
Module 1:
Analyzing the Efficiency of

Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm
cannot be compromised

– The range of inputs for which an algorithm works has to be
specified carefully.

– The same algorithm can be represented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with
dramatically different speeds

Problem

Algorithm

ComputerInput Output

The Analysis Framework
• Time efficiency (time complexity): indicates how fast an algorithm

runs

• Space efficiency (space complexity): refers to the amount of

memory units required by the algorithm in addition to the space

needed for its input and output

• Algorithms that have non-appreciable space complexity are said to

be in-place.

• The time efficiency of an algorithm is typically as a function of the

input size (one or more input parameters)

– Algorithms that input a collection of values:

• The time efficiency of sorting a list of integers is represented in terms of the
number of integers (n) in the list

• For matrix multiplication, the input size is typically referred as n*n.

• For graphs, the input size is the set of Vertices (V) and edges (E).

– Algorithms that input only one value:

• The time efficiency depends on the magnitude of the integer. In such cases,
the algorithm efficiency is represented as the number of bits 1+
needed to represent the integer n

 n2log

Units for Measuring Running Time
• The running time of an algorithm is to be measured with a unit that is

independent of the extraneous factors like the processor speed,

quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is

executed on inputs of size n.

Examples for
Input Size and Basic Operations

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

Orders of Growth
• We are more interested in the order of growth on the number of times

the basic operation is executed on the input size of an algorithm.

• Because, for smaller inputs, it is difficult to distinguish efficient

algorithms vs. inefficient ones.

• For example, if the number of basic operations of two algorithms to

solve a particular problem are n and n2 respectively, then

– if n = 3, then we may say there is not much difference between requiring

3 basic operations and 9 basic operations and the two algorithms have

about the same running time.

– On the other hand, if n = 10000, then it does makes a difference whether

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions

Best-case, Average-case, Worst-case
• For many algorithms, the actual running time may not only

depend on the input size; but, also on the specifics of a
particular input.

– For example, sorting algorithms (like insertion sort) may run
faster on an input sequence that is almost-sorted rather than on a
randomly generated input sequence.

• Worst case: Cworst(n) – maximum number of times the basic
operation is executed over inputs of size n

• Best case: Cbest(n) – minimum # times over inputs of size n

• Average case: Cavg(n) – “average” over inputs of size n

– Number of times the basic operation will be executed on typical
input

– NOT the average of worst and best case

– Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs

Example for Worst and Best-Case
Analysis: Sequential Search

• Worst-Case: Cworst(n) = n

• Best-Case: Cbest(n) = 1

/* Assume the second condition will not

be executed if the first condition evaluates to

false */

Probability-based Average-Case
Analysis of Sequential Search

• If p is the probability of finding an element in the list, then (1-p) is the

probability of not finding an element in the list.

• Also, on an n-element list, the probability of finding the search key as

the ith element in the list is p/n for all values of 1 ≤i ≤ n

• If p = 1 (the element that we will search for always exists in the list),

then Cavg(n) = (n+1)/2. That is, on average, we visit half of the entries

in the list to search for any element in the list.

• If p = 0 (all the time, the element that we will search never exists),

then Cavg(n) = n. That is, we visit all the elements in the list.

YouTube Link: https://www.youtube.com/watch?v=8V-bHrPykrE

Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer

c is a positive constant (> 0)

and n0 is a non-negative integer

t(n) = Ω(g(n))

t(n) ≥ c*g(n) for all n ≥ n0

Note: If t(n) = O(g(n)) � g(n) = Ω(t(n)); also, if t(n) = Ω(g(n)) � g(n) = O(t(n))

Asymptotic Notations: Intro
2n ≤ 0.05 n2

for n ≥ 40
c = 0.05, n0 = 40

2n = O(n2)

More generally,

n = O(n2).

0.05n2 ≥ 2n

for n ≥ 40

c = 2, n0 = 40

0.05n2 = Ω(n)
More generally,

n2 = Ω(n)

Asymptotic Notations: Formal Intro

c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0

Asymptotic Notations: Intro

2n ≤ 5n

for n ≥ 1

2n = O(n)

2n ≥ n

for n ≥ 1

2n = Ω(n)

n

5n

2n

n As 2n = O(n)
and 2n = Ω(n),
we say
2n = Θ(n)

Relationship and Difference between
Big-O and Big-Θ

• If f(n) = Θ(g(n)), then f(n) = O(g(n)).

• If f(n) = O(g(n)), then f(n) need not be Θ(g(n)).

• Note: To come up with the Big-O/Θ term, we exclude the lower order
terms of the expression for the time complexity and consider only the
most dominating term. Even for the most dominating term, we omit
any constant coefficient and only include the variable part inside the
asymptotic notation.

• Big-Θ provides a tight bound (useful for precise analysis); whereas,
Big-O provides an upper bound (useful for worst-case analysis).

• Examples:

(1) 5n2 + 7n + 2 = Θ(n2)
– Also, 5n2 + 7n + 2 = O(n2)

(2) 5n2 + 7n + 2 = O(n3),

Also, 5n2 + 7n + 2 = O(n4), But, 5n2 + 7n + 2 ≠ Θ(n3) and ≠ Θ(n4)

• The Big-O complexity of an algorithm can be technically more than
one value, but the Big-Θ of an algorithm can be only one value and it
provides a tight bound. For example, if an algorithm has a complexity
of O(n3), its time complexity can technically be also considered as
O(n4).

When to use
Big-O and

Big-Θ
• If the best-case and

worst-case time
complexity of an
algorithm is guaranteed
to be of a certain
polynomial all the time,
then we will use Big-Θ.

• If the time complexity of
an algorithm could
fluctuate from a best-
case to worst-case of
different rates, we will
use Big-O notation as it
is not possible to come
up with a Big-Θ for such
algorithms.

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

O(n) only

and not

Θ(n)

Θ(n)

�It is also

O(n)

Another Example to Decide
whether Big-O or Big-Θ

Skeleton of a pseudo code

Input size: n

Begin Algorithm

If (certain condition) then

for (i = 1 to n) do

print a statement in unit time

end for

else

for (i = 1 to n) do

for (j = 1 to n) do

print a statement in unit time

end for

end for

End Algorithm

Best Case

The condition in the if block

is true

-- Loop run ‘n’ times

Worst Case

The condition in the if block

is false

-- Loop run ‘n2’ times

Time Complexity: O(n2)

It is not possible to come up

with a Θ-based time complexity

for this algorithm.

Asymptotic Notations: Examples
• Let t(n) and g(n) be any non-negative functions defined on a set of all

real numbers.

• We say t(n) = O(g(n)) for all functions t(n) that have a lower or the

same order of growth as g(n), within a constant multiple as n � ∞.

– Examples:

• We say t(n) = Ω(g(n)) for all functions t(n) that have a higher or the

same order of growth as g(n), within a constant multiple as n � ∞.

– Examples:

• We say t(n) = Θ(g(n)) for all functions t(n) that have the same order of

growth as g(n), within a constant multiple as n � ∞.

– Examples: an2 + bn + c = Θ(n2);

n2 + logn = Θ(n2)

Useful Property of Asymptotic
Notations

• If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)) , then

t1(n) + t2(n) ∈ O(max{g1(n), g2(n)})

• If t1(n) ∈ Θ(g1(n)) and t2(n) ∈ Θ(g2(n)) , then

t1(n) + t2(n) ∈ Θ(max{g1(n), g2(n)})

• The property can be applied for the Ω notation with a
slight change: Replace the Max with the Min.

• If t1(n) ∈ Ω(g1(n)) and t2(n) ∈ Ω(g2(n)) , then

t1(n) + t2(n) ∈ Ω(min{g1(n), g2(n)})

Using Limits to Compare Order of Growth

The first case means t(n) = O(g(n)

if the second case is true, then t(n) = Θ(g(n))

The last case means t(n) = Ω(g(n))

L’Hopital’s Rule

Note: t’(n) and g’(n) are first-order derivatives of t(n) and g(n)

Stirling’s Formula

Example 1: To Determine the
Order of Growth

Example 1: To Determine the
Order of Growth (continued…)

Example 2: To Determine the
Order of Growth

Example 2: To Determine the
Order of Growth (continued…)

Examples to Compare the Order of Growth

Example 3: Compare the order of growth of log2n and logn2.

Some More Examples: Order of Growth

• a) (n2+1)10 : Informally, = (n2+1)10 ≈ n20.

Formally,

b)

c)

d)

Some More Examples: Order of Growth

log2n 2logn 6 logn 6 18

Lim ----------- = Lim ---------------- = ----------- = -------------- = Lim -------- = 0

n � ∞ n1/3 n � ∞ n*(1/3)n(-2/3) n(1/3) n*(1/3)n(-2/3) n � ∞ n(1/3)

The listing of the functions in the increasing

Order of growth is as follows:

Hence, log2n = O(n1/3)

Time Efficiency of Non-recursive
Algorithms: General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of size

n, if the number of times the basic operation gets executed

varies with specific instances (inputs)

• Set up a sum for the number of times the basic operation is

executed

• Simplify the sum using standard formulas and rules

Useful Summation Formulas and Rules

Σl≤i≤u1 = 1+1+…+1 = u - l + 1

In particular, Σl≤i≤n1 = n - 1 + 1 = n ∈ Θ(n)

Σ1≤i≤n i = 1+2+…+n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2)

Σ1≤i≤n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)

Σ0≤i≤n ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a ≠ 1

In particular, Σ0≤i≤n 2i = 20 + 21 +…+ 2n = 2n+1 - 1 ∈ Θ(2n)

Σ(ai ± bi) = Σai ± Σbi Σcai = cΣai Σl≤i≤uai = Σl≤i≤mai + Σm+1≤i≤uai

∑
=

+−=

u

li

lu)1(1

Examples on Summation
• 1 + 3 + 5 + 7 + …. + 999

• 2 + 4 + 8 + 16 + … + 1024

Example 1: Finding Max. Element

• The basic operation is the comparison executed on each repetition of
the loop.

• In this algorithm, the number of comparisons is the same for all arrays
of size n.

• The algorithm makes one comparison on each execution of the loop,
which is repeated for each value of the loop’s variable i within the
bounds 1 and n-1 (inclusively). Hence,

Note: Best case = Worst case for this problem

Example 2: Sequential Key Search

• Worst-Case: Cworst(n) = n

• Best-Case: Cbest(n) = 1

Asymptotic time complexity: O(n)

Basic Operation: Comparison

Example 3: Element Uniqueness Problem

Best-case situation:

If the two first elements of the array are the same, then we can exit
after one comparison. Best case = 1 comparison.

Worst-case situation:

• The basic operation is the comparison in the inner loop. The worst-
case happens for two-kinds of inputs:

– Arrays with no equal elements

– Arrays in which only the last two elements are the pair of equal
elements

Example 3: Element Uniqueness Problem
• For these kinds of inputs, one comparison is made for each repetition

of the innermost loop, i.e., for each value of the loop’s variable j
between its limits i+1 and n-1; and this is repeated for each value of the
outer loop i.e., for each value of the loop’s variable i between its limits 0
and n-2. Accordingly, we get,

Asymptotic time complexity = O(n2)

Best-case: 1 comparison

Worst-case: n2/2 comparisons

Example 4: Bubble Sort
• A classical sorting algorithm in which (for an array of ‘n’

elements, with indexes 0 to n-1) during the ith iteration,
the (n-i-1)th largest element is bubbled all the way to its
final position.

• During the ith iteration, starting from index j = 0 to n-i-2,
the element at index j is compared with the element at
index j+1 and is swapped if the former is larger than the
latter.

– Optimization: If there is no swap during an iteration, the array is
sorted and we can stop!

• Example

45 78 23 12 59 72

Iteration 0 45 23 12 59 72 78

Iteration 1 23 12 45 59 72 78

Iteration 2 12 23 45 59 72 78

Iteration 3 12 23 45 59 72 78 (no swap: STOP!!)

Bubble Sort: Pseudo Code and
Analysis

Input: Array A [0….n-1]

Begin

for (i = 0 to n-2) do

boolean didSwap = false

for (j = 0 to n-i-2) do

if A[j] > A[j+1] then

swap(A[j], A[j+1])

didSwap = true

end if

end for

if (didSwap == false) then

return; // STOP the algorithm

end if

end for

End

Best Case (array is already sorted):

1 Iteration
(i = 0): j = 0 to n-2
n-1 comparisons ~ n

Worst Case (array is reverse sorted):

all iterations

~ n2
Asymptotic
time complexity

= O(n2)

Example 5: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array

divided into two parts: A[0,…,i-1] and A[i…n-1].
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the
sorted sequence A[0…i-1] to insert v at the appropriate position.

• The scanning is proceeded from right to left (i.e., for index j
running from i-1 to 0) until we find the right position for v.

• During this scanning process, v = A[i] is compared with A[j].

• If A[j] > v, then we v has to be placed somewhere before A[j] in the
final sorted sequence. So, A[j] cannot be at its current position (in
the final sorted sequence) and has to move at least one position to
the right. So, we copy A[j] to A[j+1] and decrement the index j, so
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to
A[j+1]. This also provides the stable property, in case v = A[j].

Insertion Sort
Pseudo Code and Analysis

The element A[j] is not in its final position

Needs to be moved to the right

// v < A[j]

Since the sub array from index 0 to i-1 is

sorted, there is no way we can move ‘v’

further to the left, if we come across an A[j]

such that v ≥ A[j]

Best Case: If the array is already sorted

For each value of index i, we just do one

comparison (A[i] with A[i-1]), and decide to

keep v = A[i] at its current location. Index i

varies from 1 to n-1. Hence, there are ‘n-1’

comparisons.

Worst Case: If the array is reverse sorted. For each value

of index i, the element A[i] needs to be compared with

all the values to its left (i.e., from j index i-1 to 0).

∑∑ ∑ ∑ ∑∑
−

= −=

−

=

−

=

−

=

−

=

−
==+−−==

1

1

0

1

1

1

1

1

1

1

1

0 2

)1(
10)1(11

n

i ij

n

i

n

i

n

i

i

j

nn
ii

Insertion Sort: Analysis and Example
Average Case: On average for a random input sequence, we would be visiting half

of the sorted sequence A[0…i-1] to put A[i] at the proper position.

∑ ∑∑ ∑
−

=

−

=

−

=

−

−=

Θ=
+

=+
−

==

1

1

2
1

1

1

1

2/)1(

1

)(
2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

i

ij

n
ii

nC

Example: Given sequence (also initial): 45 23 8 12 90 21

Iteration 1 (v = 23):

45 45 8 12 90 21

23 45 8 12 90 21

Iteration 2 (v = 8):

23 45 45 12 90 21

23 23 45 12 90 21

8 23 45 12 90 21

Iteration 3 (v = 12):

8 23 45 45 90 21

8 23 23 45 90 21

8 12 23 45 90 21

Iteration 4 (v = 90):

8 12 23 45 90 21

9 12 23 45 90 21

Iteration 5 (v = 21):

9 12 23 45 90 90

9 12 23 45 45 90

9 12 23 23 45 90

9 12 21 23 45 90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1

Asymptotic

time complexity

= O(n2)

Time Efficiency of Recursive
Algorithms: General Plan for Analysis

• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is executed may vary
on different inputs of the same size. (If it may, the worst, average, and
best cases must be investigated separately.)

• Set up a recurrence relation with an appropriate initial condition
expressing the number of times the basic op. is executed.

• Solve the recurrence (or, at the very least, establish its solution’s order
of growth) by backward substitutions or another method.

Recursive Evaluation of n!
Definition: n ! = 1 ∗∗∗∗ 2 ∗∗∗∗ … ∗∗∗∗(n-1) ∗∗∗∗ n for n ≥ 1 and 0! = 1

• Recursive definition of n!: F(n) = F(n-1) ∗∗∗∗ n for n ≥ 1 and

F(0) = 1

M(nM(n--1) = M(n1) = M(n--2) + 1; 2) + 1; M(nM(n--2) = M(n2) = M(n--3)+13)+1

M(nM(n) = [M(n) = [M(n--2)+1] + 1 = M(n2)+1] + 1 = M(n--2) + 2 = [M(n2) + 2 = [M(n--3)+1+2] = M(n3)+1+2] = M(n--3) + 33) + 3

= = M(nM(n--nn) + n = n) + n = n
Overall time Complexity: Θ(n)

YouTube Link: https://www.youtube.com/watch?v=K25MWuKKYAY

Counting the # Bits of an Integer

bits (n) = # bits() + 1; for n > 1

bits (1) = 1

Either Division or Addition could be considered the

Basic operation, as both are executed once for each

recursion. We will treat “addition” as the basic operation.

Let A(n) be the number of additions needed to compute # bits(n)

Additions

Since the recursive calls end when n is equal to 1 and there are no additions

made, the initial condition is: A(1) = 0.

Counting the # Bits of an Integer
Solution Approach: If we use the backward substitution method (as we did in

the previous two examples, we will get stuck for values of n that are not powers

of 2).

We proceed by setting n = 2k for k ≥ 0.

New recurrence

relation to solve:

Examples for

Solving

Recurrence

Relations

