
Module 3:
Stack ADT

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Stack ADT
• Features (Logical View)

– A List that operates in a Last In First
Out (LIFO) fashion

– Insertion and deletion can be
performed only from one end (i.e., the
top of the stack)

• The last added item has to be removed first

– Operations:
• Push() – adding an item to the top of the

stack

• Pop() – delete the item from the top of

• Peek() – read the item in the top of the
stack

• IsEmpty() – whether there is any element
in the top of the stack

– All the above operations should be
preferably implemented in O(1) time.

0

1

2

3

4

5

Top of the

Stack

0

1

2

3

4

5

6

Top

Push

0

1

2

3

4

5

6

Pop

Dynamic Array-based
Implementation of Stack ADT

• List ADT
• Member variables

int *array

int maxSize

int endOfArray

• Constructor

List(int size)

• Member functions

bool isEmpty()

void resize(int s)

void insert(int data)

void insertAtIndex(int insertIndex, int data)

int read(int index)

void modifyElement(int index, int data)

void deleteElement(int deleteIndex)

• Stack ADT
• Member variables

int *array

int maxSize

int topOfStack

• Constructor

Stack(int size)

• Member functions

bool isEmpty()

void resize(int s)

void push(int data)

int peek()

int pop()

Code 3.1: Dynamic Array-based
Implementation of Stack ADT

C++
9

5

7

10

Stack

0 1 2 3 4 5 6

10 7 5 9

topOfStack = 3

maxSize = 7

2

9

5

7

10
Stack

0 1 2 3 4 5 6

10 7 5 9 2

topOfStack = 4

maxSize = 7

Code 3.1 (C++): Dynamic Array-
based Implementation of Stack ADT

C++

Code 3.1 (C++): Dynamic Array-
based Implementation of Stack ADT

Implementation of Stack
Dynamic Array vs. Singly/Doubly Linked List

• Push
– Array: O(n) time, due to need for resizing when the stack gets full

– Singly Linked List: O(1) time, if insertion is done at the beginning of the list

– Doubly Linked List: O(1) time

• Pop
– Array: O(1) time

– Singly Linked List: O(1) time, if deletion is done at the beginning of the list

– Doubly Linked List: O(1) time

• Peek
– Array: O(1) time

– Singly Linked List: O(1) time, if peek is done at the beginning of the list

– Doubly Linked List: O(1) time

• A singly linked list-based implementation with insertion and deletion
done at the end of the list would be the most time consuming, as we
would need to traverse the entire list for every push, pop and peek
operation.

Class List (C++)

During the beginning and end of the while loop,

the value for ‘index’ corresponds to the

Position of the currentNode ptr and prevNode ptr

corresponds to index-1.

If index equals insertIndex, we break from

the while loop and insert the new node

at the index in between prevNode and

currentNode.

index refers to the node pointed
by currentNodePtr at any time

Singly Linked List: Inserting an Element at insertIndex

Singly Linked List: Push Operation
(Example: Push 10 5 7 9)

0

@ 100

headPtr

100

Head node

Initialization

340

@ 100

headPtr

100

Head node

@ 340
Pushed Node

10 0

Pushing ’10’

10
Current

Stack

700

@ 100

headPtr

100

Head node

@ 340

10 0

Pushing ’5’

5

10

Current

Stack

@ 700
Pushed Node

5 340

Push(data) can be implemented as

insertAtIndex(0, data) on a Singly Linked List

Singly Linked List: Push Operation
(Example: Push 10 5 7 9)

900

@ 100

Head node

@ 900

7 700

@ 700

5 340

headPtr

100

@ 340

10 0

500

@ 100

Head node

@ 900

7 700

@ 700

5 340

headPtr

100

@ 340

10 0

@ 500

9 900

Pushing ‘9’

Pushed Node

7

5

10

Current Stack

9

7

5
10
Current Stack

Class List (C++)

The next node for ‘prevNode’ ptr

is now ‘next node’ and not

‘current node’

Singly Linked List: Deleting the Element

at deleteIndex

Singly Linked List: Pop Operation
Pop can be implemented as delete(int deleteIndex)

500

@ 100
Head node

@ 900

7 700

@ 700

5 340

headPtr

100

@ 340

10 0

@ 500

9 900

Before Pop
9
7

5
10
Current Stack

900

@ 100
Head node

@ 900

7 700

@ 700

5 340

headPtr

100

@ 340

10 0

@ 500

9 900

After Pop

7

5
10
Current Stack

Doubly Linked List Implementation
of a Stack

Abbreviations: PNP – PrevNodePtr; NNP – NextNodePtr

N
N

P

P
N

P

D
a

ta

N
N

P

P
N

P

D
a

ta

N
N

P

P
N

P

D
a

ta

N
N

P

P
N

P

D
a

ta

N
N

P

P
N

P

D
a

ta

Head Node

@ 100

Tail Node

@ 400

@ 200 @ 500 @ 300

200
500 300 0 3005002000 10 9 5

5

9

10

Stack

Top of the Stack

Bottom of the Stack

headPtr

100

tailPtr

400

Code 3.2:
Doubly Linked

List-based
Implementation

of Stack
private:

int data;

Node* nextNodePtr;

Node* prevNodePtr;

public:

Node()

void setData(int)

int getData()

void setNextNodePtr(Node*)

Node* getNextNodePtr()
void setPrevNodePtr(Node*)
Node* getPrevNodePtr()

Class Node (C++) Overview

Class Stack (C++)

Push Operation
Scenario 1: There is no node currently in the stack

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

Before Push

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

After Push

New

Node

newNodePtr

2 1

3 6

Push Operation
Scenario 2: There is at least one node already in the stack

Head

Node

headPtr

NULL

Before Push

Tail

Node

tailPtr

Node

1NULL

Last

Node

Head

Node

headPtr

NULL

After Push

Tail

Node

tailPtr

Node

1

Last

Node
New

Node

1

lastNodePtr

lastNodePtr

4

5 6

// Before the new node is pushed, the prevNodePtr for the “tail node”

// would be pointing to the last node in the stack and the nextNodePtr

// for that last node would be pointing to NULL.

newNodePtr

NULL

Code 3.2 (C++)

// There is no other node in the Stack (Scenario 1)

// There is at least one node already in the Stack (Scenario 2)

1

2

3

4

5

6

Whatever be the case, the

prevNodePtr for the tail node

will point to the newly pushed node

1

Pop Operation
Scenario 1: There will be no node in the Stack after the Pop
(i.e., there is just one node in the Stack before the Pop)

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

After Pop

Tail

Node

tailPtr

NULL

Head

Node

headPtr

NULL

Before Pop

Last

Node

lastNodePtr

// Before Pop: The Head Node’s nextNodePtr and the Tail Node’s prevNodePtr are

both pointing to the only node in the stack.

// After Pop: Both the Head Node’s nextNodePtr and the Tail Node’s prevNodePtr
are set to NULL

1

2

Pop Operation
Scenario 2: There will be at least one node in the stack
after the Pop operation is executed

Head

Node

headPtr

NULL

Before Pop

Tail

Node

tailPtr

Node

1

NULL Prev

Node
Last

Node

prevNodePtr
lastNodePtr

Head

Node

headPtr

NULL Tail

Node

tailPtr

Node

1

NULL Prev

Node

prevNodePtr
After Pop

3

4

// If there is at least one node in the Stack before Pop

// If the Stack is empty before pop, return an invalid value

// If there is going to be at least one node in the

Stack after the pop

(Scenario 2)

// If there is going to be no node in the Stack after the pop

(Scenario 1)1

2

3
4

Code 3.2 (C++)

Code 3.2: Peek Operation
C++

Code 3.3 (C++):
String

Processing
Example

This code reads a string (of possibly more

than one Word) from the user and prints a

new string that has the uppercase characters

of the original string as well as reverses the string

To read more than word (a line) as string

Initialize a new string as an empty string

Getting the character at a specific index

To get the uppercase version of a character

Reverse the string from its end

to its beginning

Parentheses Balance
• By parenthesis, we refer to the following

symbols
(), { }, []

• The problem is about checking whether
corresponding to each opening parenthesis
there is a corresponding closing parenthesis in
correct order.

• Examples for balanced parentheses
– { [] (()) }

– [({ }) []]
– ({ } [()])

• Examples for unbalanced parentheses
– [[)]

– { () [}

Parentheses Balance (Program Logic)

• Logic to determine whether the parentheses in an
expression are balanced or not. (We could use a Linked
List or Dynamic Array-based Stack).
– Input the expression as a string and read it one character at a

time.

– If the character read is a opening parenthesis, then push it into
the stack

– If the character read is a closing parenthesis, then pop the stack
and check if the popped symbol is a matching opening
parenthesis.

• If so, continue.

• Otherwise, stop and say, parenthesis is not balanced.

– If the character read does not match with any of the above six
symbols, then stop the program and say there is an invalid
symbol in the input expression.

– If after reading the entire expression, the stack still remains non-
empty, then declare the parenthesis is not balanced.

Code 3.4 (C++): Parentheses Balancing

Note: We will use the implementation of stack

using doubly linked list. We will replace

all the ‘int’ in the doubly linked list – based stack

code to ‘char’ as appropriate

Code 3.4

(C++):

Parentheses

Balancing

Example (C++) for String Tokenization
(breaking a string into tokens based on delimiters)

Code 3.5

// for C-style string processing as character array

Get a line of words as a string, sample
Create a character array

of size one more than the

length of the string and copy the

elements from the string ‘sample’ to the Character array ‘sampleArray’

Set up a tokenizer for the character
Array with , and blank space as
Delimiters. The tokenizer will return

Tokens as character arrays (strings)

In this example program, we will count the number of

Symbols and the sum of the integers that appear in

an input string ‘sample’

Code 3.5 (C++)

Run the while loop unless the pointer

Corresponding to a token (character array) is NULL

Generate a string ‘token’ corresponding to the

Character array

The ‘compare’ function returns

0 if the two strings are equal

Keep track of the number of symbols

The ‘stoi’ function converts a string

to the integer representing it. For

example, if ’13’ is the string token, it

is now transformed to an integer ‘value’

Syntax of the strtok function to read the

next token in the original string

Order of Operation
(Operator Precedence)

1) Parenthesis: (), { }, []

2) Exponent: In case of a tie, we evaluate from right to left.
Example: 3^2^4 = 3^16 = 43046721

3) Multiplication and Division: Break the tie, by evaluating from left to
right.

4) Addition and Subtraction: Break the tie, by evaluating from left to
right.

Example:

1) 5 + 8 / 4 = 5 + 2 = 7

2) 12 / 6 * 3 = 2 * 3 = 6

3) 4 * 5 / 2 – 7 + 3

= 20 / 2 – 7 + 3

= 10 – 7 + 3

= 3 + 3 = 6

4) 4 * {5 / (2 – 7) + 3}

= 4 * {5 / (-5) + 3}

= 4 * {-1 + 3} = 8

Infix, Prefix and Postfix
• Infix: LeftOperand <Operator> RightOperand

– Example: 2 + 3

• Prefix: <Operator> LeftOperand RightOperand
– Example: + 2 3

• Postfix: LeftOperand RightOperand <Operator>
– Example: 2 3 +

• Infix expressions use the order of operation to break the
ties.

• Prefix and Postfix expressions do not require the order of
operation.
– In both prefix and postfix expressions, each operand will be

associated only with one operator and hence no need to use
rules of operator precedence.

– For example: consider a + b * c: this expression (infix notation)
needs to use operator precedence for evaluation

– + a * b c is the prefix notation and abc*+ is the postfix notation

Evaluation of Postfix Expression
Consider an infix expression: A * B + C * D – E

If evaluated in infix, the expression needs to be evaluated as follows:

(A * B) + (C * D) – E

{ (A * B) + (C * D)} – E

Converting this to postfix

(AB*) + (CD*) – E

(AB*) (CD*) + – E

(AB*) (CD*) + E –

Removing the parenthesis, the final postfix expression is: AB*CD*+E–

Evaluation Logic:

Scan the expression from left to right.

If we see an operand in the expression, push it into the stack.

If we see an operator, we pop the last two items from the stack, apply
the operator on the two popped items (the first popped item will
be the right operand and the second popped item will the left
operand) and push the result of the operation to the stack.

The only item in the stack after reading the entire expression is the
value of the expression.

Evaluation of Post-Fix Expression

• Consider the post-fix expression

• AB*CD*+E –

• Let A = 2, B = 3, C = 1, D = 5, E = 4

A = 2

B = 3

A*B = 6

C = 1

D = 5

A*B = 6

C*D = 5
A*B +

C*D = 11

E = 4

A*B +
C*D – E = 7

Note: During a scan of a post-fix expression, the left operand of an operator goes

first into the stack followed by the right operand. Hence, during a pop, the right

operand comes first out of the stack, followed by the left operand

C++ Code
for Postfix
Evaluation

We will use the

integer-based

doubly linked list

implementation of

stack.

Check if the token is one of the four operators

*, /, +, -; if so, set the ‘isOperator’ boolean to true

If the token is not an operator, we assume

It must be an integer, and push it into the

Stack.

Code 3.6

If ‘isOperator’ is true, then pop

the top two integers from the
Stack, perform the operation and

Push the resulting value to the

stack

Set up the next iteration of the while loop

by retrieving the next token

//end if

// end while
The final value of the expression
will be the only value in the stack

when we exit the while loop.

Code 3.6
(C++)
continued

The right operand
is popped first

followed by the

Left operand

Evaluation of Prefix Expression
Consider an infix expression: A * B + C * D – E

If evaluated in infix, the expression needs to be evaluated as follows:

(A * B) + (C * D) – E

{ (A * B) + (C * D)} – E

Converting this to prefix

(*AB) + (*CD) – E

+ (*AB) (*CD) – E

– + (*AB) (*CD) E

Removing the parenthesis, the final prefix expression is: – + *AB*CDE

Evaluation Logic:

Scan the expression from right to left (or reverse the expression and
scan from left to right).

If we see an operand in the expression, push it into the stack.

If we see an operator, we pop the last two items from the stack, apply
the operator on the two popped items (the first popped item will
be the left operand and the second popped item will the right
operand) and push the result of the operation to the stack.

The only item in the stack after reading the entire expression is the
value of the expression.

Evaluation of Pre-Fix Expression

• Consider the pre-fix expression

• – + *AB*CDE

Read this expression from right to left

• Let A = 2, B = 3, C = 1, D = 5, E = 4

E = 4

D = 5

E = 4

C*D = 5

C = 1 B = 3

A = 2

E = 4

C*D = 5

A*B = 6

E = 4

A*B +
C*D = 11

A*B +
C*D – E = 7

Note: During a scan of a pre-fix expression, the right operand of an operator goes
first into the stack followed by the left operand. Hence, during a pop, the left
operand comes first out of the stack, followed by the right operand

