
Module 4

Dynamic Programming

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Introduction to Dynamic Programming
• Dynamic Programming is a general algorithm design technique for

solving problems defined by recurrences with overlapping sub problems

• “Programming” here means “planning”

• Main idea:

• set up a recurrence relating a solution to a larger instance to
solutions of some smaller instances

• solve smaller instances once

• record solutions in a table

• extract solution to the initial instance from that table

• Dynamic programming can be interpreted as a special variety of
space-and-time tradeoff (store the results of smaller instances
and solve a larger instance more quickly rather than repeatedly
solving the smaller instances more than once).

• Example: Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• F(n) = F(n-1) + F(n-2), for n > 1. F(0)=0; F(1) = 1

– F(6) = F(5) + F(4).

– F(5) = F(4) + F(3). Note that we do not solve F(4) twice. We find F(4) only
once and use that to compute F(5) and F(6).

Coin-Collecting Problem
• Problem Statement: Several coins are placed in cells of an n x m

board, no more than one coin per cell. A robot, located in the upper left
cell of the board, needs to collect as many of the coins as possible and
bring them to the bottom right cell. On each step, the robot can move
either one cell to the right or one cell down from its current location.
When the robot visits a cell with a coin, it always picks up that coin.
Design an algorithm to find the maximum number of coins the robot can
collect and a path it needs to follow to do this.

• Solution: Let F(i, j) be the largest number of coins the robot can collect
and bring to the cell (i, j) in the ith row and jth column of the board. It
can reach this cell either from the adjacent cell (i-1, j) above it or from
the adjacent cell (i, j-1) to the left of it.

• The largest numbers of coins that can be brought to these cells are F(i-
1, j) and Fi, j-1) respectively. Of course, there are no adjacent cells to
the left of the first column and above the first row. For such cells, we
assume there are 0 neighbors.

• Hence, the largest number of coins the robot can bring to cell (i, j) is the
maximum of the two numbers F(i-1, j) and F(i, j-1), plus the one
possible coin at cell (i, j) itself.

Coin-Collecting Problem

where cij = 1 if there is a coin in cell (i, j) and cij = 0 otherwise.

Time Complexity: Θ(nm)
Space Complexity: Θ(nm)

Recurrence

Coin-Collecting Problem
• Tracing back the optimal path:

• It is possible to trace the computations backwards to get an optimal

path.

• If F(i-1, j) > F(i, j-1), an optimal path to cell (i, j) must come down from

the adjacent cell above it;

• If F(i-1, j) < F(i, j-1), an optimal path to cell (i, j) must come from the

adjacent cell on the left;

• If F(i-1, j) = F(i, j-1), it can reach cell (i, j) from either direction. Ties can

be ignored by giving preference to coming from the adjacent cell above.

• If there is only one choice, i.e., either F(i-1, j) or F(i, j-1) are not

available, use the other available choice.

• The optimal path can be obtained in Θ(n+m) time.

Coin-Collecting Problem: Ex-1

5

4 3

2 7

8 2

69

0 0 0 0 5 5

0 4 4 7 7 7

0 4 4 9 9 16

0 4 12 12 12 18

9 9 12 12 18 18

Coin-Collecting Problem: Ex-1 (1)

0 0 0 0 5 5

0 4 4 7 7 7

0 4 4 9 9 16

0 4 12 12 12 18

9 9 12 12 18 18

5

4 3

2 7

8 2

69

Coin-Collecting Problem: Ex-2

7 4

5 3

8 2

4 6 1

9 5

3 7

0 7 7 7 7 11

0

0

4

13

13

7 12 15 15 15

15 15 15 15 17

15 21 21 22 22

15 21 26 26 26

18 21 26 33 33

Coin-Collecting Problem: Ex-2 (1)

0 7 7 7 7 11

0

0

4

13

13

7 12 15 15 15

15 15 15 15 17

15 21 21 22 22

15 21 26 26 26

18 21 26 33 33

7 4

5 3

8 2

4 6 1

9 5

3 7

Computing a binomial coefficient
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk
+ . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0

C(n,0) = 1, C(n,n) = 1 for n ≥≥≥≥ 0

Value of C(n,k) can be computed by filling a table:

0 1 2 . . . k-1 k

0 1

1 1 1

.

.

.

n-1 C(n-1,k-1) C(n-1,k)

n C(n,k)

Computing C(12,5)

Computing C(n,k): pseudocode
and analysis

Time efficiency: Time efficiency: ΘΘ((nknk))

Space efficiency: Space efficiency: ΘΘ((nknk))

Longest Common

Subsequence (LCS) Problem

LCS Problem: Overview
• The LCS problem is to find the longest

subsequence common to all sequences in a set of
sequences (often just two).

• Note that a subsequence is different from a
substring in the sense that a subsequence need not
be consecutive terms of the original sequence.

• An algorithm for the LCS problem could be used to
find the longest common subsequence between the
DNA strands of two organisms.

• For a given length of the two DNA strands, the
longer the common subsequence, the more similar
and closer (evolutionarily) are the two organisms.

• Example: X = ATGCAC Y = CAGATCCA
– LCS(X, Y) = ATCA.

LCS Problem: Idea
• Let the two sequences to compare be X of length m and Y of length n.

We want to find the LCS(X[1…m], Y[1…n]).

• If X[m] = Y[n], then we can simply discard the last character (that is
common) from both the sequences and find the LCS of X[1…m-1] and
Y[1…n-1], such that
LCS(X[1…m], Y[1…n]) = LCS(X[1…m-1], Y[1…n-1]) + 1.

• If X[m] ≠ Y[n], then the longest common subsequence of the two
sequences can be at most either X[m] or Y[n]; but not both. Hence, we
can say that:
LCS(X[1…m], Y[1…n])

= Max {LCS(X[1…m-1], Y[1…n]), LCS(X[1…m], Y[1…n-1])}

Dynamic Programming Formulation

Define: LCS[i][j] = Length of the LCS of sequence X[1…i] and Y[1…j]
Thus, LCS[i][0] = 0 for all i LCS[0][j] = 0 for all j
The goal is to find LCS[m][n]

LCS Example 1 (1)
X = ATGACTATAA
Y = GACTAATA

G A C T A A T A

A

T

G

A

C

A

T

A

T

A

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

0

1

2

2

2

2

2

2

2

0

1

1

1

2

3

3

3

3

3

3

0

1

2

2

2

3

4

4

4

4

4

0

1

2

2

3

3

4

5

5

5

5

0

1

2

2

3

3

4

5

5

6

6

0

1

2

2

3

3

4

5

6

6

6

0

1

2

2

3

3

4

5

6

7

7

L

L+1
Match

L’

L’'
unmatch

Max(L’, L’’)

LCS Example 1 (2)
X = ATGACTATAA
Y = GACTAATA

G A C T A A T A

A

T

G

A

C

A

T

A

T

A

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

0

1

2

2

2

2

2

2

2

0

1

1

1

2

3

3

3

3

3

3

0

1

2

2

2

3

4

4

4

4

4

0

1

2

2

3

3

4

5

5

5

5

0

1

2

2

3

3

4

5

5

6

6

0

1

2

2

3

3

4

5

6

6

6

0

1

2

2

3

3

4

5

6

7

7

A T G A C T - A T A A
- - G A C T A A T - A

LCS: G A C T A T A

Ties are broken by going up

LCS Example 2 (1)
X = TGACTAC
Y = ACTGATGC

T G A C T A C

A

C

T

G

A

G

C

T

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 1 2 2 2 2

0 1 1 1 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 3 3 3 4 4

0 1 2 3 3 4 4 4

0 1 2 3 3 4 4 4

0 1 2 3 4 4 4 5

LCS Example 2 (2)
X = TGACTAC
Y = ACTGATGC

T G A C T A C

A

C

T

G

A

G

C

T

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 1 2 2 2 2

0 1 1 1 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 3 3 3 4 4

0 1 2 3 3 4 4 4

0 1 2 3 3 4 4 4

0 1 2 3 4 4 4 5

T G A C T - A - - C
- - A C T G A T G C

LCS: A C T A C

LCS
Example

3 (1)

X = CAAGTACG
Y = ACTGGAGCAT

C A A G T A C G

A

C

T

G

G

G

C

A

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 2 2

0 1 1 1 1 2 2 2 2

0 1 1 1 2 2 2 2 3

0 1 1 1 2 2 2 2 3

0 1 2 2 2 2 3 3 3

0 1 2 2 3 3 3 3 4

0 1 2 2 3 3 3 4 4

0 1 2 3 3 3 4 4 4A

T 0 1 2 3 3 4 4 4 4

LCS
Example

3 (2)

X = CAAGTACG
Y = ACTGGAGCAT

C A A G T A C G

A

C

T

G

G

G

C

A

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 2 2

0 1 1 1 1 2 2 2 2

0 1 1 1 2 2 2 2 3

0 1 1 1 2 2 2 2 3

0 1 2 2 2 2 3 3 3

0 1 2 2 3 3 3 3 4

0 1 2 2 3 3 3 4 4

0 1 2 3 3 3 4 4 4A

T 0 1 2 3 3 4 4 4 4

C A A G - T - - A C G - - -
- - A - C T G G A - G C A T

LCS: A T A G

Integer Knapsack Problem
• Problem Statement: Design a dynamic programming algorithm for the

integer-knapsack problem: given n items of known weights w1, w2, …,
wn (where all the weights are integers) and values v1, v2, …, vn (the
values need not be integers), and a knapsack capacity W (an integer),
find the most valuable subset of the items that fit into the knapsack.

• Solution: Let F(i, j) be the value of the most valuable subset of the first i
items (1 ≤ i ≤ n) that fit into the knapsack of capacity j (1 ≤ j ≤ W). We
can divide all the subsets of the first i items that fit into the knapsack of
capacity j into two categories: those that do not include the ith item and
those that do.
– Among the subsets that do not include the ith item, the value of an optimal

subset is F(i-1, j).

– Among the subsets that do include the ith item (hence, j – wi >= 0), an
optimal subset is made up of this item and an optimal subset of the first i-1
items that fits into the knapsack of capacity j – wi. The value of such an
optimal subset is vi + F(i-1, j – wi).

Initial Condition: F(0, j) = 0 for 1 ≤ j ≤ W F(i, 0) = 0 for 1 ≤ i ≤ n

Idea to Solve the Int. Knapsack Prob.
• The goal is to find F(n, W), the optimal value of a subset of the n given

items that fit into the knapsack of capacity W, and an optimal subset

itself.

• For i, j > 0, to compute the entry in the ith row and jth column, F(i, j), we

compute the maximum of the entry in the previous row and the same

column and the sum of vi and the entry in the previous row and wi

columns to the left.

• The table can be filled either row-wise or column-wise.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Example 1: Integer Knapsack Problem
• Find the composition of items that maximizes the value of the knapsack

of integer capacity-weight 5.

Choose W4(2), W2(1), W1(2), with values totaling to 37 and capacity 5.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Example 2: Integer Knapsack Problem
• Find the composition of items that

maximizes the value of the knapsack

of integer capacity-weight 6.

Choose W5(5) and W3(1) with values totaling to $65 and capacity 6.

