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Introduction to Dynamic Programming
• Dynamic Programming  is  a general algorithm design technique for 

solving problems defined by recurrences with overlapping sub problems

• “Programming” here means “planning”

• Main idea:

• set up a recurrence relating a solution to a larger instance to 
solutions of some smaller instances

• solve smaller instances once

• record solutions in a table 

• extract solution to the initial instance from that table

• Dynamic programming can be interpreted as a special variety of 
space-and-time tradeoff (store the results of smaller instances 
and solve a larger instance more quickly rather than repeatedly 
solving the smaller instances more than once).

• Example: Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• F(n) = F(n-1) + F(n-2), for n > 1. F(0)=0; F(1) = 1

– F(6) = F(5) + F(4). 

– F(5) = F(4) + F(3). Note that we do not solve F(4) twice. We find F(4) only 
once and use that to compute F(5) and F(6).



Coin-Collecting Problem
• Problem Statement: Several coins are placed in cells of an n x m 

board, no more than one coin per cell. A robot, located in the upper left 
cell of the board, needs to collect as many of the coins as possible and 
bring them to the bottom right cell. On each step, the robot can move 
either one cell to the right or one cell down from its current location. 
When the robot visits a cell with a coin, it always picks up that coin. 
Design an algorithm to find the maximum number of coins the robot can 
collect and a path it needs to follow to do this.

• Solution: Let F(i, j) be the largest number of coins the robot can collect 
and bring to the cell (i, j) in the ith row and jth column of the board. It 
can reach this cell either from the adjacent cell (i-1, j) above it or from 
the adjacent cell (i, j-1) to the left of it. 

• The largest numbers of coins that can be brought to these cells are F(i-
1, j) and Fi, j-1) respectively. Of course, there are no adjacent cells to 
the left of the first column and above the first row. For such cells, we 
assume there are 0 neighbors.

• Hence, the largest number of coins the robot can bring to cell (i, j) is the 
maximum of the two numbers F(i-1, j) and F(i, j-1), plus the one 
possible coin at cell (i, j) itself.



Coin-Collecting Problem

where cij = 1 if there is a coin in cell (i, j) and cij = 0 otherwise.

Time Complexity: Θ(nm) 
Space Complexity: Θ(nm)

Recurrence



Coin-Collecting Problem
• Tracing back the optimal path:

• It is possible to trace the computations backwards to get an optimal 

path.

• If F(i-1, j) > F(i, j-1), an optimal path to cell (i, j) must come down from 

the adjacent cell above it; 

• If F(i-1, j) < F(i, j-1), an optimal path to cell (i, j) must come from the 

adjacent cell on the left;

• If F(i-1, j) = F(i, j-1), it can reach cell (i, j) from either direction. Ties can 

be ignored by giving preference to coming from the adjacent cell above.

• If there is only one choice, i.e., either F(i-1, j) or F(i, j-1) are not 

available, use the other available choice.

• The optimal path can be obtained in Θ(n+m) time.



Coin-Collecting Problem: Ex-1
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Coin-Collecting Problem: Ex-1 (1)
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Coin-Collecting Problem: Ex-2
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Coin-Collecting Problem: Ex-2 (1)
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Computing a binomial coefficient
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk
+ . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1)  for n > k > 0

C(n,0) = 1,   C(n,n) = 1  for n ≥≥≥≥ 0

Value of C(n,k) can be computed by filling a table:

0   1   2  .  .  .   k-1          k

0   1

1   1   1

.

.

.

n-1                 C(n-1,k-1) C(n-1,k) 

n C(n,k) 



Computing C(12,5)



Computing C(n,k): pseudocode
and analysis

Time efficiency: Time efficiency: ΘΘ((nknk))

Space efficiency: Space efficiency: ΘΘ((nknk))



Longest Common 

Subsequence (LCS) Problem



LCS Problem: Overview
• The LCS problem is to find the longest 

subsequence common to all sequences in a set of 
sequences (often just two).

• Note that a subsequence is different from a 
substring in the sense that a subsequence need not 
be consecutive terms of the original sequence.

• An algorithm for the LCS problem could be used to 
find the longest common subsequence between the 
DNA strands of two organisms. 

• For a given length of the two DNA strands, the 
longer the common subsequence, the more similar 
and closer (evolutionarily) are the two organisms.

• Example:  X = ATGCAC Y = CAGATCCA
– LCS(X, Y) = ATCA.



LCS Problem: Idea
• Let the two sequences to compare be X of length m and Y of length n. 

We want to find the LCS(X[1…m], Y[1…n]). 

• If X[m] = Y[n], then we can simply discard the last character (that is 
common) from both the sequences and find the LCS of X[1…m-1] and 
Y[1…n-1], such that 
LCS(X[1…m], Y[1…n]) = LCS(X[1…m-1], Y[1…n-1]) + 1.

• If X[m] ≠ Y[n], then the longest common subsequence of the two 
sequences can be at most either X[m] or Y[n]; but not both. Hence, we 
can say that:
LCS(X[1…m], Y[1…n]) 

= Max {LCS(X[1…m-1], Y[1…n]),  LCS(X[1…m], Y[1…n-1])}

Dynamic Programming Formulation

Define: LCS[i][j] = Length of the LCS of sequence X[1…i] and Y[1…j]
Thus, LCS[i][0] = 0 for all i LCS[0][j] = 0 for all j
The goal is to find LCS[m][n]



LCS Example 1 (1)
X = ATGACTATAA
Y = GACTAATA
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LCS Example 1 (2)
X = ATGACTATAA
Y = GACTAATA
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Ties are broken by going up



LCS Example 2 (1)
X = TGACTAC
Y = ACTGATGC
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LCS Example 2 (2)
X = TGACTAC
Y = ACTGATGC
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LCS 
Example 

3 (1)

X = CAAGTACG
Y = ACTGGAGCAT
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LCS 
Example 

3 (2)

X = CAAGTACG
Y = ACTGGAGCAT
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Integer Knapsack Problem
• Problem Statement: Design a dynamic programming algorithm for the 

integer-knapsack problem: given n items of known weights w1, w2, …, 
wn (where all the weights are integers) and values v1, v2, …, vn (the 
values need not be integers), and a knapsack capacity W (an integer), 
find the most valuable subset of the items that fit into the knapsack.

• Solution: Let F(i, j) be the value of the most valuable subset of the first i
items (1 ≤ i ≤ n) that fit into the knapsack of capacity j (1 ≤ j ≤ W). We 
can divide all the subsets of the first i items that fit into the knapsack of 
capacity j into two categories: those that do not include the ith item and 
those that do.
– Among the subsets that do not include the ith item, the value of an optimal 

subset is F(i-1, j).

– Among the subsets that do include the  ith item (hence, j – wi >= 0), an 
optimal subset is made up of this item and an optimal subset of the first i-1 
items that fits into the knapsack of capacity j – wi. The value of such an 
optimal subset is vi + F(i-1, j – wi).

Initial Condition: F(0, j) = 0 for 1 ≤ j ≤ W F(i, 0) = 0 for 1 ≤ i ≤ n 



Idea to Solve the Int. Knapsack Prob.
• The goal is to find F(n, W), the optimal value of a subset of the n given 

items that fit into the knapsack of capacity W, and an optimal subset 

itself.

• For i, j > 0, to compute the entry in the ith row and jth column, F(i, j), we 

compute the maximum of the entry in the previous row and the same 

column and the sum of vi and the entry in the previous row and wi

columns to the left.

• The table can be filled either row-wise or column-wise.



Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack 

of integer capacity-weight 5.
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Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack 

of integer capacity-weight 5.

Choose W4(2), W2(1), W1(2), with values totaling to 37 and capacity 5.



Example 2: Integer Knapsack Problem
• Find the composition of items that 

maximizes the value of the knapsack 

of integer capacity-weight 6.
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Example 2: Integer Knapsack Problem
• Find the composition of items that 

maximizes the value of the knapsack 

of integer capacity-weight 6.

Choose W5(5) and W3(1) with values totaling to $65 and capacity 6.


