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Divide-and-Conquer
The most-well known 

algorithm design strategy:

1. We divide a problem of 

instance size ‘n’ into 

several sub problems 

(each of size n/b);

2. Solve ‘a’ of these sub 
problems (a ≥ 1; b > 1) 

recursively and 

3. Combine the solutions 

to these sub problems to 
obtain a solution for the 

larger problem.

Typical Case of Divide and Conquer Problems



Master Theorem to Solve 
Recurrence Relations

• Assuming that size n is a 

power of b to simplify analysis, 

we have the following 

recurrence for the running 

time, T(n) = a T(n/b) + f(n)

– where f(n) is a function that 

accounts for the time spent on 

dividing an instance of size n 

into instances of size n/b and 

combining their solutions.

• Master Theorem:

The same results hold good for O and Ω too.

Examples:

1) 1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

a = 4; b = 2; d = 1  a > bd
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2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

a = 4; b = 2; d = 2  a = bd
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3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

a = 4; b = 2; d = 3  a < bd

( )3
)( nnT Θ=

4) 4) T(nT(n) = 2T(n/2) + 1) = 2T(n/2) + 1

a = 2; b = 2; d = 0  a > bd
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Master Theorem: More Problems



Merge Sort
• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of 
the arrays:

• compare the first elements in the remaining 
unprocessed portions of the arrays

• copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

– Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
other array into A.



Merge Sort



Merge Algorithm



Example for Merge Sort

# Comparisons

(Merging)

1 1 1 1

3 3

6

Total # Comparisons for
Merging: 1 + 1 + 1 + 1 + 

3 + 3 + 6 = 14



Analysis of Merge Sort



Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort, 
bubble sort, selection sort) we saw in Module 1, 
Merge sort incurs a worst-case time-complexity 
of Θ(nlogn), whereas the other sorting 
algorithms we have seen incur a worst-case time 
complexity of O(n2).

• The tradeoff is Merge sort requires additional 
space proportional to the size of the array being 
sorted. That is, the space-complexity of merge 
sort is Θ(n), whereas the other sorting 
algorithms we have seen incur a space-
complexity of Θ(1).



Finding the Maximum Integer in an 
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index 

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index 

positions of the maximum element 

in the sub arrays, We do not need to 

create additional space. So, this 

algorithm is in-place.

Divide part

Conquer part



Max Integer Index Problem: Time 
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2) ) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the 

time-complexity. The overhead comes with recursion.



FindMaxIndex: Example



FindMaxIndex: Example (contd…)



Binary Search
• Binary search is a Θ(log n), highly efficient search 

algorithm, in a sorted array. 

• It works by comparing a search key K with the array’s 

middle element A[m]. If they match, the algorithm stops; 

otherwise, the same operation is repeated recursively for 

the first half of the array if K < A[m], and for the second 

half if K > A[m].

• Though binary search in based on a recursive idea, it can 

be easily implemented as a non-recursive algorithm.



Binary Search

Worst-case # Key Comparisons

Search Key

K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7



55

27 81

3

14

27

39

31 42

70

74

93

91 98

The keys that will require the largest number of comparisons: 14, 31, 42, 74, 91, 98

Average # Comparisons for Successful Search

Keys # comparisons

55            1

27, 81 2

3, 39, 70, 93 3

14, 31, 42, 74, 91, 98 4

Avg # comparisons

= [Sum of the product of the # keys

with certain # comparisons] / [ Total

Number of keys]

= [(1)(1) + (2)(2) + (3)(4) + (4)(6)] /13

= 3.15

Unsuccessful Search

Search K = 10

l=0   r=12   m=6

l=0   r=5     m=2

l=0   r=1     m=0

l=1   r=1     m=1

l=1   r=0    STOP!!



55

27 81

3

14

27

39

31 42

70

74

93

91 98

Average # Comparisons for Unsuccessful Search

Range of Keys for Unsuccessful search       # comparisons

< 3            3

> 3   and < 14 4

> 14 and < 27 4

> 27 and < 31 4

> 31 and < 39 4

> 39 and < 42 4

> 42 and < 55 4

> 55 and < 70 3

> 70 and < 74 4

> 74 and < 81 4

> 81 and < 91 4

> 91 and < 93 4

> 93 and < 98 4

> 98 4

Avg = [4*12 + 3*2] / 14

= 3.86



• A unimodal array is an array that has a sequence 
of monotonically increasing integers followed by a 
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search. 

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5       6         7 8        9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 2

Using Master Theorem,

C(n) = Θ(logn) 

Space complexity: Θ(1)



Two Scenarios

L R

M

A[M] < 

A[M+1]

M+1 M M+1

Search Space
L = 

M+1

R

Search 

Space

Scenario 1

A[M] < A[M+1]

L R

M

A[M] >

A[M+1]

M+1

Search Space
L R 

= M
Search 
Space

Scenario 2

A[M] > A[M+1]

M

A[M] >

A[M+1]

M+1



• Proof of Correctness
– We always maintain the invariant that the maximum 

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to 
be either at index m+1 or to the right of index m+1. 
Hence, we set L = m+1 and retain R as it is, 
maintaining the invariant that the maximum element is 
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either 
at index m or before index m. Hence, we set R = m 
and retain L as it is, maintaining the invariant that the 
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop 
ends and we return the maximum  element.

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (1)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14



Applications of Binary Search (2)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i 
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i] 
< A[i+1]. That is, the element is lower than the element to 
the immediate left as well as to the element to the 
immediate right.

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum. 

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we 
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search 

on the half corresponding to the smaller of its two neighbors.



Applications of Binary Search (2)
Local Minimum in an Array

8 5 7 2 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1   Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)



Applications of Binary Search (2)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5   Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8   Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0        1        2        3       4        5       6         7 8        9       10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 3 for n > 3

Basic Condition: T(3) = 2

Using Master Theorem, we have

a = 1, b = 2, d = 0  a = bd. 

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

One comparison for A[M] with A[M+1]

One comparison for A[M] with A[M-1]

One comparison for A[M-1] with A[M+1]



Applications of Binary Search (2)
Local Minimum in an Array

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an 
array, then the array has to have at least one local 
minimum.

• Proof: Let us prove by contradiction. 
– If the second number is not to be a local minimum, then the third 

number in the array has to be less than the second number. 

– Continuing like this, if the third number is not to be a local minimum, 
then the fourth number has to be less than the third number and so 
on. 

– Again, continuing like this, if the penultimate number is not to be a 
local minimum, then the last number in the array has to be smaller 
than the penultimate number. This would mean the second 
constraint is violated (and also the array is basically a 
monotonically decreasing sequence). A contradiction.



• An element is a local 
minimum in a two-dim array if 
the element is the minimum 
compared to the elements to 
its immediate left and right as 
well as to the elements to its 
immediate top and bottom. 
– If an element is in the edge 

row or column, it is compared 
only to the elements that are 
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost 

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost 

Row

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array



Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex( A[MidRowIndex][ ] )

/* Finds the col index with the minimum element in the row 
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex, 
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1, 

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array



Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0           1         2           3          4          5       6

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the 

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood



Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element 

12 in Mid Row is smaller 

than its immediate top 

(40) and bottom (33) 

neighbors
12 at (1, 3) is a local minimum



Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0           1         2           3          4          5



Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0           1         2           3          4          5

Bottom Row Index

The minimum element 

15 in Mid Row is smaller 

than its immediate top 

bottom (35) neighbor

15 at (0, 3) is a local minimum



Applications of Binary Search (3)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2) 

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n) 

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)



Proof of Correctness
• We will prove by contradiction. 

• Assume the local minimum is not in the top half (as well as in the 
bottom half) and not in the middle row either.

• If the local minimum is not in the middle row and there is an element in 
the immediate top row of the middle row that is less than the minimum 
element in the middle row, then we move the search space to the top 
half (or likewise to the bottom half).

• If there is no local minimum in the top half, then for every row in the 
top half: for the minimum element in this row, there is an element that 
is lower than it in the immediate top row (recursively starting from the 
row above the middle row) or the immediate bottom row.
– This implies, there should be an element above the topmost row that is 

less than the minimum element in the topmost row (or) there is an element 
in the initial middle row that is lower than the element in the immediate top 
row.

– Such a row (that is above the topmost row or that is the initial middle row) 
does not exist. (A contradiction)

– Hence, there should be some element in the top half (or the bottom half) 
that should be a local minimum, if a local minimum does not exist in the 
middle row.


