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Hashing
• A very efficient method  for implementing a dictionary, i.e., a set with 

the operations: find, insert and delete

• Based on representation-change and space-for-time tradeoff ideas

• We consider the problem of implementing a dictionary of n records with 
keys K1, K2, …, Kn.

• Hashing is based on the idea of distributing keys among a one-
dimensional array H[0…m-1] called a hash table.

– The distribution is done by computing, for each of the keys, the value of 
some pre-defined function h called the hash function.

– The hash function assigns an integer between 0 and m-1, called the hash 
address to a key.

– The size of a hash table m is typically a prime integer.

• Typical hash functions

– For non-negative integers as key, a hash function could be h(K)=K mod m; 

– If the keys are letters of some alphabet, the position of the letter in the 
alphabet (for example, A is at position 1 in alphabet A – Z) could be used as 
the key for the hash function defined above.

– If the key is a character string c0 c1 … cs-1 of characters from an alphabet, 
then, the hash function could be: 



Collisions and Collision Resolution

If   h(K1) = h(K2), there is a collision

• Good hash functions result in fewer collisions 

but some collisions should be expected

• In this module, we will look at open hashing that 

works for arrays of any size, irrespective of the 

hash function.



Open Hashing

# comparisons for an

Unsuccessful search is 3.



Hashing: Space-time Tradeoff

• Hashing is another example for space-time 
tradeoff. 

• A hash table takes space corresponding to the 
size of the array, but the average time-
complexity for a successful search and 
unsuccessful search are much lower than that of 
an array.

• In the previous example:
– In case of an array, the average number of 

comparisons for a successful search is (n+1)/2 = 
(6+1)/2 = 3.5; the number of comparisons for an 
unsuccessful search is 6.



Open Hashing
• Inserting and Deleting from the hash table is of the same 

complexity as searching.

• If hash function distributes keys uniformly, average length of 
linked list will be α = n/m.  This ratio is called load factor.

• Average-case number of key comparisons for a successful search 
is α/2; Average-case number of key comparisons for an 
unsuccessful search is α.

• Worst-case number of key comparisons is Θ(n) – occurs if we get 
a linked list containing all the n elements hashing to the same 
index. To avoid this, we need to be careful in selecting a proper 
hashing function. 

– Mod-based hashing functions with a prime integer as the divisor are more 
likely to result in hash values that are evenly distributed across the keys.

• Open hashing still works if  the number of keys, n > the size of 
the hash table, m.



Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct 
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and 
for each element in the smaller array: search if it is in the hash table for 
the larger array. If even one element in the smaller array is not there in 
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n) 

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time. 

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the 
brute-force approach.

• Note: The above solution could also be used to find whether two sets are 
disjoint or not. Even if one element in the smaller array is there in the 
larger array, we could stop!



Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.
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# comparisons = 1 (for 11) + 2 (for 3) + 

1 (for 7) + 2 (for 1) = 6 

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

# comparisons = 1 (for 11) + 5 (for 3) + 

6 (for 7) + 2 (for 1) = 14 

• Example 2: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.



Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.
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# comparisons = 1 (for 22) + 0 (for 25) + 

1 (for 27) + 3 (for 28) = 5 

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

# comparisons = 6 comparisons for each element * 4 = 24 

• Example 2: AL = {11, 1, 13, 21, 3, 7}; 

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for 

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.



Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the 
contiguous subsequences of length 2 or above as well as the 
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element 
in the hash table.
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H(K) = K mod 7
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Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i]   // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while ( j  is in H) do

j = j + 1

end while 

if ( j – A[i] > 1) then  // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L



Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for 
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or 
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first 
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each 
element in the array)
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