
Module 4:
Queue ADT

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Queue ADT
• Features (Logical View)

– A List that operates in a First In First Out
(FIFO) fashion

– Insertion can be done at the end of the list and
deletion is done from the front of the list

• The first added item has to be removed first

– Operations:

• Enqueue() – adding an item to the end of the
Queue

• Dequeue() – delete the item from the front of
the Queue

• Peek() – read the item at the front of the Queue

• IsEmpty() – whether there is any element in the
Queue

– All the above operations should be preferably
implemented in O(1) time.

30

71

42

13

24

15

End of the

Queue

End

Enqueue Dequeue

Front of

the Queue

30

71

42

13

24

15

35

30

71

42

13

24

15

35

Implementation of Queue
Dynamic Array vs. Singly/Doubly Linked List

• Enqueue
– Array: O(n) time, due to need for resizing when the queue gets full

– Singly Linked List: Θ(n) time: traversal of the entire list is needed

– Doubly Linked List: O(1) time

• Dequeue
– Array: Θ(n) time, as elements need to be shifted one position to the left

– Singly Linked List: O(1) time, as the headPtr just needs to be adjusted

– Doubly Linked List: O(1) time

• Peek
– Array: O(1) time

– Singly Linked List: O(1) time, as the first node info needs to be just seen

– Doubly Linked List: O(1) time

• With a doubly-linked list based implementation of the queue, we can
enqueue by inserting the new node from the tail of the list and
dequeue (or peek) by removing (or reading the value of) the node next
to the head node.

Code 4.1: Dynamic Array-based
Queue

// Same as endOfArray

C++ Java

Code 4.1

(C++)

Code 4.1

(Java)

/* Store the front value in a temporary variable

Copy the elements from index+1 to index
starting from index = 0 to index = endOfQueue-1 */

Code 4.1

(C++)

/* Store the front value in a temporary variable

Copy the elements from index+1 to index
starting from index = 0 to index = endOfQueue-1 */

Code 4.1
(Java)

Code 3.2:
Doubly Linked

List-based
Implementation

of Queue
private:

int data;

Node* nextNodePtr;

Node* prevNodePtr;

public:

Node()

void setData(int)

int getData()

void setNextNodePtr(Node*)

Node* getNextNodePtr()
void setPrevNodePtr(Node*)
Node* getPrevNodePtr()

Class Node (C++) Overview

Class Queue (C++)

Code 3.2:
Doubly Linked

List-based
Implementation

of Queue

private int data;

private Node nextNodePtr;

private Node prevNodePtr;

public Node()

public void setData(int)

public int getData()

public void setNextNodePtr(Node)
public Node getNextNodePtr()
public void setPrevNodePtr(Node)

public Node getPrevNodePtr()

Class Node (Java) Overview

Class Queue (Java)

Enqueue Operation
Scenario 1: There is no node currently in the Queue

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

Before Enqueue

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

After Enqueue

New

Node

newNodePtr

2 1

3 6

Enqueue Operation
Scenario 2: There is at least one node already in the Queue

Head

Node

headPtr

NULL

Before Enqueue

Tail

Node

tailPtr

Node

1NULL

Last

Node

Head

Node

headPtr

NULL

After Enqueue

Tail

Node

tailPtr

Node

1NULL

Last

Node

New

Node

1

lastNodePtr

lastNodePtr

4

5

6

// Before the new node is inserted, the prevNodePtr for the “tail node”

// would be pointing to the last node in the queue and the nextNodePtr

// for that last node would be pointing to NULL.

Code 4.2 (C++)

// There is no other node in the Queue (Scenario 1)

// There is at least one node already in the Queue (Scenario 2)

2

3

4

5

6

Whatever be the case, the prevNodePtr for the tail node

will point to the newly pushed node

1

Code 4.2 (Java)

// There is no other node in the Queue (Scenario 1)

// There is at least one node already in the Queue (Scenario 2)

2

3

4

5

6
Whatever be the case, the prevNodePtr for the tail node

will point to the newly pushed node

1

Dequeue Operation
Scenario 1: There will be no node in the Queue after Dequeue
(i.e., there is just one node in the Queue before the Dequeue)

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

After Dequeue

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

Before Dequeue

First

Node

firstNodePtr

// Before Dequeue: The Head Node’s nextNodePtr and the Tail Node’s

prevNodePtr are both pointing to the only node in the queue.

// After Dequeue: Both the Head Node’s nextNodePtr and the Tail Node’s
prevNodePtr are set to NULL

1

2

Dequeue Operation
Scenario 2: There will be at least one node in the Queue
after the Dequeue operation is executed

Head

Node

headPtr

NULL

Before Dequeue

Tail

Node

tailPtr

NULL

Next

Node
Last

Node

nextNodePtr
lastNodePtr

First

Node

Head

Node

headPtr

NULL

After Dequeue

Tail

Node

tailPtr

NULL

Next

Node
Last

Node

nextNodePtr
lastNodePtr

4

3

If there is at least one node in

the Queue before Dequeue

Retrieve the nextNodePtr

for the First node

There is more than one node in the Queue before

Dequeue. Set the next node of the

first node as the new first node

and make the headPtr point to it as its next node. Set the prevNodePtr

of the new first node to null.

(Scenario 2)

There is going to be no node in the Queue

after the Dequeue operation (Scenario 1).

1

2

3

4

Code 4.2 (C++)

If there is at least one node in

the Queue before Dequeue

Retrieve the nextNodePtr

for the First node

There is more than one node in the Queue before

Dequeue. Set the next node of the

first node as the new first node

and make the headPtr point to it as its next node. Set the prevNodePtr

of the new first node to null.

(Scenario 2)

There is going to be no node in the Queue

after the Dequeue operation (Scenario 1).

1
2

3

4

Code 4.2 (Java)

Code 4.2 (C++)

Code 4.2 (Java)

