\qquad

CSC 323 Algorithm Design and Analysis, Fall 2017

Instructor: Dr. Natarajan Meghanathan
Quiz 1 Solutions (Sept. 12, 2017)
Max. Points: 35
Max. Time: 20 min.

1) (15 pts) Given below is the pseudo code for a sorting algorithm called "Selection Sort" that works as follows on an array $\mathrm{A}[1 \ldots \mathrm{n}]$.
(i) Identify the basic operation.
(ii) Derive the best-case and worst-case number of times the basic operation will be executed.
(iii) Determine the asymptotic time complexity of the algorithm by using the most appropriate notation.
```
for \(\mathrm{i}=1\) to n do
    min_index \(=\mathrm{i}\)
    for \(\mathrm{j}=\mathrm{i}+1\) to n do
            if \(A[j]<A\left[m i n \_i n d e x\right]\)
                min_index \(=\mathrm{j}\)
            end if
end for
    Swap(A[i], A[min_index])
end for
```


Solution:

The logic is similar to the logic of finding the minimum element in an array. However, in this algorithm, in each iteration (index i ranging from 1 to n), we seek to put the ith smallest element at index i by scanning the array from index $(j=) i+1$ to n.
During the beginning of the ith iteration, we assume the ith smallest element is at index i (min_index) and scan through the array to the right (index $j=i+1$ to n) to see if there is any index j such that $A[j]<$ A[min_index]; if such an index is come across, we set min_index to be j. After the j loop is exited during the ith iteration, min_index will have the correct index for the ith smallest element and we have to just swap the current element at index i with the element at min_index.

Consider the following array of 6 elements:

Index	1	2	3	4	5	6
Data	4	5	2	1	7	8

During the 1 st iteration $(i=1)$, we seek to find the 1 st smallest element at put it at index i. In this pursuit, we set the min_index $=1$ (assuming element 4 is the temporary 1 st smallest element) and compare $A\left[m i n _i n d e x\right]$ with everything to the right (inside the j loop). We come across an index $\mathrm{j}=3$ for which $A[j=3]<A\left[\min _i n d e x=1\right]$ and we set min_index $=3$. Upon further scanning, we come across index $j=4$ for which $\mathrm{A}[\mathrm{j}=4]<\mathrm{A}\left[\mathrm{min} _i n d e x=3\right]$ and we set min_index $=4$. The value of min_index stays the same for the rest of the j loop. After exiting the j loop, we swap $\mathrm{A}\left[\mathrm{min} _i n d e x=4\right]$ with $\mathrm{A}[\mathrm{i}=1]$. So, the array looks like this at the end of the first iteration.

Index	1	2	3	4	5	6
Data	1	5	2	4	7	8

During the 2 nd iteration ($\mathrm{i}=2$), we work on the array at the end of the 1 st iteration. We seek to find the 2nd smallest element by starting with an estimate for min_index $=2$. We run the j loop from index $\mathrm{i}+1$ to n, where $\mathrm{i}=2$. We come across $\mathrm{j}=3$ for which $\mathrm{A}[\mathrm{j}=3]<\mathrm{A}[$ min_index $=2]$; so we set min_index $=3$ and it remains the same for the rest of the j loop. After exiting the j loop, we swap $\mathrm{A}[$ min_index $=3$] with $\mathrm{A}[\mathrm{i}=2]$. So, the array looks like this at the end of the second iteration.

Index	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6
Data	1	2	5	4	7	8

\qquad

We repeat each iteration like this and make sure that the ith smallest element is at index i at the end of the ith iteration.
(i) Comparison ($\mathrm{A}[\mathrm{j}]$ with $\mathrm{A}[$ min_index $]$) is the basic operation that we do repeatedly in the algorithm. (ii)

Best case: We have to run the j loop from index $\mathrm{i}+1$ to n for each value of i. Even if the input array is sorted (for e.g., 245789), we have to make sure that everything to the right of ' 2 ' is indeed greater than or equal to 2 . Likewise, for every element, we need to check all the elements to its right.

Worst case: The worst case is same as best case. For an ith iteration, we need to run the j loop from index $\mathrm{i}+1$ to n just to make sure that we pick the ith smallest element from index i to n and put such an element in the ith index at the end of the ith iteration.

$$
\text { Best case/Worst case \# comparisons }=\sum_{i=1}^{n} \sum_{j=i+1}^{n} 1=\sum_{i=1}^{n}[(n)-(i+1)+1]=\sum_{i=1}^{n}(n-i)
$$

(iii) Since best case $=$ worst case, the most asymptotic notation to use would be Θ and the asymptotic time complexity is $\Theta\left(\mathrm{n}^{2}\right)$.
2) (10 pts) Derive the asymptotic relationship between the two functions: $n^{2} \log (n)$ and $n \log \left(n^{100}\right)$

Let $\mathrm{f}(\mathrm{n})=n^{2} \log (n)$
Let $\mathrm{g}(\mathrm{n})=n \log \left(n^{100}\right)=(\mathrm{n}) *(100 * \operatorname{logn})$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{n^{2} \log (n)}{100 n * \log (n)}=\lim _{n \rightarrow \infty} \frac{n}{100}=\infty
$$

The numerator function $f(n)$ grows much faster than the denominator function $g(n)$. Hence, we have to use the Big-O notation and the faster growing function $\mathrm{f}(\mathrm{n})$ goes inside the O notation.
We have $\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})) \quad$ That is, $n \log \left(n^{100}\right)=\mathrm{O}\left(n^{2} \log (n)\right)$
3) (10 pts) Let $f(n)=5 n^{3}+6 n+2$. Find a function $g(n)$ such that $f(n)=O(g(n))$ and $f(n) \neq \Theta(g(n))$. Show that your choice for $\mathrm{g}(\mathrm{n})$ is correct using the Limits approach.

We need to choose a function $g(n)$ that strictly grows much faster than $f(n)$ and NOT at the same rate as $\mathrm{f}(\mathrm{n})$. So, if the most dominating term in the $\mathrm{f}(\mathrm{n})$ function is a n^{3} term, we need to choose $\mathrm{g}(\mathrm{n})$ to be a function whose most dominating term is larger than n^{3} as $\mathrm{n}->\infty$. We will choose $\mathrm{g}(\mathrm{n})=n^{4}$ and prove that $\mathrm{f}(\mathrm{n})=5 n^{3}+6 \mathrm{n}+2=\mathrm{O}\left(n^{4}\right)$ using the limits approach.
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{5 n^{3}+6 n+2}{n^{4}}=\lim _{n \rightarrow \infty}\left(\frac{5}{n}+\frac{6}{n^{3}}+\frac{2}{n^{4}}\right)=0$. This implies the denominator function grows much faster than the numerator function as $n->\infty$. Hence, $\mathrm{f}(\mathrm{n})=5 n^{3}+6 \mathrm{n}+2=\mathrm{O}\left(n^{4}\right)$.

