Module 7: Binary Search

Dr. Natarajan Meghanathan
Professor of Computer Science
Jackson State University
Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Binary Search

- Binary search is a $\Theta(\log n)$, highly efficient search algorithm, in a sorted array.
- It works by comparing a search key K with the array's middle element $A[m]$. If they match, the algorithm stops; otherwise, the same operation is repeated recursively for the first half of the array if $K<A[m]$, and for the second half if $K>A[m]$.
- The number of comparisons to search for a key in an array of size n is $C(n)=C(n / 2)+1$, for $n>1$. $C(n)=1$ for $n=1$.

Example

Binary Search

	Search Key $\mathbf{K}=70$	
$\mathrm{l}=0$	$\mathrm{r}=12$	$\mathrm{~m}=6$
$\mathrm{l}=7$	$\mathrm{r}=12$	$\mathrm{~m}=9$
$\mathrm{l}=7$	$\mathrm{r}=8$	$\mathrm{~m}=7$

index value	0	1	2	3	4	5	6	7	8	9	10	11	12
	3	14	27	31	39	42	55	70	74	81	91	93	98
iteration 1	l						m						r
iteration 2								l		m			r
iteration 3								l, m	r				

ALGORITHM BinarySearch (A[0..n-1], K)
//Implements nonrecursive binary search
Note that the "search space" reduces by half in each
$/ /$ Input: An array $A[0 . . n-1]$ sorted in ascending order and iteration. // a search key K Hence, the \# iterations is //Output: An index of the array's element that is equal to $K \quad$ proportional to $\log (\mathrm{n})$, // or -1 if there is no such element where ' n ' is the \# elements
$l \leftarrow 0 ; \quad r \leftarrow n-1 \quad$ The algorithm is run until the left index
while $l \leq r$ do
$m \leftarrow\lfloor(l+r) / 2\rfloor$
if $K=A[m]$ return m
else if $K<A[m] r \leftarrow m-1$
else $l \leftarrow m+1$
return -1
is less than or equal to the right index The search key should be found by then.

The moment the left index becomes greater than the right index, we stop and declare the search key is not there.

Binary Search Tree (BST)

- A binary search tree is a binary tree in which the value for an internal node is greater than or equal to the values of the nodes in its left sub tree and is lower than or equal to the values of the nodes

- Both hash tables and BSTs are data structures to implement a Dictionary ADT
- A hash table is an unordered collection of data items as a hash table could be constructed for any arbitrary array and the search could be conducted on a specific linked list to which the search element indexes (hash index) into.
- A BST is an ordered collection of data items (satisfying the property mentioned above). The number of comparisons it takes for a successful search or an unsuccessful search is bounded by the height of the binary search tree, which is proportional to $\log (\#$ nodes).

Algorithm to Construct a BST

Begin BST Construction(Array A, numNodes)
int leftlndex $=0$
int rightIndex $=$ numNodes -1
int middleIndex $=($ leftIndex + rightIndex) $/ 2$
rootNodeID $=$ middleIndex
BSTree[middleIndex].setData(A[middleIndex])
ChainNodes(A, middleIndex, leftIndex, rightIndex)
End BST Construction

Logic behind the ChainNodes Function

Pseudo Code: ChainNodes Function

ChainNodes(A, middleIndex, leftIndex, rightIndex)
if (leftIndex < middlelndex) then // a left sub tree exists for the node // at middleIndex
rootIDLeftSubtree $=($ leftIndex + middleIndex - 1) $/ 2$
BTNodes[rootIDLeftSubtree].setData(A[rootIDLeftSubtree])
setLeftLink(middleIndex, rootIDLeftSubtree)
ChainNodes(A, rootIDLeftSubtree, leftIndex, middleIndex - 1) end if
if (rightIndex > middleIndex) then // a right sub tree exists for the node // at middleIndex
rootIDRightSubtree $=($ middleIndex $+1+$ rightIndex $) / 2$
BTNodes[rootIDRightSubtree].setData(A[rootIDRightSubtree]) setRightLink(middleIndex, rootIDRightSubtree)
ChainNodes(A, rootIDRightSubtree, middleIndex + 1, rightIndex) end if

Example 1: Construction of BST

left Inde						midd						right
						index						Index
	1	2	3	4	5	6	7	8	9	10	11	12^{2}
3	14	27	31	39	42	55	70	74	81	91	93	98

Example 1: Construction of BST

Example 1: Construction of BST

0	1	2	3	4	5	6	7	8	9	10	11	12
3	14	27	31	39	42	55	70	74	81	91	93	98

Example 1: Construction of BST

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 14 | 27 | 31 | 39 | 42 | 55 | 70 | 74 | 81 | 91 | 93 | 98 |

Example 2: Construction of BST

0	1	2	3	4	5	7			7
12	19	22	25	25	27	27	30	33	37

Example 2: Construction of BST

Example 2: Construction of BST

\# Comparisons for Successful Search Example 1

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 14 | 27 | 31 | 39 | 42 | 55 | 70 | 74 | 81 | 91 | 93 | 98 |

(1 key)(1 comp) + (2 keys)(2 comps) + (4 keys)(3 comps) + (6 keys)(4 comps)
13 keys
Note that in case of a successful search, the number of comparisons for a key is one more than the level number of the node representing the key in the BST

\# Comparisons for Successful Search

 Example 2| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 19 | 22 | 25 | 25 | 27 | 27 | 30 | 33 | 37 |

\# Comparisons
1

2

3

4

(1 key)(1 comp) + (2 keys)(2 comps) + (4 keys)(3 comps) + (3 keys)(4 comps)

\# Comparisons for Unsuccessful Search: Example 1

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 14 | 27 | 31 | 39 | 42 | 55 | 70 | 74 | 81 | 91 | 93 | 98 |

Range	
<3	$\#$
$>3 \& \&<14$	4
$>14 \& \&<27$	4
$>27 \& \&<31$	4
$>31 \& \&<39$	4
$>39 \& \&<42$	4
$>42 \& \&<55$	4
$>55 \& \&<70$	3
$>70 \& \&<74$	4
$>74 \& \&<81$	4
$>81 \& \&<91$	4
$>91 \& \&<93$	4
$>93 \& \&<98$	4
>98	4

Sum of all Comps above
Avg \# Comparisons for an unsuccessful search =

$$
=\left\{\left(4^{\star} 12\right)+\left(3^{*} 2\right)\right\} / 14=3.86
$$

\# Comparisons for Unsuccessful Search Example 2

	19	22		25	27		30				
$\begin{array}{ll} >12 \& \&<19 & 3 \\ >19 \& \&<22 & 3 \\ >22 \& \&<25 & 4 \\ >25 \& \&<27 & 3 \\ >27 \& \&<30 & 4 \\ >30 \& \&<33 & 3 \\ >33 \& \&<37 & 4 \\ >37 & 4 \end{array}$ Sum of all Comps above											

Avg \# Comparisons for an unsuccessful search =
\# Ranges

$$
=\{(4 * 4)+(3 * 5\} / 9=3.44
$$

Binary Search Tree (BST) Construction

- We will create a class called BinarySearchTree that will be similar to the BinaryTree class created in the other module as much as possible.
- Differences
- There will be a member variable called root node id (the root node id of a BST need not be 0)
- We will add two member functions called constructBSTree() that will get the input array of sorted integers from the user, determines the root node and calls the ChainNodes(...) function, which is implemented in a recursive fashion.
- The ChainNodes(...) function will link a node to its left child node and right child node, if any exists, and will call itself to do the same on its left sub tree and right sub tree.

BST Implementation (C++: Code 7.1)

BTNode
int nodeid
int data
int levelNum
BTNode* leftChildPtr
BTNode* rightChildPtr

BinarySearchTree

 int numNodesBTNode* arrayOfBTNodes int rootNodeID

```
BinarySearchTree(int n){
    numNodes = n;
    arrayOfBTNodes = new BTNode[numNodes];
    for (int index =0; index < numNodes; index ++) {
        arrayOfBTNodes[index].setNodeId(index);
        arrayOfBTNodes[index].setLeftChildPtr(0);
        arrayOfBTNodes[index].setRightChildPtr(0);
        arrayOfBTNodes[index].setLevelNum(-1);
    }
}
```

```
void setLeftLink(int upstreamNodeID, int downstreamNodeID){
    arrayOfBTNodes[upstreamNodeID].setLeftChildPtr(&arrayOfBTNodes[downstreamNodeD]]);
}
void setRightLink(int upstreamNodeID, int downstreamNodeID){
    arrayOfBTNodes[upstreamNodeID].setRightChildPtr(&arrayOfBTNodes[downstreamNodeID]);
}
```


BST Implementation (Java: Code 7.1)

```
BTNode int nodeid int data int levelNum BTNode leftChildPtr BTNode rightChildPtr
```


BinarySearchTree

 int numNodes BTNode[] arrayOfBTNodes int rootNodeID```
public BinarySearchTree(int n){
 numNodes = n;
 arrayOfBTNodes = new BTNode[numNodes];
 for (int index = 0; index < numNodes; index++){
 arrayOfBTNodes[index] = new BTNode();
 arrayOfBTNodes[index].setNodeId(index);
 arrayOfBTNodes[index].setLeftChildPtr(null);
 arrayOfBTNodes[index].setRightChildPtr(null);
 arrayOfBTNodes[index].setLevelNum(-1);
 }
}
```

public void setLeftLink(int upstreamNodeID, int downstreamNodeID) \{ arrayOfBTNodes[upstreamNodeID].setLeftChildPtr( arrayOfBTNodes[downstreamNodeID]);
\}
public void setRightLink(int upstreamNodeID, int downstreamNodeID) $\{$ arrayOfBTNodes[upstreamNodeID].setRightChildPtr( arrayOfBTNodes[downstreamNodeID]);
$\}$

## constructBSTree Function (Code 7.1)

```
void constructBSTree(int* array){
 int leftIndex = 0;
 int rightIndex = numNodes-1; --.--....... . Assumes the array
 int middleIndex = (leftIndex + rightIndex)/2; is already sorted
 + rootNodeID = middleIndex;
 arrayOfBTNodes[middleIndex].setData(array[middleIndex]);
 ChainNodes(array, middleIndex, leftIndex, rightIndex);
}
 public void constructBSTree(int[] array){
 int leftIndex =0;
 int rightIndex = numNodes-1;
 # int middleIndex = (leftIndex
 arrayOfBTNodes[middleIndex].setData(array[middleIndex]);
 ChainNodes(array, middleIndex, leftIndex, rightIndex);
 }
```


## ChainNodes Function (C++ Code 7.1)

```
void ChainNodes(int* array, int middleIndex, int leftIndex, int rightIndex){
 if (leftIndex < middleIndex){
 int rootIDLeftSubtree = (leftIndex + middleIndex-1)/2;
 setLeftLink(middleIndex, rootIDLeftSubtree);
 arrayOfBTNodes[rootIDLeftSubtree].setData(array[rootIDLeftSubtree]);
 ChainNodes(array, rootIDLeftSubtree, leftIndex, middleIndex-1);
}
if (rightIndex > middleIndex){
 int rootIDRightSubtree = (rightIndex + middleIndex + 1)/2;
 setRightLink(middleIndex, rootIDRightSubtree);
 arrayOfBTNodes[rootIDRightSubtree].setData(array[rootIDRightSubtree]);
 ChainNodes(array, rootIDRightSubtree, middleIndex +l, rightIndex);
}
}
```


## ChainNodes Function (Java Code 7.1)

public void ChainNodes(int[] array, int middleIndex, int leftIndex, int rightIndex)\{

```
if (leftIndex < middleIndex) {
 int rootIDLeftSubtree = (leftIndex + middleIndex-l)/2;
 setLeftLink(middleIndex, rootIDLeftSubtree);
 arrayOfBTNodes[rootIDLeftSubtree].setData(array[rootIDLeftSubtree]);
 ChainNodes(array, rootIDLeftSubtree, leftIndex, middleIndex-l);
}
if (rightIndex > middleIndex){
 int rootIDRightSubtree = (rightIndex + middleIndex +1)/2;
 setRightLink(middleIndex, rootIDRightSubtree);
 arrayOfBTNodes[rootIDRightSubtree].setData(array[rootIDRightSubtree]);
 ChainNodes(array, rootIDRightSubtree, middleIndex +l, rightIndex);
}
```


## Sorting Algorithm: Selection Sort

- Given an array A[0...n-1], we proceed for a total of $n-1$ iterations)
- In iteration $\mathrm{i}(0 \leq \mathrm{i}<\mathrm{n}-1)$, we assume $A[i]$ is the minimum element and seek to find whether there exists an element at index $i+1 \ldots n-1$ so that we can swap that element with $A[i]$, if such an element exists.


| Iteration 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 6 | 5 | 4 | 3 | 10 | 9 | 5 | 7 | 8 |
| Iteration 1 (After) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 5 | 4 | 6 | 10 | 9 | 5 | 7 | 8 |


| Iteration 2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 5 | 4 | 6 | 10 | 9 | 5 | 7 | 8 |
| Iteration 2 (After) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 4 | 5 | 6 | 10 | 9 | 5 | 7 | 8 |


| Iteration 3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 4 | 5 | 6 | 10 | 9 | 5 | 7 | 8 |
| $\begin{aligned} & \text { Iteration } 3 \\ & \text { (After) } \end{aligned}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 4 | 5 | 6 | 10 | 9 | 5 | 7 | 8 |


| Iteration 4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 4 | 5 | 6 | 10 | 9 | 5 | 7 | 8 |
| Iteration 4 (After) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 4 | 5 | 5 | 10 | 9 | 6 | 7 | 8 |


| Iteration 5 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 4 | 5 | 5 | 10 | 9 | 6 | 7 | 8 |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 5 |  |  |  |  |  |  | 6 | 7 | 8 | 9 |


| Iteration 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 4 | 5 | 5 | 6 | 9 | 10 | 7 | 8 |
| Iteration 6 (After) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 4 | 5 | 5 | 6 | 7 | 10 | 9 | 8 |

Iteration 7

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 5 | 6 | 7 | 10 | 9 | 8 |

Iteration 7 (After)

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 10 |


| Iteration 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 10 |
| Iteration 8 (After) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 1 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 10 |

Final Sorted Array

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 10 |

## ALGORITHM Selection Sort

$/ /$ Input: An array $A[0 . . n-1]$ of orderable elements
//Output: Array $A[0 . . n-1]$ sorted in nondecreasing order
for $i \leftarrow 0$ to $n-2$ do
$\min \leftarrow i$
for $j \leftarrow i+1$ to $n-1$ do
if $A[j]<A[\min ] \min \leftarrow j$
swap $A[i]$ and $A[\min ]$
\# Comparisons
$(n-1)+(n-2)+\ldots+1=n(n-1) / 2=O\left(n^{2}\right)$
There is no best or worst case. In the ith Iteration, we have to find if there exists any element that is less than the element at index i.

## Code 7.2 Selection Sort (C++)

void selectionSort(int *array, int arraySize) \{
for (int iterationNum $=0$; iterationNum $<$ arraySize- $\mathbf{l}$; iterationNum ++ ) $\{$
int minIndex $=$ iterationNum;
for (int $\mathbf{j}=$ iterationNum+1; $\mathbf{j}<$ arraySize $; \mathbf{j}++$ ) $\{$

> if $($ array $[\mathrm{j}]<$ array $[$ minIndex $])$
> minIndex $=\mathrm{j} ;$
\}
// swap array[minIndex] with array[iterationNum]
int temp = array[minIndex];
array[minIndex] = array[iterationNum];
array[iterationNum] = temp;
\}

## Code 7.2 Selection Sort (Java)

public static void selectionSort(int array[], int arraySize) $\{$

```
for (int iterationNum \(=0\); iterationNum \(<\) arraySize-l; iterationNum ++) \(\{\)
 int \(\min\) Index \(=\) iterationNum;
 for (int \(\mathbf{j}=\) iterationNum \(+\mathbf{l} ; \mathbf{j} \leqslant\) arraySize \(; \mathbf{j}++\)) \(\{\)
 if (array[j] < array[minIndex])
 \(\min\) Index \(=j\);
```

    \}
    // swap array[minIndex] with array[iterationNum]
    int temp = array[minIndex];
    array[minIndex] = array[iterationNum];
    array[iterationNum] = temp;
    \}


## Selection Sort: Example 2

| It \# 3 | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 8 | 9 | 7 |
| $\begin{aligned} & \text { It \# } 3 \\ & \text { (After) } \end{aligned}$ | 0 | 1 | 2 | 3 | 4 | 5 |
|  | 1 | 2 | 3 | 7 | 9 | 8 |


|  | 0 |  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| It \# 4 | 1 | 2 | 3 | 7 | 9 | 8 |  |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 |  |  |  |  |  |  |
| It \# 4 |  |  |  |  |  |  |  |  |  |  |  |  |
| (After) | 1 | 1 | 2 | 3 | 7 | 8 |  |  |  |  |  |  |



## Selection Sort: Example 3 (How to show the work in an exam)

| Given Array: 12 | 5 |  | 1 |  | 4 |  | 18 | 9 | 7 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | Index: 0 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
|  | Data: 12 | 5 | 1 | 4 | 18 | 9 | 7 | 15 |  |  |
| Iteration 1 | 1 | 5 | 12 | 4 | 18 | 9 | 7 | 15 |  |  |
| Iteration 2 | 1 | 4 | 12 | 5 | 18 | 9 | 7 | 15 |  |  |
| Iteration 3 | 1 | 4 | 5 | 12 | 18 | 9 | 7 | 15 |  |  |
| Iteration 4 | 1 | 4 | 5 | 7 | 18 | 9 | 12 | 15 |  |  |
| Iteration 5 | 1 | 4 | 5 | 7 | 9 | 18 | 12 | 15 |  |  |
| Iteration 6 | 1 | 4 | 5 | 7 | 9 | 12 | 18 | 15 |  |  |
| Iteration 7 |  | 1 | 4 | 5 | 7 | 9 | 12 | 15 | 18 |  |

```
int numElements;
cout << "Enter the number of elements: ";
cin >> numElements;
int *array = new int[numNodes];
int maxV alue;
cout << "Enter the maximum value for an element: ";
cin >> maxValue;
srand(time(NULL));
cout << "array generated: ";
```

for (int index $=0$; index $\leqslant$ numNodes; index + +) f
array $[$ index $]=$ rand $O \%$ maxValue;
cout $\ll \operatorname{array[index]} \ll "$ "; Main Function for BST
\}
cout $\leqslant<$ endl;
selectionSort(array, numNodes):
Generated and Sorted Array
BinarySearchTree bsTree(numElements);
bsTree.constructBSTree(array);
(Code 7.3: C++)

Scanner input = new Scanner(System.in);

```
int numElements;
System.out.print("Enter the number of elements: ");
numElements = input.nextInt();
int array[] = new int[numElements];
int maxValue;
System.out.print("Enter the maximum value for an element: ");
maxValue = input.nextInt();
```

Random randGen = new Random(System.currentTimeMillis());
System.out.print("Array Generated: ");
for (int index $=0$; index < numElements; index ++ ) $\{$
array $[$ index] = randGen.nextInt(maxValue);
System.out.print(array[index] +" ");
\}
System.out.println();

Main Function for array $[$ index $]=$ randGen.nextInt(maxValue); BSTImplementation
System.out.print(array[index] +" "); based on a
selectionSort(array, numElements); Randomly Generated BinarySearchTree bsTree $=$ new BinarySearchTree(numElements); bsTree.constructBSTree(array);

## getIndex(int searchKey) Method C++/Java Code: 7.4

```
int getKeyIndex(int searchKey){
 int searchNodeID = rootNodeID;
 while (searchNodeID != -1){
 if (searchKey == arrayOfBTNodes[searchNodeID].getData())
 return searchNodeID;
 else if (searchKey < arrayOfBTNodes[searchNodeID].getData(0)
 searchNodeID = arrayOfBTNodes[searchNodeID].getLeftChildID();
 else
 searchNodeID = arrayOfBTNodes[searchNodeID].getRightChildID();
}
return -l;

\section*{inorder Traversal of a BST (see Code 7.3)}
- inorder traversal of a BST will list the keys of the BST in a sorted order.
- Proof: Let K1 < K2 be the two keys in a BST. We want to prove that K1 will appear before K2 in an inorder traversal of the BST.
- There are three scenarios:
- K2 is in the right sub tree of K1
- K1 is in the left sub tree of K2
- K1 and K2 have a common ancestor (say K3) such that K1 < K3 < K2.
- For each of the three scenarios, if we were to do an inorder traversal, K1 will appear before K2.

\section*{inorder Traversal of a BST}

\{Left sub tree\} \{root\} \{Right sub tree\}
\begin{tabular}{llll}
\multicolumn{4}{l}{ Left sub tree } \\
0 & 1 & 2 & 3 \\
12 & 19 & 22 & 25
\end{tabular}
Root
4
25

Right sub tree
\begin{tabular}{ccccc}
5 & 6 & 7 & 8 & 9 \\
27 & 27 & 30 & 33 & 37
\end{tabular}37

\section*{Converting a Binary Tree to a
Binary Search Tree (preserving the structure) \\ - Do an inorder traversal of the given binary tree and get an array of data corresponding to the nodes \\ inorder Traversal \\ \(\begin{array}{llllll}22 & 27 & 13 & 18 & 19 & 14\end{array}\)} of the tree in the order they are visited (i.e., the index entries of the nodes)
- Sort the data using a sorting algorithm
- Do an inorder traversal of the binary tree again. For each node that is about to be listed (as per the index entries), replace their data with the data in the sorted array.
\begin{tabular}{llllll}
3 & 1 & 4 & 5 & 0 & 2
\end{tabular}

Sorted Order

\section*{Converting a Binary Tree to a BST:}

\section*{Example 2}

inorder Traversal
\begin{tabular}{llrrrrlccl}
3 & 6 & 1 & 0 & 9 & 7 & 4 & 8 & 2 & 5 \\
78 & 9 & 23 & 34 & 23 & 81 & 21 & 21 & 12 & 23
\end{tabular}

Sorted Order of the inorder Traversed Data \(\begin{array}{llllllllll}3 & 6 & 1 & 0 & 9 & 7 & 4 & 8 & 2 & 5\end{array}\) \(\begin{array}{lllllllll}9 & 12 & 21 & 21 & 23 & 23 & 23 & 34 & 78\end{array}\) 81

\section*{Inserting an Element in a BST}
- Let K be the data to be inserted. Traverse the BST as if we are searching for the data element K. When we come to a leaf node, we insert to its left or right depending on the case. If there is a tie, we insert a node as the left child.

\section*{Deleting a Node from a BST}
- Three scenarios arise
- Scenario 1: The node to be deleted is a leaf node:
- Just delete the node from the BST
- Scenario 2: The node to be deleted has only one child
- Replace the node to be deleted with the child node and its sub tree, if any exists
- Scenario 3: The node to be deleted has two child nodes: Find the inorder successor of the node to be deleted
- Scenario 3.1: If the inorder successor is a leaf node, simply copy its value to the node to be deleted and delete the inorder successor.
- Scenario 3.2: If the inorder successor is an internal node (other than the root), then copy its value to the node to be deleted and link the sub tree rooted at the inorder successor to be the left sub tree of the parent node of the inorder successor.

\section*{Deleting a Node from a BST: Ex-1}
(Scenario 1: Deleting a leaf node)

Deleting a Node from a BST: Ex-2
(Scenario 2: Deleting an internal node with one child node)

\section*{Deleting a Node from a BST: Ex-3}
(Scenario 3: Deleting an internal node with two child nodes)
Scenario 3.1: The inorder successor is a leaf node

\section*{Deleting a Node from a BST: Ex-4}
(Scenario 3: Deleting an internal node with two child nodes)
Scenario 3.2: The inorder successor is not a leaf node

\section*{Deleting a Node from a BST} Exercise: 1

Deleting Node 21 @
Level 1 (an internal node with one child node)

Replace the node to be deleted with the child node and its sub tree, if any exists

\section*{Deleting a Node from a BST} Exercise: 2

If the inorder successor is an internal node, then copy its value to the node to be deleted and link the sub tree rooted at the inorder successor to be the
 left sub tree of the parent node of the inorder successor.```

