
 1

Jackson State University

Department of Computer Science

CSC 323 Algorithm Design and Analysis

Fall 2017
Instructor: Dr. Natarajan Meghanathan

Programming Project 2

Determining the Average Number of Comparisons in the Element Uniqueness Problem

Due: October 5, 2017, 11.30 AM Maximum Points: 100

Maximum Possible value (m) of the elements in your arrays:

Student Name m values Student Name m values

Armon Clark 100, 1000 Taj Nelson 1000, 10000

Daniel Epps 200, 2000 Patricia Perry 1100, 11000

Allee Gammons 300, 3000 Daniel Powell 1200, 12000

Menlik Getachew 400, 4000 Aiyanna Price 1300, 13000

Taylor Hasty 500, 5000 Allaysia Roberts 1400, 14000

Derric Jackson 600, 6000 Dreshon Sanders 1500, 15000

Devario Lewis 700, 7000 Mircale Williams 1600, 16000

Jai-Michael McMillian 800, 8000 Michael Wilson 1700, 17000

Nahu Merawi 900, 9000

Project Description

Consider the “Element Uniqueness” problem discussed in class. The problem is: Given an array,

determine whether the elements in the array are distinctly unique or not. For example, the array [3, 5, 9, 2,
1] has unique elements. The array [4, 9, 4, 2, 3] does not have unique elements as element 4 is present

more than once. Following is the algorithm to determine whether a given array A[0…n-1] of size n has

unique elements or not.

The run-time of the algorithm is dependent on the number on the number of comparisons, which is the

basic operation.

For a given array size n, the number of comparisons depends on the contents of the array, i.e., the values

of the elements of the array.

• For arrays of any size > 1, the best-case number of comparisons is 1. This will happen when the

first and second elements of the array are the same.

 2

• For array of size n, the worst case number of comparisons is n n()− 1

2

The objective of this project is to determine the average-case number of comparisons required for array of

size n.

It has been observed that given an array size n, the contents of which are randomly generated, the average

number of comparisons depends on the maximum possible value of the elements in the array.

Let m be the maximum value of the elements in an array. Each student would do the project with two

given values of m. The two values are written by the instructor in the first-page of the project description.

Implementation

Generate arrays of size n = 0.1m, 0.2m , 0.3m, 0.4m, 0.5m, 0.6m, 0.7m, 0.8m, 0.9m, m, 2m, 3m.

You need to use a random number generator to generate the elements of the array.

For each value of n and m, you would generate 100 sets of arrays. Make sure, you use the seed of the

random number generator to be “System time”, which is continuously changing.

Implement the “Element Uniqueness” algorithm, say with filename uniqueElements.java. For a given

value of n and m, you need to run the code 100 times. For a given value of m, the array of size n (from the
above list of different values) should be generated randomly in your uniqueElements.java code. You will

determine the number of comparisons it takes for each run of the code and then average it over the 100

runs. The average represents the average number of comparisons for an n-element array, whose contents

are generated randomly, and the maximum possible value for any element in the array is m.

To run the code 100 times for a given value of n and m, it is better to automate the code such that it runs a

loop 100 times, during each run, it randomly generates an array of size n such that the maximum possible
value for any element in the array is m.

Make sure to repeat your experiments with the values of n = 0.1m, 0.2m , 0.3m, 0.4m, 0.5m, 0.6m, 0.7m,

0.8m, 0.9m, m, 2m, 3m.

Results

Plot the following graph for each value of m:
Use the different values of n as the X-axis. In the Y-axis, you will plot the worst-case number of

comparisons n n()− 1

2

 and the average-case number of comparisons determined from your experiments.

So, you will have two curves in your graph. Are the two curves close enough to each other or far away

from each other? What is the trend as n increases?

What to submit:
A project report that has the following:

• Your Java code

• The result graphs for the two values of m given to you

Your interpretation of the results. Relate the average number of comparisons observed for each of the

values for m and the corresponding n values used. What can you conclude about the average case

number of comparisons for a given n and m?

 3

The following code segment generates 100 different sets of arrays of size 10, such that the maximum

possible value for any element in the array is 100. You could use this code segment and expand it by
implementing the “Element Uniqueness” algorithm, determine the number of comparisons in each run

and the average number of runs.

import java.util.*;

class uniqueElements{

 public static void main(String[] args){

 Scanner sc = new Scanner(System.in);

 // Get the input for the maximum value of an element and store it in variable name maxValue

 System.out.print("Enter the maximum value for an element: ");

 // Get the input for the number of elements in the array and store it in variable name numElements

 System.out.print("Enter the number of elements in the array: ");

 /* Test the two inputs maxValue and numElements for software safety. Display appropriate error messages and

 then terminate the program if one or both of the inputs are not appropriate as specified. */

 int totalRuns = 100;

 int A[] = new int[numElements];

 // initialize a variable, totalComp, to 0 and it keeps track of the total number of comparisons

 for (int runs = 1; runs <= totalRuns; runs++){ // begin each run

 Random rand = new Random(System.nanoTime());

 // initialize a variable, numComp, to 0

 // and it keeps track of the number of comparisons in a particular run

 for (int index = 0; index < numElements; index++){ // generate array for a particular run

 A[index] = rand.nextInt(maxValue);

 }

 /*

 Implement your "Element Uniqueness" algorithm here. Increment numComp appropriately.

 Note: Instead of using return statements as given in the pseudo code description,

 You should use break statement to come out of your loops, when the array is

 found to have two identical elements.

 */

 // add numComp to totalComp

 } // end each run

 // print the average number of comparisons (divide totalComp by 100)

 }

}

