Θ(1) time to read or modify an element at a 
particular index

• Cons: O(n) time to insert or delete an element (at any 
arbitrary position)

• Note: Array is a contiguous block of memory

• When we double the array size (to handle the need for 
more space), the memory management system of the 
OS needs to search for contiguous blocks of memory 
that is double the previous array size.
– Sometimes, it becomes difficult to allocate a contiguous block of 

memory, if the requested array size is larger.

• After we double the size (say from 50,000 to 100,000 to 
insert just one more element), the rest of the array 
remains unused. However, increasing the size of the 
array one element at a time is time consuming too.
– The copy operation involved during resizing the array is also 

time consuming



Temp

array
Original

array

Original

array

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

2
7

Insert Operation 
(incl. Relocation and Doubling the Size of the Array)



Linked List
• A Linked List stores the elements of the ‘List’ in separate memory 

locations and we keep track of the memory locations as part of the 
information stored with an element (called a node).
– A ‘node’ in a Linked List contains the data value as well as the address

of the next node.

• Singly Linked List: Each node contains the address of the node with 
the subsequent value in the list. There is also a head node that
points to the first node in the list.

Data

nextNodePtr

• Doubly Linked List: Each node contains the address of the node with 
the subsequent value as well as the address of the node with the
preceding value. There is also a head node pointing to the first node 
in the list and a tail node pointing to the last node in the list.

prevNodePtr

Data

nextNodePtr

• Note: Memory address can be represented in 4 bytes. Hence, each 
pointer or reference to a memory will take 4 bytes of space. 

With singly linked list – we can traverse only in one direction

With doubly linked list – we can traverse in both directions



Singly Linked List

20

1
3

6 45 12 17

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

6

1
7

6

(N
U

L
L

)0

1
2

0

Head 

Node Node Node Node Node

Memory Address

Doubly Linked List

20

1
3

2 45

1
1

6 12

1
5

2 17

1
7

2

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

2

1
7

2

1
9

6

(N
U

L
L
)0

1
3

2

1
1

6

Head 

Node Node Node Node Node

Memory Address

Tail 

Node



Linked List vs. Arrays: Memory Usage
Data size  Next Node Ptr Prev Node Ptr Node Size

Singly Linked List        4 (int)          4                   N/A              8 bytes

Singly Linked List       32                4                   N/A              36 bytes

Doubly Linked List       4 (int)         4                   4                   12 bytes

Doubly Linked List      32                4                4                   40 bytes 

An array is usually considered to take space that is twice the number of 
elements in it. Still, it looks like the Linked Lists will take a larger 
memory compared to an array. But, it is not always the case.

Consider a scenario wherein 64,000 objects (each of size 32 bytes) are to 
be stored in a List.

If we were to stored the objects in an array, there would need to be space 
for 128,000 objects. Hence, a dynamic array-based implementation will 
now hold up 128,000 * 32 bytes = 40,96,000 bytes in memory.

A singly linked list based implementation will hold (64,000 + 1 head node) 
* 36 bytes = 23,04,036 bytes in memory.

A doubly linked list based implementation will hold (64,000 + 1 head node 
+ 1 tail node)* 40 bytes = 25,60,080 bytes in memory.



Linked List vs. Arrays: Memory Usage

On the other hand, Consider a scenario 

wherein 8,000 integers (each integer is 4 
bytes) are to be stored in a List. 

An array-based implementation will now hold 
8,000 * 4 = 32,000 bytes in memory.

A singly linked list-based implementation will 
now hold (4,000 + 1 head node) * 8 = 32,008 
bytes in memory.

A doubly linked list-based implementation will 
now hold (4,000 + 1 head node + 1 tail node) * 
12 = 48,024 bytes in memory.



Linked List vs. Arrays: Time Complexity
Array Singly Linked   Doubly Linked

List List

Read/Modify            Θ(1)             O(n)                    O(n)

Insert                        O(n)             O(n)                   O(n)

Delete                       O(n)             O(n)                   O(n)

isEmpty Θ(1)             Θ(1)                   Θ(1)

Count                        O(n)            O(n)                   O(n) 

We typically use arrays if there are more frequent read/modify 
operations compared to Insert/Delete

We typically use Linked Lists if there are more frequent insert/delete 
operations compared to read/modify

Note: With arrays, Insert operations are more time consuming if need to 
be done at the smaller indices. With singly linked lists, insert
operations are more time consuming if done towards the end of the 
list. A doubly linked list could be traversed either from the head or the 
tail, and hence if a priori information is know about the sequence of 
elements in the list, traversal could be initiated from the head or tail, 
and the traversal time could be lower than a singly linked list. Still O(n) 
time though!



Preference: Dynamic Array Vs. Linked List 

For insertion and deletion operations, the element-wise copy operation involved 

with Dynamic arrays during insertion and deletion is relatively more time 

consuming than traversing through the Linked List to reach the index for 

insertion/deletion. Hence, with respect to time complexity, Linked List is preferred

for insertion and deletion, irrespective of the size of the data Objects. 

For read and modify operations, dynamic arrays work in constant time and are 

always preferred with respect to time complexity.

For space complexity: linked lists are preferred for storing several data objects, 
each of larger size; dynamic arrays are preferred for storing fewer data objects, 

each of smaller size.



Singly Linked List Implementation (Code 3)

Class Node

C++ Java



Singly Linked List Implementation
Class Node

C++ Java



Singly Linked List: Class List

private:

int data;

Node* nextNodePtr;

public:

Node( )

void setData(int)

int getData()

void setNextNodePtr(Node* )

Node* getNextNodePtr( )

Class Node (C++) Overview

Class List (C++)

private int data;

private  Node nextNodePtr;

public Node( )

public  void setData(int)

public  int getData()

public  void setNextNodePtr(Node* )

public  Node getNextNodePtr( )

Class Node (Java) Overview

Class List (Java)



Insert and InsertAtIndex Functions

First 

Node
headNode

headPtr

prevNodePtr

currentNodePtrInitialization

At the beginning of 
an iteration inside
the ‘while’ loop

getnextNodePtr()

Node at 

‘index’

Node at 

‘index - 1’

Node at 

‘index+1’

prevNodePtr currentNodePtr

Node at 

‘index’

Node at 

‘index - 1’
Node at 

‘index+1’

prevNodePtr currentNodePtr

At the end of 
an iteration inside
the ‘while’ loop

index = 0



Insert 
Function 

(at the end 
of the List)

Last 

Node
null

currentNodePtr

Last

Node

Inserted

Node
null

(before insert)

(after insert)

prevNodePtr

prevNodePtr
newNodePtr

InsertAtIndex
Function

(before insert)

Newly

Inserted

Node

(after insert)

Node at 

‘index’

Node at 

‘index - 1’

prevNodePtr
currentNodePtr

Node at 

‘index - 1’

prevNodePtr

newNodePtr

Node at 

‘index’

currentNodePtr



Class List (C++)

If the nextNodePtr for

the headPtr points to null (0),

then the list is empty. Otherwise,

the list has at least one node.

Move the currentNode ptr from first node

in the list to end of the list. When we come

out of the ‘while’ loop, the prevNode ptr

is the last node in the list and 

currentNode ptr points to null (0).



Class List (Java)

Move the currentNode ptr from first node

in the list to end of the list. When we come

out of the ‘while’ loop, the prevNode

ptr is last node in the list and 

currentNode ptr points to null (0).

If the nextNodePtr for

the headPtr points to null (0),

then the list is empty. Otherwise,
the list has at least one node.



Class List (C++)

During the beginning and end of the while loop, 

the value for ‘index’ corresponds to the 

Position of the currentNode ptr and prevNode ptr

corresponds to index-1.

If index equals insertIndex, we break from

the while loop and insert the new node

at the index in between prevNode and

currentNode.



Class List (Java)

During the beginning and end of the while loop, 

the value for ‘index’ corresponds to the 

Position of the currentNode ptr and prevNode ptr

corresponds to index-1.

If index equals insertIndex, we break from

the while loop and insert the new node

at the index in between prevNode and

currentNode.



Class List (C++)

The ‘index’ value corresponds to the

Position of the currentNode ptr and 

index-1 corresponds to prevNode ptr



Class List (Java)

The ‘index’ value corresponds to the

Position of the currentNode ptr and 

index-1 corresponds to prevNode ptr



Class List (C++)



Class List (Java)



Delete (deleteIndex) Function

First 

Node
headNode

headPtr

prevNodePtr

currentNodePtrInitialization

At the beginning of 
an iteration inside
the ‘while’ loop

getnextNodePtr()

Node at 

‘index’

Node at 

‘index - 1’

Node at 

‘index+1’

prevNodePtr currentNodePtr

Node at 

‘index’

Node at 

‘index - 1’
Node at 

‘index+1’

prevNodePtr currentNodePtr

At the end of 
an iteration inside
the ‘while’ loop

index = 0

nextNodePtr

When index != deleteIndex



Delete (deleteIndex) Function
When index == deleteIndex

Inside the ‘while’ loop

Node at 

‘index’

Node at 

‘index - 1’

Node at 

‘index+1’

prevNodePtr currentNodePtr nextNodePtr

Outside the ‘while’ loop

Node at 

‘index’

Node at 

‘index - 1’

Node at 

‘index+1’

prevNodePtr currentNodePtr
nextNodePtr

currentNode at index = deleteIndex

is disconnected from the Linked List



Class List (C++)

The next node for ‘prevNode’ ptr

is now ‘next node’ and not 

‘current node’



Class List (Java)

The next node for ‘prevNode’ ref

is now ‘next node’ and not 

‘current node’



Iterative 
Print

Class List (C++)

Class List (Java)



Recursion
• Recursion: A function calling itself.

• Recursions are represented using a recurrence relation 
(incl. a base or terminating condition)

• Example 1

• Factorial (n) = n * Factorial(n-1) for n > 0

• Factorial (n) = 1 for n = 0

Factorial(n)

if (n == 0)

return 1;

else

return n * Factorial(n-1)  

Factorial(0) = 1

Factorial(1) = 1 * Factorial(0) 

Factorial(2) = 2 * Factorial(1) 

Factorial(3) = 3 * Factorial(2)

Factorial(4) = 4 * Factorial(3)

Factorial(5) = 5 * Factorial(4)



Example (Code 4) 
to Illustrate 

Recursion and 
Random Number 

Generation
Initialize the random number

generator with a seed that 

corresponds to the current system time

The random numbers are generated

from 0 to maxValue – 1

C++

Headers to be included



Code 4: C++

Printing in the forward order

Printing in the reverse order



Recursion

cout << arrayPtr[0] << “ “;

RecursivePrint(arrayPtr, arraySize = 4, printIndex = 1)

cout << arrayPtr[0] << “ “;

@main

RecursivePrint(array, arraySize = 4, printIndex = 0)

cout << arrayPtr[1] << “ “;

RecursivePrint(arrayPtr, arraySize = 4, printIndex = 2)

cout << arrayPtr[1] << “ “;

cout << arrayPtr[2] << “ “;

RecursivePrint(arrayPtr, arraySize = 4, printIndex = 3)

cout << arrayPtr[2] << “ “;

cout << arrayPtr[3] << “ “;

RecursivePrint(arrayPtr, arraySize = 4, printIndex = 4)

cout << arrayPtr[3] << “ “;

if (printIndex == arraySize){

cout << endl;

return;

}

0      1     2     3

array    14    21   33   45

14    21    33    45  

45    33    21    14

Seq

1

2

3

15

4

5

14

6

7

13

8

9

12

10

11

// 4 == 4

Seq 2      4     6      8

Seq 12    14    16   18



Example (Code 4) 
to Illustrate 

Recursion and 
Random Number 

Generation

Java



Java

Initialize the random number

generator with a seed that 

corresponds to the 

current system time

The random numbers are generated

from 0 to maxValue – 1



Reversing a Linked List

12 45 33 22 30Input

12 45 33 22 30

Output

null

null

Logic

Maintain three pointers

currentNodePtr, nextNodePtr, prevNodePtr

Enter the loop if currentNodePtr is not null

After entering the loop,

Step 1: set nextNodePtr = currentNodePtr->getNextNodePtr()

Now that there is a pointer to the next node of currentNode, 

reverse the direction for the next node of currentNode

Step 2: currentNodePtr->setNextNodePtr(prevNodePtr)

Now prepare for the next iteration,

Step 3: set prevNodePtr = currentNodePtr

Step 4: set currentNodePtr = nextNodePtr



Node i-1

prevNodePtr currentNodePtr nextNodePtr

Step 1: Node i Node i+1 Node i+2

Node i-1

prevNodePtr currentNodePtr nextNodePtr

At the time of

entering the loop: 
Node i Node i+1 Node i+2

Node i-1

prevNodePtr currentNodePtr nextNodePtr

Step 2: Node i Node i+1 Node i+2

Node i-1

prevNodePtr currentNodePtr nextNodePtr

Step 3: Node i Node i+1 Node i+2

Node i-1

prevNodePtr currentNodePtr nextNodePtr

Step 4: Node i Node i+1 Node i+2

Reversing a Linked List (logic)



Reversing a Singly Linked List 
(Code 5): C++



Reversing a Singly Linked List 
(Code 5): Java



Singly vs. Doubly Linked List

• A doubly linked list has two additional nodes: a head 
node and tail node (a head ptr points to the head node 
whose next node is the first node in the list, and a tail ptr
points to the tail node whose prev node is the last node 
in the list).
– Note the next node for the last node in the list is null (so that the 

end of the list could be traced) as well as the prev node for the 
first node in the list is null (so that the beginning of the list could 
be traced).

• A doubly linked list could be traversed in either direction 
(from head to tail or from tail to head).

12 45 33 22 30 null

headPtr

12 45 33 22 30 null

headPtr
tailPtr

null

Head

Node

Head

Node
Tail

Node



Singly

Linked List
Doubly

Linked List

Data

Next

Node

Ptr

Data
Prev
Node

Ptr

Next
Node

Ptr

Class

Node

(Code 6)
C++



Doubly

Linked List

Code 6: C++

Singly

Linked List



C
o

d
e

 6
 (

C
+

+
)

In
s

e
rt

 t
o

 t
h

e
 e

n
d

 o
f 

a
 D

o
u

b
ly

 L
in

k
e

d
 L

is
t

T
h

e
 L

is
t 

h
a

s
 a

t 
le

a
s

t 

o
n

e
 e

le
m

e
n

t 
b

e
fo

re
 t

h
e

in
s

e
rt

io
n

 a
n

d
 t

h
e

p
re

v
N

o
d

e
P

tr
p

o
in

ts
 t

o
 

th
e

 l
a

s
t 

n
o

d
e
 i

n
 t

h
e

 l
is

t 
a

ft
e

r 
w

h
ic

h
 t

h
e

 
n

e
w

N
o

d
e

is
 i
n

s
e

rt
e

d
 (

i.
e

.,
 t

h
e

 n
e
w

ly
 i

n
s

e
rt

e
d

n
o

d
e

 i
s
 ‘

N
O

T
 T

H
E

 F
IR

S
T

 N
O

D
E

’
in

 t
h

e
 l
is

t

The List is empty before 

the insertion and the 
newNode is ‘THE FIRST 
NODE’ to be inserted

For both cases, set the newNode to be the previous node for the tailPtr

1

2

3

4

5



T
h

e
 L

is
t 

h
a

s
 a

t 
le

a
s

t 

o
n

e
 e

le
m

e
n

t 
b

e
fo

re
 t

h
e

in
s

e
rt

io
n

 a
n

d
 t

h
e

p
re

v
N

o
d

e
P

tr
p

o
in

ts
 t

o
 

th
e

 l
a

s
t 

n
o

d
e
 i

n
 t

h
e

 l
is

t 
a

ft
e

r 
w

h
ic

h
 t

h
e

 
n

e
w

N
o

d
e

is
 i
n

s
e

rt
e

d
 (

i.
e

.,
 t

h
e

 n
e
w

ly
 i

n
s

e
rt

e
d

n
o

d
e

 i
s
 ‘

N
O

T
 T

H
E

 F
IR

S
T

 N
O

D
E

’
in

 t
h

e
 l
is

t

The List is empty before 

the insertion and the 
newNode is ‘THE FIRST 
NODE’ to be inserted

For both cases, set the newNode to be the previous node for the tailPtr

1

2

3

4

5

C
o

d
e

 6
 (

J
a

v
a

)
In

s
e

rt
 t

o
 t

h
e
 e

n
d

 o
f 

a
 D

o
u

b
ly

 L
in

k
e

d
 L

is
t



Insert at the End of the List

Head

Node

If the newly inserted node is “THE FIRST NODE” to be inserted in 

the list

PrevNodePtr

HeadPtr

NULL

Before Insertion

Tail

Node
NULL

tailPtr

Head

NodePrevNodePtr

HeadPtr

After Insertion

Tail

Node

tailPtr

Newly

Inserted

Node

NULL

NULL
12

4 5



Insert at the End of the List

Head

Node

If the newly inserted node is “NOT THE FIRST NODE” to be inserted 

in the list

PrevNodePtr

HeadPtr

NULL

Before Insertion

Tail

Node

tailPtr

Node

1

NULL Last

Node

Head

NodePrevNodePtr

HeadPtr

NULL

Before Insertion

Tail

Node

tailPtr

Node

1

NULL Last

Node

Newly

Inserted

Node
1

prevNodePtr

prevNodePtr

2

3 5



C
o

d
e

 6
 (

C
+

+
)

In
s

e
rt

 a
t 

‘i
n

s
e

rt
In

d
e

x
’
in

a
 D

o
u

b
ly

 L
in

k
e

d
 L

is
t 

(F
ir

s
t 

P
a

rt
 o

f 
th

e
 F

u
n

c
ti

o
n

 C
o

d
e

)

Note: The first part of the 

Function code is the same

as that of a singly linked list

6



The second part of the Function code (shown below) is meant to the handle 

setting the prevNodePtr for the newly inserted node and the current node
The if segment takes care of the scenario wherein the newly

inserted node is ‘NOT THE FIRST NODE’ in the list; the else 

Segment takes care of the scenario wherein the newly

Inserted node is ‘THE FIRST NODE’ in the list
This part of the 

code takes care

of setting the

prevNodePtr for

the newly inserted

node

If the currentNodePtr

points to a node (i.e., the newly 
Inserted node is ‘NOT THE LAST
NODE’ in the list, set the newly 
Inserted node to be the previous
node of this currentNode

If the currentNodePtr does not point to any node, 
it means the end of the list has been reached, 
and we need to set the newly Inserted node as 

the previous node for the tailPtr (i.e., the newly 
inserted node is ‘THE LAST NODE’ in the list

3

4

5

7



C
o

d
e

 6
 (

J
a

v
a

)

In
s

e
rt

 a
t 

‘i
n

s
e

rt
In

d
e

x
’
in

a
 D

o
u

b
ly

 L
in

k
e

d
 L

is
t 

(F
ir

s
t 

P
a

rt
 o

f 
th

e
 F

u
n

c
ti

o
n

 C
o

d
e

)

Note: The first part of the 

Function code is the same

as that of a singly linked list

6



The second part of the Function code (shown below) is meant to the handle 

setting the prevNodePtr for the newly inserted node and the current node
The if segment takes care of the scenario wherein the newly

inserted node is ‘NOT THE FIRST NODE’ in the list; the else 

Segment takes care of the scenario wherein the newly

Inserted node is ‘THE FIRST NODE’ in the list
This part of the 

code takes care

of setting the

prevNodePtr for

the newly inserted

node

If the currentNodePtr

points to a node (i.e., the newly 
Inserted node is ‘NOT THE LAST
NODE’ in the list, set the newly 
Inserted node to be the previous
node of this currentNode

If the currentNodePtr does not point to any node, 
it means the end of the list has been reached, 
and we need to set the newly Inserted node as 

the previous node for the tailPtr (i.e., the newly 
inserted node is ‘THE LAST NODE’ in the list

3

4

5

7



Insert at ‘InsertIndex’
If the newly inserted node is “NOT THE LAST NODE” to be inserted 

in the list

Before Insertion

Current 

Node at

InsertIndex

currentNodePtr

Tail

Node

The prevNodePtr scenraios

(3) And (4) are handled as

in the Insert at End function

After Insertion

Current 

Node at

InsertIndex

+ 1

currentNodePtr

Tail

Node

Newly 

Inserted

Node at

InsertIndex

6

7

newNodePtr

No ch
ange


