
Module 2:
Divide and Conquer

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Divide-and-Conquer
The most-well known

algorithm design strategy:

1. We divide a problem of

instance size ‘n’ into

several sub problems

(each of size n/b);

2. Solve ‘a’ of these sub
problems (a ≥ 1; b > 1)

recursively and

3. Combine the solutions

to these sub problems to
obtain a solution for the

larger problem.

Typical Case of Divide and Conquer Problems

Master Theorem to Solve
Recurrence Relations

• Assuming that size n is a

power of b to simplify analysis,

we have the following

recurrence for the running

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that

accounts for the time spent on

dividing an instance of size n

into instances of size n/b and

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1 a > bd

())()(
24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2 a = bd

()nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3 a < bd

()3
)(nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0 a > bd

())()(
2log2 nnnT Θ=Θ=

Master Theorem: More Problems

Merge Sort
• Split array A[0..n-1] in two about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:

• compare the first elements in the remaining
unprocessed portions of the arrays

• copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

Merge Sort

Merge Algorithm

Example for Merge Sort

Comparisons

(Merging)

1 1 1 1

3 3

6

Total # Comparisons for
Merging: 1 + 1 + 1 + 1 +

3 + 3 + 6 = 14

Analysis of Merge Sort

Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort,
bubble sort, selection sort) we saw in Module 1,
Merge sort incurs a worst-case time-complexity
of Θ(nlogn), whereas the other sorting
algorithms we have seen incur a worst-case time
complexity of O(n2).

• The tradeoff is Merge sort requires additional
space proportional to the size of the array being
sorted. That is, the space-complexity of merge
sort is Θ(n), whereas the other sorting
algorithms we have seen incur a space-
complexity of Θ(1).

Finding the Maximum Integer in an
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index

positions of the maximum element

in the sub arrays, We do not need to

create additional space. So, this

algorithm is in-place.

Divide part

Conquer part

Max Integer Index Problem: Time
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2)) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the

time-complexity. The overhead comes with recursion.

FindMaxIndex: Example

FindMaxIndex: Example (contd…)

Binary Search
• Binary search is a Θ(log n), highly efficient search

algorithm, in a sorted array.

• It works by comparing a search key K with the array’s

middle element A[m]. If they match, the algorithm stops;

otherwise, the same operation is repeated recursively for

the first half of the array if K < A[m], and for the second

half if K > A[m].

• Though binary search in based on a recursive idea, it can

be easily implemented as a non-recursive algorithm.

Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0 r=12 m=6

l=7 r=12 m=9

l=7 r=8 m=7

55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55 1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0 r=12 m=6

l=0 r=5 m=2

l=0 r=1 m=0

l=1 r=1 m=1

l=1 r=0 STOP!!

55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search # comparisons

< 3 3

> 3 and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86

• A unimodal array is an array that has a sequence
of monotonically increasing integers followed by a
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5 6 7 8 9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 2

Using Master Theorem,

C(n) = Θ(logn)

Space complexity: Θ(1)

Two Scenarios

L R

M

A[M] <

A[M+1]

M+1 M M+1

Search Space
L =

M+1

R

Search

Space

Scenario 1

A[M] < A[M+1]

L R

M

A[M] >

A[M+1]

M+1

Search Space
L R

= M
Search
Space

Scenario 2

A[M] > A[M+1]

M

A[M] >

A[M+1]

M+1

• Proof of Correctness
– We always maintain the invariant that the maximum

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to
be either at index m+1 or to the right of index m+1.
Hence, we set L = m+1 and retain R as it is,
maintaining the invariant that the maximum element is
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either
at index m or before index m. Hence, we set R = m
and retain L as it is, maintaining the invariant that the
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop
ends and we return the maximum element.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14

Applications of Binary Search (2)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i]
< A[i+1]. That is, the element is lower than the element to
the immediate left as well as to the element to the
immediate right.

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum.

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search

on the half corresponding to the smaller of its two neighbors.

Applications of Binary Search (2)
Local Minimum in an Array

8 5 7 2 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1 Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)

Applications of Binary Search (2)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5 Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8 Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0 1 2 3 4 5 6 7 8 9 10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 3 for n > 3

Basic Condition: T(3) = 2

Using Master Theorem, we have

a = 1, b = 2, d = 0 a = bd.

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

One comparison for A[M] with A[M+1]

One comparison for A[M] with A[M-1]

One comparison for A[M-1] with A[M+1]

Applications of Binary Search (2)
Local Minimum in an Array

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an
array, then the array has to have at least one local
minimum.

• Proof: Let us prove by contradiction.
– If the second number is not to be a local minimum, then the third

number in the array has to be less than the second number.

– Continuing like this, if the third number is not to be a local minimum,
then the fourth number has to be less than the third number and so
on.

– Again, continuing like this, if the penultimate number is not to be a
local minimum, then the last number in the array has to be smaller
than the penultimate number. This would mean the second
constraint is violated (and also the array is basically a
monotonically decreasing sequence). A contradiction.

• An element is a local
minimum in a two-dim array if
the element is the minimum
compared to the elements to
its immediate left and right as
well as to the elements to its
immediate top and bottom.
– If an element is in the edge

row or column, it is compared
only to the elements that are
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost

Row

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex(A[MidRowIndex][])

/* Finds the col index with the minimum element in the row
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex,
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1,

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood

Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element

12 in Mid Row is smaller

than its immediate top

(40) and bottom (33)

neighbors
12 at (1, 3) is a local minimum

Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0 1 2 3 4 5

Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0 1 2 3 4 5

Bottom Row Index

The minimum element

15 in Mid Row is smaller

than its immediate top

bottom (35) neighbor

15 at (0, 3) is a local minimum

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2)

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n)

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)

Proof of Correctness
• We will prove by contradiction.

• Assume the local minimum is not in the top half (as well as in the
bottom half) and not in the middle row either.

• If the local minimum is not in the middle row and there is an element in
the immediate top row of the middle row that is less than the minimum
element in the middle row, then we move the search space to the top
half (or likewise to the bottom half).

• If there is no local minimum in the top half, then for every row in the
top half: for the minimum element in this row, there is an element that
is lower than it in the immediate top row (recursively starting from the
row above the middle row) or the immediate bottom row.
– This implies, there should be an element above the topmost row that is

less than the minimum element in the topmost row (or) there is an element
in the initial middle row that is lower than the element in the immediate top
row.

– Such a row (that is above the topmost row or that is the initial middle row)
does not exist. (A contradiction)

– Hence, there should be some element in the top half (or the bottom half)
that should be a local minimum, if a local minimum does not exist in the
middle row.

