
Module 8:
Heap

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Essentially Complete Binary Tree

• A binary tree of height ‘h’ is essentially complete if it is a complete
binary tree up to level h-1 and the nodes at level h are as far to the
left as possible.

• Note: A complete binary tree is also essentially complete.

Complete and

Essentially

Complete too!

Essentially

Complete

Essentially Complete Binary Tree

• The trees shown below are not essentially
complete.

Heap
• A heap is a binary

tree that satisfies the
following two
properties:
– Essentially complete

or complete
– Max/Min heap

• Max heap: The data at
each internal node is
greater than or equal to
the data of its
immediate child nodes

• Min heap: The data at
each internal node is
lower than or equal to
the data of its
immediate child nodes

10

8 9

5 6

5 4 3

1 7

Max Heap

1

3 7

5 4

10 5 6

8 9

Min Heap

Difference between BST and Heap

10

8 9

5 6

5 4 3

1 7

Max Heap

7

5 9

3 6

1 4 5

8 10

BST

5 5 4 8 3 6 10 1 9 7

7 3 8 1 9 4 0 5 2 6

1 3 4 5 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9

Max Heap: Each internal node is greater than

or equal to its child nodes.

BST: An internal node is greater than or equal

to the nodes in its left sub tree and lower than

or equal to the nodes in its right sub tree.

Storing the Heap as an Array
• A heap of ‘n’ elements

can be stored in an array
(index starting from 0)
such that the internal
nodes (in the top-down,
left-right order) are
represented as elements
from index 0 to n/2 - 1
and the leaf nodes
(again, top-down, left-
right order) are
represented as elements
from index n/2 to n-1.

• The child nodes of an
internal node at index ‘j’
are at indexes 2j+1 and
2j+2.

• The parent node for a
node at index j is at
index (j-1)/2

10

0

8

1

9

2

7

3

6

4

5

5

5

6

1

7

4

8

3

9

The child nodes of internal node ‘8’ at index 1 are
at indexes 2*1+1 = 3 and 2*1 + 2 = 4. The parent

node for node ‘7’ at index 3 is at index (3-1)/2 = 1

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9
n = 10

n/2 - 1 = 4

Storing the Heap as an Array

Internal Node at

Index

‘j’

Child node at

Index 2j+1
Child node at

Index 2j+2
Child node at

Index ‘j’

Parent node at

Index j-1/2

For the rest of this module, we will construct and employ a ‘max’

heap unless otherwise specified.

The data for an internal node must be greater than or equal to

that of its child nodes.

Using BFS to check whether a Binary
Tree is Essentially Complete

Queue queue

queue.enqueue(root node id 0)

noChildZoneStarts = false

Begin BFS_BinaryTree

while (!queue.isEmpty()) do

FirstNodeID = queue.dequeue();

if (noChildZoneStarts == false AND FirstNode.leftChildNodeID == -1)

noChildZoneStarts = true

else if (noChildZoneStarts == true AND FirstNode.leftChildNodeID != -1)

return “the binary tree is not essentially complete”

if (FirstNode.leftChildNodeID != -1) then

queue.enqueue(FirstNode.leftChildNodeID)

end if

We keep track of whether we come across

a state wherein an internal node does not

have a child node. The moment we come

across an internal node with a missing

Child node (left node or right node), we

set the boolean ‘noChildZoneStarts’ to true

If we across a child node when the

noChildZoneStarts boolean is true, we

declare the tree is not essentially complete!

Breadth First Search (BFS) Algorithm
continued…

if (noChildZoneStarts == false AND FirstNode.rightChildNodeID == -1)

noChildZoneStarts = true

else if (noChildZoneStarts == true AND FirstNode.rightChildNodeID != -1)

return “the binary tree is not essentially complete”

if (FirstNode.rightChildNodeID != -1) then

queue.enqueue(FirstNode.rightChildNodeID)

end if

end while

return “the binary tree is essentially complete”

End BFS_BinaryTree

0

1 2

3

7

4 5 6

Once we find out that node ‘3’ does not have a right child, all the
nodes explored further in BFS should not have any child node.

Otherwise, the binary tree is not essentially complete.

Heap Construction
• Given an array of ‘n’ elements,

• Step 1: Construct an essentially complete binary tree
and then reheapify the internal nodes of the tree to
make sure the max or min heap property is satisfied for
each internal node.

• Step 2: Reheapify an internal node for ‘max’ heap: If the
data at an internal node is lower than that of one or both
of its child nodes, then swap the data for the internal
node with the larger of the data of its two child nodes.
– If any internal node further down is affected because of this

swap, the reheapify operation is recursively continued all the
way until a leaf node is reached.

• The reheapify operation is started from the node at
index n/2 – 1 and continued all the way to the node at
index 0.

Heap Construction Example 1

5

0

6

1

5

2

4

3

3

4

10

5

7

6

1

7

7

8

8

9

5

6 5

4 3

1 7 8

10 7

Step 1: Essentially

Complete Binary Tree

(Not a heap yet!)

0

1 2

3 4 5 6

7 8 9

Heap Construction Example 1

5

0

6

1

5

2

4

3

3

4

10

5

7

6

1

7

7

8

8

9

5

6 5

4 3

1 7 8

10 7

Step 2: Reheapify node at

index ‘4’ and down further

if needed

0

1 2

3 4 5 6

7 8 9

Compare the node at index ‘4’ with

its child nodes at index 2*4 + 1 = 9

and index 2*4 + 2 = 10. Since index ’10’

does not exist and index 9 exists, it

implies we have reached a leaf node

(at index 9) and there is no need to

proceed further down.

Just compare node at index ‘4’ with the child node at

Index ‘9’ and swap them, if needed. In this case: Yes,

We need to swap.

Before

(Reheapify at

Index ‘4’):

5

0

6

1

5

2

4

3

8

4

10

5

7

6

1

7

7

8

3

9
After (Reheapify at

Index ‘4’):

8

3

Heap Construction Example 1

5

6 5

4 8

1 7 3

10 7

Step 2: Reheapify node at

index ‘3’ and down further

if needed

0

1 2

3 4 5 6

7 8 9

Compare the node at index ‘3’ with

its child nodes at index 2*3 + 1 = 7

and index 2*3 + 2 = 8. In this case,

We swap element at index ‘3’ with

element at index ‘8’. Since 8 is already

a leaf node, we do not proceed down

further.

Before

(Reheapify at

Index ‘3’):

After (Reheapify at

Index ‘3’):
5

0

6

1

5

2

7

3

8

4

10

5

7

6

1

7

4

8

3

9

4

7

5

0

6

1

5

2

4

3

8

4

10

5

7

6

1

7

7

8

3

9

Heap Construction Example 1

5

6 5

7 8

1 4 3

10 7

Step 2: Reheapify node at

index ‘2’ and down further

if needed

0

1 2

3 4 5 6

7 8 9

Compare the node at index ‘2’ with

its child nodes at index 2*2 + 1 = 5

and index 2*2 + 2 = 6. In this case,

We swap element at index ‘2’ with

element at index ‘5’. Since 5 is already

a leaf node, we do not proceed down

further.

Before

(Reheapify at

Index ‘2’):

After (Reheapify at

Index ‘2’):
5

0

6

1

10

2

7

3

8

4

5

5

7

6

1

7

4

8

3

9

5

10

5

0

6

1

5

2

7

3

8

4

10

5

7

6

1

7

4

8

3

9

Heap Construction Example 1

5

6 10

7 8

1 4 3

5 7

Step 2: Reheapify node at

index ‘1’ and down further

if needed

0

1 2

3 4 5 6

7 8 9

Compare the node at index ‘1’ with

its child nodes at index 2*1 + 1 = 3

and index 2*1 + 2 = 4. In this case,

We swap element at index ‘1’ with

element at index ‘4’.

Again do a reheapify at index ‘4’, if

needed and continue in a recursive

fashion until it is no longer needed.

Before

(Reheapify at

Index ‘1’):

After (Reheapify at

Index ‘1’):
5

0

8

1

10

2

7

3

6

4

5

5

7

6

1

7

4

8

3

9

6

8

5

0

6

1

10

2

7

3

8

4

5

5

7

6

1

7

4

8

3

9

Heap Construction Example 1

5

8 10

7 6

1 4 3

5 7

Step 2: Reheapify node at

index ‘0’ and down further

if needed

0

1 2

3 4 5 6

7 8 9

Compare the node at index ‘0’ with

its child nodes at index 2*0 + 1 = 1

and index 2*0 + 2 = 2. In this case,

We swap element at index ‘0’ with

element at index ‘2’.

Again do a reheapify at index ‘2’ as the

element now at index ‘2’ (which is 5)

is lower than the maximum of its two

child nodes (which is 9 at index ‘6’).

Before

(Reheapify at

Index ‘0’):

After (Reheapify at

Index ‘0’):
10

0

8

1

7

2

7

3

6

4

5

5

5

6

1

7

4

8

3

9

10

5

7

5

5

0

8

1

10

2

7

3

6

4

5

5

7

6

1

7

4

8

3

9

Heap Construction Example 1

10

8 7

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

Final Array

Representing

Max Heap

10

0

8

1

7

2

7

3

6

4

5

5

5

6

1

7

4

8

3

9

Max Heap
Construction
(Code 8.1:

C++)

Main Function

7.1: Reheapify Code (C++)

// If the node at ‘index’ does not have a left child (implies it does

// not have right child too), then there

// is no need to reheapify at that index

// If the node at ‘index’ does not have a right child (if the control reaches

// here, it implies the node

// at ‘index’ has a left child)// Check if the data for the

// node at

// ‘index’ is less

// than that of its

// left child. If so,

// swap

// If the node at ‘index’ has data that is greater than or equal to

both its left child

and right child,

then there is no need

to reheapify for this index
// If the control reaches here, it implies the node at ‘index’ has data that

is less than at least one of its

two child nodes

// Between the left and right

// child nodes, find the node

// that has relatively larger

// data, call the index of this

// as ‘maxIndex’ and swap

// its value with the node at

// ‘index’.

// If the control reaches here, it means the node at ‘index’ has both left child

// and right child

// Call the rearrangeHeap function in a recursive fashion
// to see if further rearrangements need to be done starting

// from maxIndex

Heap Construction Example 2

55

0

27

1

81

2

3

3

39

4

70

5

93

6

14

7

31

8

42

9

55

27 81

3 39

14 31 42

70 93

Step 1: Essentially

Complete Binary Tree

(Not a heap yet!)

0

1 2

3 4 5 6

7 8 9

74

10

91

11

98

12

74

10

91 98

11 12

55

0

27

1

81

2

3

3

39

4

70

5

93

6

14

7

31

8

42

9

55

27 81

3 39

14 31 42

70 93

Step 2: Reheapify at index 50

1 2

3 4 5 6

7 8 9

74

10

91

11

98

12

74

10

91 98

11 12

Start reheapifying from

Index 13/2 – 1

Before

(Reheapify at

Index ‘5’):

55

0

27

1

81

2

3

3

39

4

98

5

93

6

14

7

31

8

42

9

74

10

91

11

70

12
After
(Reheapify at
Index ‘5’):

98

70

55

27 81

3 39

14 31 42

98 93

Step 2: Reheapify at index 40

1 2

3 4 5 6

7 8 9

74

10

91 70

11 12

Before

(Reheapify at

Index ‘4’):

55

0

27

1

81

2

3

3

74

4

98

5

93

6

14

7

31

8

42

9

39

10

91

11

70

12
After
(Reheapify at
Index ‘4’):

74

39

55

0

27

1

81

2

3

3

39

4

98

5

93

6

14

7

31

8

42

9

74

10

91

11

70

12

55

27 81

3 74

14 31 42

98 93

Step 2: Reheapify at index 30

1 2

3 4 5 6

7 8 9

39

10

91 70

11 12

Before

(Reheapify at

Index ‘3’):

55

0

27

1

81

2

31

3

74

4

98

5

93

6

14

7

3

8

42

9

39

10

91

11

70

12
After
(Reheapify at
Index ‘3’):

31

3

55

0

27

1

81

2

3

3

74

4

98

5

93

6

14

7

31

8

42

9

39

10

91

11

70

12

55

27 81

31 74

14 3 42

98 93

Step 2: Reheapify at index 20

1 2

3 4 5 6

7 8 9

39

10

91 70

11 12

Before

(Reheapify at

Index ‘2’):

55

0

27

1

98

2

31

3

74

4

91

5

93

6

14

7

3

8

42

9

39

10

81

11

70

12
After
(Reheapify at
Index ‘2’):

81

98

55

0

27

1

81

2

31

3

74

4

98

5

93

6

14

7

3

8

42

9

39

10

91

11

70

12

91

81

55

27 98

31 74

14 3 42

91 93

Step 2: Reheapify at index 10

1 2

3 4 5 6

7
8 9

39

10

81 70

11 12

Before

(Reheapify at

Index ‘1’):

55

0

74

1

98

2

31

3

42

4

91

5

93

6

14

7

3

8

27

9

39

10

81

11

70

12
After
(Reheapify at
Index ‘1’):

74

55

0

27

1

98

2

31

3

74

4

91

5

93

6

14

7

3

8

42

9

39

10

81

11

70

12

27

42

27

55

74 98

31 42

14 3 27

91 93

Step 2: Reheapify at index 00

1 2

3 4 5 6

7
8 9

39

10

81 70

11 12

Before

(Reheapify at

Index ‘0’):

98

0

74

1

93

2

31

3

42

4

91

5

55

6

14

7

3

8

27

9

39

10

81

11

70

12
After
(Reheapify at
Index ‘0’):

55

98

55

0

74

1

98

2

31

3

42

4

91

5

93

6

14

7

3

8

27

9

39

10

81

11

70

12

93

55

Heap Construction Example 2

Final Array

Representing

Max Heap

98

0

74

1

93

2

31

3

42

4

91

5

55

6

14

7

3

8

27

9

39

10

81

11

70

12

98

74 93

31 42

14 3 27

91 55

0

1 2

3 4 5 6

7
8 9

39

10

81 70

11 12

Heap Sort
• Given an array of size ‘n’, first construct a max-

heap version of the array.
• Run ‘n-1’ iterations (iteration index 0 to n-1)

– Swap element at index “0” with element at index “n-1-
iteration index”

– Element at index “0” has now moved to its final
location “n-1-iteration index” in the sorted array

– Reheapify the array as a result of this swap with the
array index values ranging from “0” to “n-1-iteration
index – 1”.

• Each iteration would require “logn” swappings at
the worst case, across the entire height of the
binary tree.

• For a total of ‘n-1’ iterations, the time complexity
of heap sort is O(nlogn).

Heap Sort: Example 1

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

10

0

8

1

9

2

7

3

6

4

5

5

5

6

1

7

4

8

3

9

5 6 5 4 3 10 9 1 7 8Original Array

Max-Heap Version

Max-Heap

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

10

0

8

1

9

2

7

3

6

4

5

5

5

6

1

7

4

8

3

9

Max-Heap Version

Iteration 0

3
10

3

0

8

1

9

2

7

3

6

4

5

5

5

6

1

7

4

8

10

9

After Swap

3

8 9

7 6

1 4 10

5 5

0

1 2

3 4 5 6

7 8 9

3

9

3

5

9

0

8

1

5

2

7

3

6

4

3

5

5

6

1

7

4

8

10

9

After Reheapify

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 1

4 9

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

9 8 5 7 6 3 5 1 4 10

4 8 5 7 6 3 5 1 9 10

9

8 5

7 6

1 4 10

3 5

0

1 2

3 4 5 6

7 8 9

4

8 5

7 6

1 9 10

3 5

0

1 2

3 4 5 6

7 8 9

4

8

4

7

8 7 5 4 6 3 5 1 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 2

1 8

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

8 7 5 4 6 3 5 1 9 10

1 7 5 4 6 3 5 8 9 10

8

7 5

4 6

1 9 10

3 5

0

1 2

3 4 5 6

7 8 9

1

7 5

4 6

8 9 10

3 5

0

1 2

3 4 5 6

7 8 9

1

7

1

6

7 6 5 4 1 3 5 8 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 3

5 7

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

5 6 5 4 1 3 7 8 9 10

7 6 5 4 1 3 5 8 9 10

5

6 5

4 1

8 9 10

3 7

0

1 2

3 4 5 6

7 8 9

6

5

6 5 5 4 1 3 7 8 9 10

7

6 5

4 1

8 9 10

3 5

0

1 2

3 4 5 6

7 8 9

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 4

3 6

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

3

5 5

4 1

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

6 5 5 4 1 3 7 8 9 10

3 5 5 4 1 6 7 8 9 10

6

5 5

4 1

8 9 10

3 7

0

1 2

3 4 5 6

7 8 9

3

5

4

3

5 4 5 3 1 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 5

1 5

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

5 4 5 3 1 6 7 8 9 10

1 4 5 3 5 6 7 8 9 10

5

4 5

3 1

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

1

4 5

3 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

5

1

5 4 1 3 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 6

3 5

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

5 4 1 3 5 6 7 8 9 10

3 4 1 5 5 6 7 8 9 10

5

4 1

3 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

3

4 1

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

3

4

4 3 1 5 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 7

1 4

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

4

3 1

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

4 3 1 5 5 6 7 8 9 10

1 3 4 5 5 6 7 8 9 10

1

3 4

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

1

3

3 1 4 5 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Max-Heap Version

Iteration 8

1 3

0 1 2 3 4 5 6 7 8 9

After Swap

0 1 2 3 4 5 6 7 8 9

After Reheapify

1

3 4

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

3 1 4 5 5 6 7 8 9 10

1 3 4 5 5 6 7 8 9 10

1 3 4 5 5 6 7 8 9 10

3

1 4

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

0 1 2 3 4 5 6 7 8 9

1

3 4

5 5

8 9 10

6 7

0

1 2

3 4 5 6

7 8 9

1 3 4 5 5 6 7 8 9 10

Heap Sort: Example
Final Sorted Array

Heap Sort (Code 8.1: C++)

Swap the element at the top of the heap with

the element at the last index

(arraySize-1-iterationIndex)

in the active portion

of the array

arraySize-1-iterationIndex is also the number of elements in the
Unsorted portion of the array (in otherwords, the size of the active
portion of the array)

13

22 18

27 14 23

0

1 2

3 4 5

13 22 18 27 14 23Original Array Reheapify at index 2

13

22 18

27 14 23

0

1 2

3 4 5 23

18

Reheapify at

index 1
13

22 23

27 14 18

0

1 2

3
4 5

27

22

Reheapify at

index 0
13

27 23

22 14 18

0

1 2

3
4 5

27

13
22

13

Heap Sort: Example 2

27

22 23

13 14 18

0

1 2

3 4 5

27

0

22

1

23

2

13

3

14

4

18

5

13 22 18 27 14 23Original Array

Max-Heap Version

Max-Heap

Max-Heap Version

Iteration 0

18 27

After Swap

After Reheapify

27

0

22

1

23

2

13

3

14

4

18

5

18

0

22

1

23

2

13

3

14

4

27

5

27

22 23

13 14 18

0

1 2

3 4 5

18

22 23

13 14 27

0

1 2

3 4 5

23

18

23

0

22

1

18

2

13

3

14

4

27

5

Max-Heap Version

14 23

After Swap

After Reheapify
22

0

14

1

18

2

13

3

23

4

27

5

23

0

22

1

18

2

13

3

14

4

27

5

14

0

22

1

18

2

13

3

23

4

27

5

Iteration 1

23

22 18

13 14 27

0

1 2

3 4 5

14

22 18

13 23 27

0

1 2

3 4 5

14

22

Max-Heap Version

13 22

After Swap

After Reheapify

Iteration 2

22

0

14

1

18

2

13

3

23

4

27

5

13

0

14

1

18

2

22

3

23

4

27

5

22

14 18

13 23 27

0

1 2

3 4 5

13

14 18

22 23 27

0

1 2

3 4 5

13

18

18

0

14

1

13

2

22

3

23

4

27

5

Max-Heap Version

13 18

After Swap

After Reheapify

Iteration 3

18

14 13

22 23 27

0

1 2

3 4 5

18

0

14

1

13

2

22

3

23

4

27

5

13

0

14

1

18

2

22

3

23

4

27

5

13

14 18

22 23 27

0

1 2

3 4 5

14

0

13

1

18

2

22

3

23

4

27

5

13

14

Max-Heap Version

13 14

After Swap

After Reheapify

Iteration 4

14

13 18

22 23 27

0

1 2

3 4 5

13

0

14

1

18

2

22

3

23

4

27

5

14

0

13

1

18

2

22

3

23

4

27

5

13

0

14

1

18

2

22

3

23

4

27

5

13

14 18

22 23 27

0

1 2

3 4 5

Inserting Data to a (Max) Heap
• Insert the data at the bottommost level at the

leftmost position. Then reheapify starting from
the parent node of the inserted node and
recursively all the way to the root node or the
internal node at which the heap property is
satisfied.

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

Assume we want to

insert data ‘9’

Initially, insert at index

10 and reheapify

starting from index

(10-1)/2 = 4.

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

9

10

Inserting Data to a (Max) Heap

10

8 9

7 6

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

9

10
6

9

9

8

10

9 9

7 8

1 4 3

5 5

0

1 2

3 4 5 6

7 8 9

6

10

Heap – Priority Queue
• A heap can be used to implement a priority queue.

• Each element in the queue has a priority (typically, the numerical
value of the element is its priority).

• The elements in the queue are arranged as a max or min heap
(depending on how we define priority: the element with the largest
value has the highest priority – max heap; the element with the
lowest value has the highest priority – min heap).

• A dequeue operation on the priority queue will remove the root node
of the heap and it will take O(logn) time to reheapify the heap.

• An enqueue operation on the priority queue will insert the node
initially at the last index and then reheapify all the way to the root
node if needed: O(logn) time.

• Tradeoff: We saw earlier that a regular FIFO queue could be
implemented as a doubly linked list with O(1) time for the enqueue
and dequeue operations.

Priority Queue Construction: Example
• Construct a sequence of priority queues (max heaps) with the

joining of the elements 7, 9, 1, 10, 5, 8 one at a time.

1. Enqueue of 7

70

2. Enqueue of 9

7
0

9

1

7
0

9

1 9

7

9
0

7

1

3. Enqueue of 1

9
0

7

1

1

2

4. Enqueue of 10

9
0

7

1

1

2

10

3

9
0

7

1

1

2

10

3
7

10

9

10

10
0

9

1

1

2

7

3

Priority Queue Construction: Example
• Construct a sequence of priority queues (max heaps) with the

joining of the elements 7, 9, 1, 10, 5, 8 one at a time.

5. Enqueue of 5

10
0

9

1

1

2

7

3

5

4

6. Enqueue of 8

10
0

9

1

1

2

7

3

5

4

8

5

10
0

9

1

1

2

7

3

5

4

8

5
1

8

10
0

9

1

8

2

7

3

5

4

1

5

Final

Max Heap

Priority Queue

1

Dequeue of a Priority Queue (Max Heap)

• Remove the root node.

• Replace the data for the root node with the data of the
element at the rightmost leaf node at the bottommost
level, and remove the latter.

• Reheapify starting from the root node.

10
0

9

1

8

2

7

3

5

4

1

5

Dequeue
1

0

9

1

8

2

7

3

5

4

1

9

1

7

9
0

7

1

8

2

1

3

5

4 Max Heap
after

Dequeue

