
Module 7:
Hashing

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Hashing
• A very efficient method for implementing a dictionary, i.e., a set with

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m;

– If the keys are letters of some alphabet, the position of the letter in the
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet,
then, the hash function could be:

Collisions and Collision Resolution

If h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions

but some collisions should be expected

• In this module, we will look at open hashing that

works for arrays of any size, irrespective of the

hash function.

Open Hashing

comparisons for an

Unsuccessful search is 3.

Hashing: Space-time Tradeoff

• Hashing is another example for space-time
tradeoff.

• A hash table takes space corresponding to the
size of the array, but the average time-
complexity for a successful search and
unsuccessful search are much lower than that of
an array.

• In the previous example:
– In case of an array, the average number of

comparisons for a successful search is (n+1)/2 =
(6+1)/2 = 3.5; the number of comparisons for an
unsuccessful search is 6.

Open Hashing
• Inserting and Deleting from the hash table is of the same

complexity as searching.

• If hash function distributes keys uniformly, average length of
linked list will be α = n/m. This ratio is called load factor.

• Average-case number of key comparisons for a successful search
is α/2; Average-case number of key comparisons for an
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get
a linked list containing all the n elements hashing to the same
index. To avoid this, we need to be careful in selecting a proper
hashing function.

– Mod-based hashing functions with a prime integer as the divisor are more
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if the number of keys, n > the size of
the hash table, m.

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and
for each element in the smaller array: search if it is in the hash table for
the larger array. If even one element in the smaller array is not there in
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n)

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time.

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the
brute-force approach.

• Note: The above solution could also be used to find whether two sets are
disjoint or not. Even if one element in the smaller array is there in the
larger array, we could stop!

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 11) + 2 (for 3) +

1 (for 7) + 2 (for 1) = 6

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 1 (for 11) + 5 (for 3) +

6 (for 7) + 2 (for 1) = 14

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.

Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 22) + 0 (for 25) +

1 (for 27) + 3 (for 28) = 5

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 6 comparisons for each element * 4 = 24

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the
contiguous subsequences of length 2 or above as well as the
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element
in the hash table.

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44

45

55

57

34 43 32 33 91

93

42 31

33

34

35

36

37

41

41

42

43

44

32

33

34

35
36

Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i] // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while (j is in H) do

j = j + 1

end while

if (j – A[i] > 1) then // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each
element in the array)

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44
45

55

57

34 43 32 33 91

93

42 31

33

34

35
36
37

41

