
CSC 228-01/228-60 Data Structures and Algorithms, Spring 2018

Instructor: Dr. Natarajan Meghanathan

Exam 1 (Take Home)

Submission: Submit everything together as one PDF file in Canvas. Due: Feb. 23rd @ 11.59 PM

Q1 - 20 pts) Consider the implementation of the List ADT using Singly Linked List given to you for this

question. Add a member function (to the List class) called recursivePrintForwardReverseOrders that

prints the contents of the list in a recursive fashion in both the forward order and reverse order.

For example, if the contents of the List are: 10 --> 4 --> 8 --> 12 --> 9, the recursive member function

should print the List as follows:

10 4 8 12 9
9 12 8 4 10

Note that both the forward and reverse orders should be printed through an invocation of the
recursivePrintForwardReverseOrders member function on the List object called from the main function.

You are free to choose the parameter(s) that need to be passed to the

recursivePrintForwardReverseOrders function. But, you are not supposed to pass more than three

parameter(s). A suggestion for the parameter to pass is given in the main function of the code posted for
Question 1.

To test your code (and take screenshot), create a List of at least 10 elements (with a maximum value of
100) and then call the recursivePrintForwardReverseOrders function on this List object by passing a

pointer to the first node in the Linked List as an argument, as shown in the main function of the Singly

Linked List code for Question 1.

You need to submit the following as part of your answer for this question:

(i) the complete code for the Node class, List class (including the recursivePrintForwardReverseOrders()

function) and the main function.
(ii) Snapshot of the execution of the code with at least 10 elements and maximum value of 100.

Q2 - 15 pts)
Consider the implementation of the Singly Linked List class (named: List) given to you for this question.

Your task is to add a member function called pairwiseSwap() to the Singly Linked List class such that it

can be called from the main function (as given in the code) to swap the elements of an integerList (an

object of the class List) pairwise and print the updated list. For example, if the List before the
pairwiseSwap is 4 -> 5 -> 2 -> 3 -> 1 -> 6, after the pairwiseSwap, the contents of the list should be:

5 -> 4 -> 3 -> 2 -> 6 -> 1. If the List has an odd number of elements, like: 4 -> 5 -> 2 -> 3 -> 1, then after

the pairwiseSwap, the contents of the list should be: 5 -> 4 -> 3 -> 2 -> 1.

Test your code with 10 elements and 11 elements (with a maximum value of 25 in each case) and take

screenshots of the List before and after pairwiseSwap, as printed in the main function.

You need to submit the following as part of your answer for this question:

(i) the complete code for the Node class, List class (including the pairwiseSwap() function) and the main

function.
(ii) Snapshots of the execution of the code with 10 elements and 11 elements (with a maximum value of

25 in each case).

Q3 - 15 pts)

The deleteElement(int deleteData) member function in the code for the Singly Linked List-based
implementation of a List ADT deletes the first occurrence of deleteData in the List. Modify this member

function in such a way that all occurrences of deleteData in the List are deleted with a single call to the

deleteElement function from main. After you modify the deleteElement function, run the main function

(as given in the startup code for this question) by creating a List of at least 15 elements (with a maximum
value of 10 for any element so that certain elements repeat). Now ask for a value (deleteData) to delete

from the user and call the deleteElement(deleteData) function to delete all occurrences of deleteData in

the List. Capture the output of your program displaying the contents of the List before and after the call to
the deleteElement function.

You need to submit the following as part of your answer for this question:
(i) the complete code for the Node class, List class (including the modified version of the

deleteElement(deleteData) function) and the main function.

(ii) Screenshot of the execution of the code as mentioned above (list of 15 elements, with a maximum

value of 10 so that some elements repeat and you try to delete one of such repeating elements).

Q4 - 25 pts)

Implement Stack ADT as a Singly Linked List without using the insertAtIndex, deleteElement, readIndex
functions of the Singly Listed List. That is, the push, pop and peek operations should not call

insertAtIndex(0, data), deleteElement(0) and readIndex(0) functions. The push, pop and peek operations

should be directly implemented to insert an element in the beginning of the linked list, to delete an
element from the beginning of the linked list and to read the element value from the beginning of the

linked list. To help you out, the implementation of the push function is given in the startup code provided.

Your task is to implement the peek and pop functions like this without calling any other function. You

can notice that the insertAtIndex, deleteElement and readIndex functions have been removed from the
Stack class and you should not use them.

After implementing the pop and peek functions, you will be comparing the actual run-time of the push

and pop operations of a Stack implemented as a Singly Linked List (with insertions and deletions in the

beginning of the Linked List) with that of a Stack implemented as a Doubly Linked List (with insertions
and deletions at the tail/end of the Linked List). The main function provided to you has the timers setup

for this purpose. Your task is to just run the main functions and measure the average time taken (in

microseconds) for the push and pop operations with the Stack as a Singly Linked List and with the Stack
as a Doubly Linked List for the following values of the parameters: (i) # elements to be pushed = 1000,

10000, 100000, 1000000; (ii) maximum value for any element = 50000 and (iii) # trials = 50.

You need to include the following as part of your answer to this question:
(i) the code for the Singly Linked List-based implementation of the Stack class

(ii) a table presenting the actual run-times for the parameters mentioned above

(iii) snapshots of the actual run-times for the above cases.
(iv) interpretation of the difference/similarity in the actual run-times for the push and pop operations

between the Singly Linked List and Doubly Linked List implementation of the Stack ADT.

Q5 - 25 pts)

Consider the Doubly Linked List-based implementation of the Stack ADT, the code for which is given to

you and also discussed in class. According to this code, the latest data to be pushed to the Stack is

inserted at the tail/end of the list and the earliest pushed data is in the bottom of the stack. This implies
that (as per the code given to you) the node next to the head node has its data at the bottom of the stack

and the node previous to the tail node has its data at the top of the stack. The IterativePrint() function

given in the code prints the contents of the Stack from the head node to the tail node.

The following figure illustrates a Stack with elements pushed in this order: 10, 9, 5 and a call to the

IterativePrint() function will also print the elements in this order. Note that the abbreviations PNP and
NNP in the figure refer to PrevNodePtr and NextNodePtr respectively.

In this question, you are required to reverse the links of the Doubly Linked List-based implementation of

the Stack such that the tailPtr points to the head node (and hence the head node has to be now

appropriately referred to as the tail node) and the headPtr points to the tail node (and hence the tail node

has to be now appropriately referred to as the head node), as well as the values for the prevNodePtr and
nextNodePtr pointers for every node (including the head node and tail node) swapped between

themselves. With all these link reversals, the node next to the head node has its data at the top of the stack

and the node previous to the tail node has its data at the bottom of the stack. A call to the IterativePrint()
function (that is designed to print the Stack from the head node to the tail node) will now print the

contents of the Stack from the top to the bottom (as the next node of the head node has its data now at the

top of the stack) as: 5, 9, 10. The Stack of the example shown above will look like the figure below after
the link reversals. Note that the values for the PNP and NNP are swapped as highlighted (e.g., for the

node with data 10, the PNP and NNP were respectively 0 and 500 before the link reversals, and are 500

and 0 respectively, after the link reversals).

You need to include the following as part of your answer to this question:

(i) the entire code for the Doubly linked list-based implementation of the Stack class, including the
reverseStack() function.

(ii) snapshot of the execution of the code for list size of 10 and maximum value for each element being

100.

