
Module 5

Graph Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

5.1 Graph Traversal Algorithms

Depth First Search (DFS)
• Visits graph’s vertices (also called nodes) by always moving away

from last visited vertex to unvisited one, backtracks if there is no
adjacent unvisited vertex.

• Break any tie to visit an adjacent vertex, by visiting the vertex with the
lowest ID or the lowest alphabet (label).

• Uses a stack

– a vertex is pushed onto the stack when it’s visited for the first time

–a vertex is popped off the stack when it becomes a dead end, i.e.,
when there is no adjacent unvisited vertex

• “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph):

– Whenever a new unvisited vertex is reached for the first time, it is attached
as a child to the vertex from which it is being reached. Such an edge is
called a tree edge.

– While exploring the neighbors of a vertex, it the algorithm encounters an
edge leading to a previously visited vertex other than its immediate
predecessor (i.e., its parent in the tree), such an edge is called a back edge.

– The leaf nodes have no children; the root node and other intermediate
nodes have one more child.

Pseudo Code of DFS

Example 1:
DFS

Source: Figure 3.10: Levitin, 3rd Edition:

Introduction to the Design and Analysis
of Algorithms, 2012.

A

D

C

E

B

F

G

J

H

I
D3, 1
C2, 5
A1, 6

E6, 2
B5, 3
F4, 4

J3, 1
I2, 5
H1, 6
G7,10

A

D

C

E

B

F

G

J

H

I

Tree Edge

Back Edge

DFS
• DFS can be implemented with graphs represented as:

–adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
–order in which vertices are first encountered (pushed onto stack)

–order in which vertices become dead-ends (popped off stack)

• Applications:
–checking connectivity, finding connected components

• The set of vertices that we can visit through DFS, starting from a
particular vertex in the set constitute a connected component.

• If a graph has only one connected component, we need to run DFS
only once and it returns a tree; otherwise, the graph has more than
one connected component and we determine a forest – comprising of
trees for each component.

–checking for cycles (a DFS run on an undirected graph returns a
back edge)

–finding articulation points and bi-connected components
• An articulation point of a connected component is a vertex that when

removed disconnects the component.

• A graph is said to have bi-connected components if none of its
components have an articulation point.

Example 2: DFS

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

Back Edge

• Notes on Articulation Point
– The root of a DFS tree is an articulation point if it has more than

one child connected through a tree edge. (In the above DFS tree,
the root node ‘a’ is an articulation point)

– The leaf nodes of a DFS tree are not articulation points.

– Any other internal vertex v in the DFS tree, if it has one or more
sub trees rooted at a child (at least one child node) of v that does
NOT have an edge which climbs ’higher ’ than v (through a back
edge), then v is an articulation point.

Deciding whether an Internal Node
is an Articulation Point or not

• An internal node is NOT an articulation point if there exist one or
more back edges from each of the sub trees of the node to one or
more ancestral nodes in the DFS tree (like the left side example)
– In other words, an internal node is an articulation point if there exists at

least one sub tree from which there is no back edge that goes above the
node in the DFS tree (like the right side example).

u

Ancestral

Nodes above

Node ‘u’ in the

DFS tree

Vertex ‘u’ is

not an AP!

u

Ancestral

Nodes above

Node ‘u’ in the

DFS tree

Vertex ‘u’

is an AP!

This back edge,

even if present,

is only up to u

and not beyond u

DFS: Articulation Points

• In the above graph, vertex ‘a’ is the only articulation point.

• Vertices ‘e’ and ‘f’ are leaf nodes.

• Vertices ‘b’ and ‘c’ are candidates for articulation points. But, they cannot
become articulation point, because there is a back edge from the only sub
tree rooted at their child nodes (‘d’ and ‘g’ respectively) that have a back edge
to ‘a’.

• By the same argument, vertices ‘d’ and ‘g’ are not articulation points, because
they have only child node (f and e respectively); each of these child nodes
are connected to a higher level vertex (b and a respectively) through a back
edge.

a

b c

d

f

g

e

Based on

Example 2

Example 3: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph
(different from the
previous example: note
edge a – e and b – f are
added back; but a – d is
missing):
– Vertices ‘a’ and ‘b’ are

articulation points

– Vertex ‘c’ is not an
articulation point

Back Edge

a

b c

d

f

g

e

Example 4: DFS and Articulation Points

f b c g

d a e

f b c g

d a e

1, 7

2, 3

3, 2

4, 1 5, 6 6, 5

7, 4

Tree Edge

• In the above new graph (different from the previous example: note edges b –
f, a – d and a – e are missing), vertices ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ are articulation
points, because:
– Vertex ‘a’ is the root node of the DFS tree and it has more than one child

node
– Vertex ‘b’ is an intermediate node; it has one sub tree rooted at its child node

(d) that does not have any node, including ‘d’, to climb higher than ‘b’. So,
vertex ‘b’ is an articulation point.

– Vertex ‘c’ is also an articulation point, by the same argument as above – this
time, applied to the sub tree rooted at child node ‘g’.

– Vertices ‘d’ and ‘g’ are articulation points; because, they have one child node
(‘f’ and ‘e’ respectively) that are not connected to any other vertex higher than
‘d’ and ‘g’ respectively.

Example 5: DFS and

Articulation Points

a

b

c

d e

f g

h

i j

k

a

b

c

d e

f

g

h

i

j

k

DFS TREE

1) Root Vertex ‘a’ has more than one child; so, it is an articulation point.
2) Vertices ‘d’, ‘g’ and ‘j’ are leaf nodes
3) Vertex ‘b’ is not an articulation point because
the only sub tree rooted at its child node ‘c’ has
a back edge to a vertex higher than ‘b’ (in this
case to the root vertex ‘a’)
4) Vertex ‘c’ is an articulation point. One of its
child vertex ‘d’ does not have any sub tree
rooted at it. The other vertex ‘e’ has a sub
tree rooted at it and this sub tree has no
back edge higher up than ‘c’.
5) By argument (4), it follows that vertex ‘e’
is not an articulation point because the sub tree
rooted at its child node ‘f’ has a back edge higher
up than ‘e’ (to vertex ‘c’);
6) Vertices ‘f’ and ‘k’ are not articulation points because
they have only one child node each and the child nodes
are connected to a vertex higher above ‘f’ and ‘k’.
7) Vertex ‘i’ is not an articulation point because the only
sub tree rooted at its child has a back edge higher up (to vertices ‘a’ and ‘h’).
8) Vertex ‘h’ is not an articulation point because the only sub tree rooted at ‘h’ has a
back edge higher up (to the root vertex ‘a’).

Identification of the Articulation Points
of the Graph in Example 5

a

b

c

d e

f g

h

i j

k

Bridge Edges in a Graph
• An edge is a “bridge” edge in a connected graph if its removal

would disconnect the vertices in the graph.

• We can identify the bridge edges of a graph using DFS
– The “back” edges are not bridge edges

– A tree edge u – v is a bridge if there do not exist any back edge to
reach u or an ancestor of u in the sub tree rooted at v.

• An undirected graph with no bridge edges is said to be “2-edge connected”

u

v

Vertex ‘u’ or

an ancestor of

Vertex ‘u’

Vertex ‘v’ or

a sub tree

rooted at

Vertex ‘v’

b
a
c

k
 e

d
g

e

Edge u-v is

not a bridge

edge

u

v

Vertex ‘u’ or

an ancestor of

Vertex ‘u’

Vertex ‘v’ or

a sub tree

rooted at

Vertex ‘v’

Edge u-v is a bridge edge

T
h

e
re

 i
s
 n

o
 b

a
c

k
 e

d
g

e
 f

ro
m

v
e

rt
e

x
 ‘

v
’

o
r

a
 s

u
b

 t
re

e
 r

o
o

te
d

a
t

v
e

rt
e

x
 ‘

v
’

to
 v

e
rt

e
x

 ‘
u

’
o

r
a

n

a
n

c
e

s
to

r
o

f
v
e

rt
e

x
 ‘
u

’

Bridge Edges in a
Graph: Example 1

1

2

3

4

0

1

2

3

4

0

1, 5 2, 2

3, 1

4, 4

5, 3
0

1 3

2 4

Edge 0 – 1 is not a bridge edge as there is a

back edge from the sub tree rooted at vertex 1

to vertex 0

Edge 1 – 2 is not a bridge edge as there is a

back edge from the sub tree rooted at vertex 2

to an ancestor of vertex 1

Edge 0 – 2 is not a bridge edge as it is a back

edge

Edge 0 – 3 is a bridge edge as there is no back

edge from the sub tree rooted at vertex 3 to

either vertex 0 or an ancestor of vertex 0.

Edge 3 – 4 is a bridge edge as there is no back

edge from the sub tree rooted at vertex 4 to
either vertex 3 or an ancestor of vertex 3.

Bridge Edges in a
Graph: Example 2

1

2

3

4

5

6

7

1, 7

2, 6 3, 4

4, 3 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

4

3

5

6

7

There are no bridge

edges in this graph

Candidate Back Edge(s) making it

Edge not a bridge edge

1 – 2 3 – 1, 1 – 7

2 – 4 3 – 1

4 – 3 6 – 4, 5 – 4, 3 – 1

3 – 5 6 – 4, 5 – 4

5 – 6 6 – 4

2 – 7 7 – 1

DFS: Edge Terminology for directed

graphs
a b

c

d

e

a b

c

d

e

Tree edge

Back edge

Forward edge

Cross edge

Tree edge – an edge from a parent node to a child node in the tree

Back edge – an edge from a vertex to its ancestor node in the tree

Forward edge – an edge from an ancestor node to its descendant node in the tree.

The two nodes do not have a parent-child relationship. The back and forward

edges are in a single component (the DFS tree).
Cross edge – an edge between two different components of the DFS Forest.
So, basically an edge other than a tree edge, back edge and forward edge

1, 3 2, 2

3, 1

4, 5

5, 4

Directed Acyclic Graphs (DAG)
• A directed graph is a graph with directed edges between

its vertices (e.g., u � v).

• A DAG is a directed graph (digraph) without cycles.

– A DAG is encountered for many applications that

involve pre-requisite restricted tasks (e.g., course

scheduling)

a b

c d

a b

c d

a a

DAGDAG

not a not a

DAGDAG

To test whether a directed graph is a DAG, run DFS on the directed graph. If a

back edge is not encountered, then the directed graph is a DAG.

DFS on a DAG: Example 1

a b

e f

c d

g h

a b

e f

c d

g h

Forward edge
Topological Sort

c d a e b g h f

f h g b e a d c

Order in which the

Vertices are popped

of from the stack

Reverse the order

Cross edge

Topological Sort of a DAG
• Topological sort of a DAG is a listing of the vertices

(each vertex appears exactly once) in such a way that
for any edge u � v, u appears somewhere before v
(u …. v) in the topological sort.

• A topological sort can be written for a directed graph if
only if it is a DAG.
– Directed graph is a DAG � Topological sort exists

1

2

3

4

5

6

7

1, 5

t.e.

2, 1

t.e.

3, 2

t.e.

4, 4

t.e.

f.e.

f.e.

5, 3

c.e.

c.e.

6, 6

c.e.

c.e.

7, 7

Topological Sort: 7, 5, 1, 4, 6, 3, 2

1

2

3

4

5

6

7

1, 6

t.e.

2, 2

t.e.

4, 3

t.e.

5, 5

t.e.

f.e.

f.e.

6, 4

c.e.

c.e.

7, 7

b. e.

t.e.

3, 1

Topological Sort does not exists!

Topological Sort
• Topological sort is an ordering of the vertices of a directed

acyclic graph (DAG) – a directed graph (a.k.a. digraph)
without cycles.
– This implies if there is an edge u� v in the digraph, then u should

be listed ahead of v in the topological sort: … u … v …

– Being a DAG is the necessary and sufficient condition to be able to
do a topological sorting for a digraph.

– Proof for Necessary Condition: If a digraph is not a DAG and
lets say it has a topological sorting. Consider a cycle (in the
digraph) comprising of vertices u1, u2, u3, …, uk, u1. In other
words, there is an edge from uk to u1 and there is a directed path
to uk from u1. So, it is not possible to decide whether u1 should be
ahead of uk or after uk in the topological sorting of the vertices of
the digraph. Hence, there cannot be a topological sorting of the
vertices of a digraph, if the digraph has even one cycle. To be able
to topologically sort the vertices of a digraph, the digraph has
to first of all be a DAG. [Necessary Condition]. We will next
prove that this is also the sufficient condition.

Topological Sort
Proof for Sufficient Condition

• After running DFS on the directed graph (also a DAG), the
topological sorting is the listing of the vertices of the DAG in
the reverse order according to which they are removed
from the stack.
– Consider an edge u � v in the DAG.

– If there exists an ordering that lists v ahead of u, then it implies that
u was popped out from the stack ahead of v. That is, vertex v has
been already added to the stack and we were to able to visit vertex
u by exploring a path leading from v to u. This means the edge u �

v has to be a back edge. This implies, the digraph has a cycle and
is not a DAG. We had earlier proved that if a digraph has a cycle,
we cannot generate a topological sort of its vertices.

– For an edge u->v, if v is listed ahead of u ==> the graph is not a
DAG (Note that a ==> b, then !b ==> !a)

– If the graph is a DAG ==> u should be listed ahead of v for every
edge u � v.

– Hence, it is sufficient for a directed to be DAG to generate a
topological sort for it.

Assigning

Directions to

Undirected Edges

in a Graph (DAG)
• Consider a directed graph that has

a mix of undirected and directed
edges. The directed edges of the
graph do not create a cycle. We
want to assign directions to the
undirected edges so that the
directed graph remains acyclic.

• Solution:

• Run DFS on the directed edges
alone and determine a topological
sort of the directed edges (a DAG)

• Consider an undirected edge u – v.
Assign the direction u � v if u
appears before v in the topological
sort; otherwise, assign v � u

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Given

graph

DAG with

Directed

Edges only

1, 3

2, 1

3, 2

4, 5 5, 4

6, 6

7, 7

Topological Sort (DAG): 7, 5, 4, 6, 1, 3, 2

1

2

3

4

5

6

7

Assigning directions

to the undirected edges

Assigning

Directions to

Undirected Edges

in a Graph (DAG):

Example 2

1 2

3 4

5 6

7 8

Given Graph

1 2

3 4

5 6

7 8

Graph of Directed Edges

(a DAG)

Topological Sort

5, 6, 1, 3, 2, 7, 8, 4

1, 6 2, 4

3, 1 4, 3
5, 2

6, 5

7, 8 8, 7

1 2

3 4

5 6

7 8

Strongly and Weakly Connected
Components of a Directed Graph

• Recall, a component is the largest subset of the vertices
that satisfy a particular property and if we add any other
vertex to that component, the property will no longer be
satisfied.

• A strongly connected component of a directed graph is
the subset of the vertices that are reachable from each
other, either directly or through a multi-hop path.
– Note that if a directed graph is a DAG, there are no strongly

connected components of size more than 1.

• A weakly connected component of a directed graph is
the subset of the vertices that are reachable from each
other in the undirected version of the graph.

Strongly Connected Components
(SCC) of a Directed Graph

• We maintain two stacks: Regular-Stack and SCC-Stack

• We conduct DFS on the given directed graph (G) and
use the Regular-Stack to push and pop vertices as part
of the DFS.
– Whenever a vertex is popped out of the Regular-Stack, push it to

the SCC-Stack.

– Run DFS until all vertices are visited.

• Reverse the directions of the edges in the directed graph
(call it G’).

• Pop the topmost vertex from SCC-Stack and run DFS on
G’ starting from that vertex. All the vertices visited as
part of this DFS are said to form a strongly connected
component.
– Remove all the vertices visited from G’ and the SCC-Stack

– Run DFS on the remaining version of G’ starting from the
topmost vertex in the SCC-Stack.

– Continue DFS until are vertices in G’ are visited.

Strongly Connected Components
for a Directed Graph: Example 1

1

2

3

4

5

6

7

1, 6

2, 2

4, 3

5, 5 6, 4

7, 7

3, 1

Regular Stack

7
2

1
3

1

6

4

1 5

SCC Stack

Original

Graph, G

1

2

3

4

5

6

7

Reversed
Graph, G’

B
e

fo
re

 I
te

ra
ti

o
n

 1

o
n

 G
’

1

4

6

3

2

7

Iteration 1

B
e

fo
re

 I
te

ra
ti

o
n

 2

o
n

 G
’

{5}

5

1

4

6

3

2

7

1, 1

1

2

3

4 6

7

Reversed
Graph, G’

Iteration 2 {1, 7, 2, 4}

2, 4

3, 3

4, 2 5, 1

Strongly Connected Components
for a Directed Graph: Example 1

1

2

3

4

5

6

7

1, 6

2, 2

4, 3

5, 5 6, 4

7, 7

3, 1

Regular Stack

7
2

1
3

1

6

4

1 5

SCC Stack

Original

Graph, G

3

6Reversed
Graph, G’

Iteration 3

6, 6

Reversed
Graph, G’

Iteration 4

7, 7

1

2

3

4

5

6

7

{3}
{6}

B
e

fo
re

 I
te

ra
ti

o
n

 3

o
n

 G
’ 3

2

7B
e

fo
re

 I
te

ra
ti

o
n

 4

o
n

 G
’

4

6

3

2

7

3

6

3

2

7

Strongly Connected Components
of a Directed Graph: Example 2

1

2

3

4

5

6

7

8

1, 8

2, 7

Regular

Stack

8

6

5

4

3

2

1

7

5

4

3

2

1

3, 6

4, 5

5, 4

6, 2 7, 1

8, 3

SCC Stack

1

2

3

4

5

7

6

8
Original

Graph, G B
e

fo
re

 I
te

ra
ti

o
n

 1

o
n

 G
’

1

2

3

4

5

6

7

8
Reversed
Graph, G’

1, 8

2, 2

3, 1 4, 7

5, 6

6, 5

7, 4

8, 3

{1, 3, 2,
4, 6, 5,

8, 7}

1

2

3

4

5

6

7

8

Strongly Connected Components
of a Directed Graph: Example 3

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

1

2

3

4

5

6

7

Reversed

Graph, G’

1, 1

Iteration 1 {7}

1

2

3

4

5

6
Reversed

Graph, G’
Iteration 2 {5}

2, 2

Strongly Connected Components
of a Directed Graph: Example 3

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

1

2

3

4 6
Reversed

Graph, G’
Iteration 3 {1}

3, 3

2

3

4 6
Reversed

Graph, G’
Iteration 4 {4}

4, 4

Strongly Connected Components
of a Directed Graph: Example 3

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

2

3

6
Reversed

Graph, G’

Iterations 5, 6, 7

{6}, {3}, {2}

5, 5
6, 6

7, 7

1

2

3

4

5

6

7

Original

Graph, G

Assigning Directions to Edges in an
Undirected Graph (Strongly
Connected Directed Graph)

• We are given an undirected graph that is connected and
has no bridges (i.e., the graph is 2-edge connected).

• We want to assign directions to the edges of this graph
so that the resulting directed graph has all the vertices in
a single strongly connected component (i.e., the
resulting directed graph is strongly connected).

• Solution:

• Run DFS on the given undirected graph and make sure
it is connected and has no bridges (use the structure of
the DFS tree)

• If the undirected graph is “2-edge connected” use the
structure of the DFS tree and orient all the tree edges to
be away from the root and all the back edges to be
towards the root.

1

2

3

4

5

6

7

1, 7

2, 6 3, 3

4, 4 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

4

3

5

6

7

There are no bridge

edges in this graph

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Example 1
Given
Undirected

Graph

Assigning

Directions

Tree edges away from
the root and back edges

towards the root

root

Ex-2

1
2

3

4 5

6 7

1
2

3

4 5

6 7

1, 7
2, 6

3, 5

4, 4

5, 3

6, 2 7, 1

1

2

3

5

4

6

7

There are no

Bridge edges

1
2

3

4 5

6 7

root

Assigning directions to

the edges so that the

Directed graph is a

Strongly connected

Component of all its vertices

Breadth First Search (BFS)
BFS(G, s)

Queue queue

queue.enqueue(s) // ‘s’ is the starting vertex

Level[s] = 0

Level[v] = ∞; for all vertices v other than ‘s’

// The level # is also the estimated number of edges

// on the minimum edge path (shortest path) from ‘s’

Visited[v] = false; for all vertices v other than ‘s’

while (!queue.isEmpty()) do

u = queue.dequeue();

for every vertex v that is a neighbor of u

if (Visited[v] = false) then

Level[v] = Level[u] + 1

Visited[v] = true

Queue.enqueue(v)

Edge u-v is a tree edge

end if

else

Edge u-v is a cross edge

end for

end while

End BFS

Time Complexity:

If there are ‘V’ vertices and ‘E’

edges, we traverse each edge

exactly once as well as enqueue

and dequeue each vertex exactly

once. Hence, the time

complexity of BFS is Θ(V+E)

when implemented using an

Adjacency list and Θ(V2) when

implemented using an

Adjacency matrix.

BFS: Example 1

1

2

3

4

5

6

7

Initialization: Queue = {1}

0 ∞ ∞

∞∞∞

∞
1

2

3

4

5

6

7

Iteration 1: Queue = {2, 3, 7}

0 1 ∞

∞∞1

1

1

2

3

4

5

6

7

Iteration 2: Queue = {3, 7, 4}

0 1 ∞

∞21

1 1

2

3

4

5

6

7

Iteration 3: Queue = {7, 4, 5}

0 1 2

∞21

1

BFS: Example 1

1

2

3

4

5

6

7

Iteration 4: Queue = {4, 5}

0 1 2

∞21

1 1

2

3

4

5

6

7

Iteration 5: Queue = {5, 6}

0 1 2

321

1

1

2

3

4

5

6

7

Iteration 6: Queue = {6}

0 1 2

321

1 1

2

3

4

5

6

7

Iteration 7: Queue = {}

0 1 2

321

1

Bipartite Graph
• A graph in which the vertices could be

partitioned to two disjoint sets such that
all the edges in the graph are between
the vertices in the two sets and there are
no edges between vertices in the same
set.

• An undirected graph is bipartite if there
are no cross edges between vertices at
the same level while doing BFS.
– Note there could be cross edges between

vertices at different levels. This is fine.

• A bipartite graph is also said to be “2-
colorable”.
– There are only two colors to color the vertices

– For each edge u – v, the end vertices should
be of different color.

1
4

5
8

2
3

6
7

BFS: Example 2

1

2

3

4

5

6

7

Initialization: Queue = {1}

0 ∞ ∞

∞∞∞

∞

Iteration 1: Queue = {2, 3, 7}

8

∞

1

2

3

4

5

6

7

0 1 ∞

∞∞1

1

8

∞

Iteration 2: Queue = {3, 7, 4, 8}

1

2

3

4

5

6

7

0 1 ∞

∞21

1

8

2

Iteration 3: Queue = {7, 4, 8, 5}

1

2

3

4

5

6

7

0 1 2

∞21

1

8

2

BFS: Example 2

Iteration 4: Queue = {4, 8, 5}

1

2

3

4

5

6

7

0 1 2

∞21

1

8

2

Iteration 5: Queue = {8, 5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 6: Queue = {5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 7: Queue = {6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

BFS: Example 2

Iteration 8: Queue = {}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

1
4

5
8

2
3

6
7The vertices in the odd level are in one color

and the vertices in the even level are in the

other color

BFS: Example 1 1

2

3

4

5

6

7

0 1 2

321

1

The graph is not bipartite as there are

edges 2 – 7 and 2 – 4 that are cross edges
between vertices at the same level. The presence
of even one such edge rules out the graph from

being bipartite.

Connected Undirected Graph
• An undirected graph is said to

be “connected” if we could start
BFS from any arbitrary vertex in
the graph and be able to visit
the rest of the vertices in the
graph.
– All the vertices in a connected

undirected graph are said to be
in “one component”.

• If even on vertex is not
reachable from the starting
vertex of BFS, the graph is
considered to be “not
connected” and will be
composed of two or more
components.
– A component is the largest

subset of the vertices in the
graph such that all the vertices
within the subset (component)
are reachable from each other.

1

2

3

4

5

6

7

0 1 2

321

0

8

1
The graph above comprises of

“two” components; the graph

below has only “one” component

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Comparison of DFS and BFS

Source: Table 3.1: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms,

2012.

With the levels of a tree, referenced starting from the root node,
A back edge in a DFS tree could connect vertices at different levels; whereas, a cross edge
in a BFS tree always connects vertices that are either at the same level or at adjacent levels.

There is always only a unique ordering of the vertices, according to BFS, in the order they
are visited (added and removed from the queue in the same order).
On the other hand, with DFS – vertices could be ordered in the order they are pushed to the
Stack, typically different from the order in which they are popped from the stack.

Minimum Spanning Trees

46

Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all

the vertices in the tree and the sum of the weights of all the edges in
such a spanning tree should be minimum.

• Kruskal algorithm: Consider edges in the increasing order of their
weights and include an edge in the tree, if and only if, by including
the edge in the tree, we do not create a cycle!!
– For a graph of E edges, we spend Θ(E*logE) time to sort the edges and

this is the most time consuming step of the algorithm.

• To start with, each vertex is in its own component.

• In each iteration, we merge two components using an edge of
minimum weight connecting the vertices across the two
components.
– The merged component does not have a cycle and the sum of all the

edge weights within a component is the minimum possible.

• To detect a cycle, the vertices within a component are identified by
a component ID. If the edge considered for merging two
components comprises of end vertices with the same component
ID, then the edge is not considered for the merger.
– An edge is considered for merging two components only if its end

vertices are identified with different component IDs.

Property of any MST Algorithm
• Given two components of

vertices (that are a tree by
themselves of the smallest
possible weights), any MST
algorithm would choose an
edge of the smallest weight
that could connect the two
components such that the
merger of the two
components is also a tree
and is of the smallest
possible weight.

1

3

2

1

3

4

2

3

2

7

5

4

1

3

2

1

3

4

22 1

3

2

1

3

4

22

xws

yvu

3 5

54

2

1

3

14

xws

yvu

Initialization

xws

yvu

Iteration 1

xws

yvu

Iteration 2

1

11

xws

yvu

Iteration 3

11

2

xws

yvu

Iteration 4

11

2 3

xws

yvu
Iteration 5
Min. Spanning Tree

11

2 3

3

s w x

u v y

s w x

u v x

s v x

u v x

s u x

u u x

s u u

u u u

s s s

s s s

MST

Weight

10

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF G G

Initialization

AA B
B

C

C

DA
E E

FF G G

Iteration 1

5

AA B
B

C

C

DA
E C

FF G G

Iteration 2

5 5

AA B
B

C

C

DA
E C

FA G G

Iteration 3

5 5

6

AA B
A

C

C

DA
E C

FA G G

Iteration 4

5 5

6

7

AA B
A

C

A

DA
E A

FA G G

Iteration 5

5 5

6

7

7

AA B
A

C

A

DA
E A

FA G A

Iteration 6: Min. Sp Tree

5 5

6

7

7

9

MST

Weight

39

Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph

G. Let T’ be a minimum spanning tree for G. We need to show that both
T and T’ have the same weight.

• Assume that wt(T’) < wt(T).

• Hence, there should be an edge e in T that is not in T ’ and likewise
there should be an edge e’ in T’ that is not in T. Because, if every edge
of T is in T’, then T = T’ and wt(T) = wt(T’).

• Remove the edge e’ that is in T’. This would disconnect the T’ to two
components. The edge e that was in T and not in T’ should be one of
the edges (along with e’) that cross the two split components of T’.

• Depending on how Kruskal’s algorithm works, wt(e) ≤ wt(e’). Hence, the
two components of T’ could be merged using edge e (instead of e’) and
this would only lower the weight of T’ from what it was before (and not
increase it).

• That is, wt(modified T’) = wt(T’ – {e’} U {e}) ≤ wt(T’).

• We could repeat the above procedure for all edges that are in T’ and
not in T, and eventually transform T’ to T, without increasing the cost of
the spanning tree.

• Hence, T is a minimum spanning tree.

T T’

e’

e

Modified T ’ = T ’ – {e’} U {e}

e’

e e

Let T be the spanning tree determined using Kruskal’s

Let T’ be a hypothetical spanning tree that is a MST such that W(T’) < W(T)

Proof of Correctness

Wt(e) ≤Wt(e’)

Wt(T’ – {e’} U {e}) ≤Wt(T’). Hence, by reducing the edge difference and making

T’ approach T, we are able to only decrease the weight of T’ further, if possible,
making T’ not a MST to start with, a contradiction.

Candidate edges to merge
the two components

Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights,
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weights.
Assume there are two different spanning trees T and T’, both are of
minimum weight; but have at least one edge difference. Let e’ be an
edge in T’ that is not in T. Removing e’ from T’ will split the latter into
two components. There should be an edge e that is not part of T’ but
part of T and should also be a candidate edge to connect the two
components of the split T’.

1

2

2

1

1

2 1

1

2

1

Graph One Min. Spanning Tree Another Min. Spanning Tree

Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights,

then there can be only one minimum spanning tree of the graph.

• Proof (continued..): If wt(e) < wt(e’), then we could merge the two
components of T’ using e and this would lower the weight of T’ from
what it was before. Hence, wt(e) ≥ wt(e’).

• However, since the graph has unique edge weights, wt(e) > wt(e’). But,
if this is the case, then we could indeed remove e from T and have e’ to
merge the two components of T resulting from the removal of e. This
would only lower the weight of T from what it was before.

• So, if T and T’ have to be two different MSTs � wt(e) = wt(e’).
– This is a contradiction to the given statement that the graph has unique

edge weights.

• Not (wt(e) = wt(e’)) � Not (T and T’ have to be two different MSTs)

• That is, wt(e) ≠ wt(e’) � T and T’ have to be the same MST.

• Hence, if a graph has unique edge weights, there can be only one MST
for the graph.

T T’

e’

e

W(e) < W(e’) => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be two different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3

e’

e

Candidate edges to merge
the two components

Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree

such that the sum of its edge weights is the
maximum.

• We can find a Maximum Spanning Tree through
any one of the following ways:
– Straightforward approach: Run Kruskal’s algorithm by

selecting edges in the decreasing order of edge
weights (i.e., edge with the largest weight is chosen
first) as long as the end vertices of an edge are in two
different components

– Alternate approach (Example for Transform and
Conquer): Given a weighted graph, set all the edge
weights to be negative, run a minimum spanning tree
algorithm on the negative weight graph, then turn all
the edge weights to positive on the minimum
spanning tree to get a maximum spanning tree.

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF G G

Initialization

AA B
B

C

C

DD
E D

FF G G

Iteration 1 Iteration 2

15

AA B
B

C

C

DD
E D

FF G F

15

11

Iteration 3 Iteration 4

Iteration 5 Iteration 6: Max. Sp Tree

MST

Weight

59

AA B
B

C

C

DD
E D

FD G D

15

11

9

AA B
B

C

C

DB
E B

FB G B

15

11

9

9

AA B
B

C

B

DB
E B

FB G B

15

11

9

9

8
AA B

A

C

A

DA
E A

FA G A

15

11

9

9

87

Practice Proofs

• Similar to the proof of correctness that we
saw for the Minimum Spanning Trees,
write the proof of correctness for the
Kruskal’s algorithm to find Maximum
Spanning Trees.

• Prove the following property: If all the
edges in a weighted graph have unique
weights, then there can be only one
maximum spanning tree of the graph.

Dijkstra’s Shortest Path Algorithm

Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise

:

∑
=

−
=

k

i

ii vvwpw
1

1),()(

p

Dijkstra Algorithm

63

Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v)

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we

will pick a vertex u that has the minimum

weight path to s. We will then explore

the neighbors of u for which we have not

yet found a minimum weight path. We will

try to see if by going through u, we can

reduce the weight of path from s to v,

where v is a neighbor of u.

v

Relaxation Condition

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

5

0 Ws-u

= 40

Ws-v

= 45

Path from s to u

s u

W
(u

, v
)

v

5

Instead of using the current

route from s to v, we will
go through u to reach v from s

We will stay with the current
route we know from s to v.

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

35

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

35

∞∞0

∞∞∞

3 5

54

2

1

3

13

s

u
v

w
x

y

∞30

∞54

3
5

5
4

2

1

3

13

s

u
v

w
x

y

830

644

3
5

54

2

1

3

13

s

u
v

w
x

y

830

644

3 5

54

2

1

3

13

s

u
v

w
x

y
v v

Given Graph, Initialization Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

830

644

3 5

54

2

1

3

13

s

u

w
x

y

730

644

3 5

54

2

1

3

13

s

u

w
x

y

v

730

644

3

4 1 13

s

u

w
x

y

Shortest Path Tree

Dijkstra Algorithm
Example 1

66

0

∞ ∞

∞

∞ ∞

5

7

6

1

3

2

4

3

Initial

A

B D

F

C E

0

5 ∞

∞

3 ∞

5
7

6

1

3

2

4

3

Iteration 1

A

B D

F

C E

0

4 ∞

∞

3 7

5

7

6

1

3

2

4

3

Iteration 2

A

B D

F

C E

0

4 11

∞

3 7

5

7

6

1

3

2

4

3

Iteration 3

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 4

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 5

A

B D

F

C E

Shortest Path TreeDijkstra Algorithm
Example 2

0

4 9

10

3 7

1

3

2

4

3A

B D

F

C E

67

Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

68

Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

Θ(V) time

Θ(V) time to

Construct a

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + Θ(ElogV)

Since the |E| ≥ |V|-1, the VlogV term is dominated by the

ElogV term. Hence, overall complexity = Θ(|E|*log|V|)

69

0 ∞ ∞

∞ ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Initial

0 5 ∞

3 ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 1

0 4 ∞

3 11 ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 2

0 4 10

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 4

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 5

Shortest Path Tree

Dijkstra Algorithm
Example 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d
through the vertices s – a – b – c – d.

• Then, the shortest path from a to c is also a – b – c.

• If there is a path of lower weight than the weight of the
path from a – b – c, then we could have gone from s to d
through this alternate path from a to c of lower weight
than a – b – c.

• However, if we do that, then the weight of the path s – a
– b – c – d is not the lowest and there exists an alternate
path of lower weight.

• This contradicts our assumption that s – a – b – c – d is
the shortest (lowest weight) path.

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 2: The weights of the vertices that are optimized are in the
non-decreasing (i.e., typically increasing) order.

• Proof: We want to prove that if a vertex u is optimized in an earlier iteration
(say iteration i), then the weight of the vertex v optimized at a later iteration
(say iteration j; i < j) is always greater than or equal to that of vertex u.

• Vertex v could be either a neighbor of vertex u or not. In either case, the
weight(v)i-1 ≥ weight(u)i-1 during the beginning of iteration i as vertex u was
considered to have been optimized instead of vertex v during this iteration.

• During iteration i: we relax the neighbors of vertex u

– If vertex v is a neighbor of vertex u, weight(v)i could have become less
than weight(v)i-1, but weight(v)i could never become weight(u)i-1 as all
edge weights are positive (including the weight of the edge u-v). Hence,
weight(v)i could have become weight(u)i-1 + weight(u-v), but it will still
be only less than weight(u)i-1, as weight(u-v) > 0.

• If vertex v is not a neighbor of vertex u, then vertex v should ultimately get
optimized through some neighbor x (that is not u). But all such neighbors x
should have weight(x)i-1 ≥ weight(u)i-1, as x was not picked for optimization
in iteration i. Hence, by going through such neighbors x, the weight(v)
during iterations i or later, could never become still less than weight(u)i-1, as
all the edge weights w(x-v) are greater than 0.

s

Path from s to u

u

v

Weight(u)i-1

Weight(u-v) > 0

Weight(v)i-1Before Iteration i

(at the end of

Iteration i-1)

s

Path from s to u

u

v

Weight(u)i-1

Weight(u-v) > 0

Weight(v)iAt the end of

Iteration i

Weight(v)i-1 ≥ Weight(u)i-1
Weight(v)i ≥ Weight(u)i-1

Proof for Theorem 2

Scenario: Vertex v is a neighbor of Vertex u

s

Path from s to u

u

v

Weight(u)i-1

Weight

(x-v) > 0

Weight(v)i-1
Before Iteration i (at the end of

Iteration i-1)

At the end of

Iteration i

Weight(x)i-1 ≥ Weight(u)i-1

Proof for Theorem 2

Scenario: Vertex v is NOT a neighbor of Vertex u, but
a neighbor of some other vertex x

xWeight(x)i-1

Weight(v)i-1 ≥ Weight(u)i-1

s

Path from s to u

u

v

Weight(u)i-1

Weight

(x-v) > 0

Weight(v)i

xWeight(x)i

Weight(x)i ≥ Weight(u)i-1
Weight(v)i ≥ Weight(u)i-1

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 3: When a vertex v is picked for
relaxation/optimization, every intermediate vertex on the
s…v shortest path is already optimized.

• Proof: Let there be a path from s to v that includes a
vertex x (i.e., s...x...v) for which we have not yet found
the shortest path.

• From Theorem 1, shortest path weight(s...x) < shortest
path weight(s...v).

• From Theorem 2, vertices are optimized in the non-
decreasing order of shortest path weights.

• So, if vertex v is picked for optimization based on the
path s…x…v, then the intermediate vertex x should have
been already picked (before v) for optimization. A
contradiction.

• Theorem 4: When a vertex v is picked for relaxation, we have
optimized the vertex (i.e., found the shortest path for the vertex from a
source vertex s).

• Proof: Let P be the path from source s to vertex v based on whose
weight we decide to relax the vertex. We want to prove P is the
optimal path of minimum weight from s to v. We will prove this by
contradiction.

• Let P’ be a hypothetical shortest path from s to v such that w(P’) <
w(P)

• If all the intermediate vertices from s to v on the path P’ are already
optimized, we would have indeed found the shortest path from s to v
of weight w(P’).

• If P’ is not chosen and P is chosen by Dijkstra algorithm for optimizing
vertex v, then there should be at least one intermediate vertex (say
vertex ‘u’) on the path P’ from s to v that is not yet optimized (and
because of this we were not able to optimize v from s on path P’).

• From the earlier Theorems, the weight(s…u in P’) ≥ weight(s…v in P)
because the algorithm picks vertices for optimization in the non-
decreasing (i.e., increasing) order of shortest path weights.
– So, even if vertex u on path P’ is chosen for optimization after vertex v on

path P, the weight of the s…u…v path (P’) would be only larger than that
of the s…v path (P). Hence, a contradiction.

• Thus, the path P found by Dijkstra algorithm is the shortest path from
the source s to a vertex v.

s

v

Path P found by

Dijkstra algorithm

Hypothetical Path P’ that

We assume:

Weight(s…v)P’ < Weight(s…v)P

u

From Theorem 3,

If P’ is an optimal path from s to v,

then all the intermediate vertices on

the path should have been already

optimized, and as a result of the

accompanying relaxations, we would

have traced the path P’ from s to v as

the optimal path instead of the path P.

Hence, if the algorithm did not pick P’

as the optimal path, there should be

some intermediate vertex u on the

path P’ that is not yet optimized and

all the subsequent vertices on the

path P’ are not optimized either.

From Theorem 2,

Weight(s…u)P’ ≥ Weight(s…v)P

From Theorem 1,

Weight(s…u…v)P’ > Weight(s…u)P’

Hence:

Weight(s…u…v)P’ > Weight(s…v)P

Proof for Theorem 4

(by Contradiction)

All Pairs Shortest Paths Problem

Dynamic Programming Algorithm

for All Pairs Shortest Paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

The algorithm we are going to see
was developed by two people

Floyd and Warshall. We will shortly
refer to the algorithm as the FW algorithm

FW Algorithm: Operating Principle
• Operating Principle: The vertices are numbered from 1 to n. There are ‘n’

iterations. In the kth iteration, the candidate set of vertices available to
choose from as intermediate vertices are {1, 2, 3, …, k}.

• Initialization: No vertex is a candidate intermediate vertex. There is a path
between two vertices only if there is a direct edge between them (i.e., i � j);
otherwise, not.

• Iteration 1: Candidate intermediate vertex {1}. Hence, the candidate paths
to choose from are (depending on the graph, the following two may be true):
i � j (or) i � 1 � j

• Iteration 2: Candidate intermediate vertices {1, 2}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):

i –> j (or) i � 1 � j (or) i � 2 � j (or) i � 1 � 2 � j (or) i � 2 � 1 � j

• Iteration 3: Candidate intermediate vertices {1, 2, 3}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):
i –> j (or) i � 1 � j (or) i � 2 � j (or) i � 3 � j (or) i � 1 � 2 � j (or) i � 2 � 1 �

j (or) i � 1 � 3 � j (or) i � 3 � 1 � j (or) i � 2 � 3 � j (or) i � 3 � 2 � j (or) i
� 1 � 2 � 3 � j (or) i � 3 � 2 � 1 � j (or) i � 1 � 3 � 2 � j (or) i � 3 � 1
� 2 � j (or) i � 2 � 3 � 1 � j (or) i � 2 � 1 � 3 � j

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

πij
(k-1)

πkj
(k-1)

the minimum weight

path from i to j

involving zero or more

intermediate vertices

from the set {1, 2, …, k-1}

the minimum weight

path from k to j

involving zero or more

intermediate vertices

from the set {1, 2, …, k-1}

D(k)[i,j] = min {

D(k-1)[i,j],

D(k-1)[i,k] + D(k-1)[k,j]}

the minimum weight path from i to k

involving zero or more intermediate

vertices from the set {1, 2, …, k-1}

FW Algorithm:
Operating Principle

FW Algorithm: Working Principle
• In iteration k, we highlight the

row and column
corresponding to vertex k, and
check whether the values for
each of the other cells could
be reduced from what they
were prior to that iteration. We
do not change the values for
the cells in the row and
column corresponding to
vertex k.

k

k

i

j
Cell (i, j) Cell (i, k)

Cell (k, j)

We update a cell (i, j) if

the value in the cell is

greater than the sum of the

Values of the cells (i, k) and (k, j)

If we update cell (i, j), we also

update the predecessor for (i, j)

to be the value corresponding to

the predecessor for (k, j) in row k.

k

i

j
Cell (i, j)

Cell (k, j)
Distance

Matrix
Predecessor

Matrix

FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1

FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1

FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2

FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2

FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3

FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3

FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4

FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4

FW Algorithm: Example 1 (5)

1 2

3 4

2

1

3 6 7

Path from v2 to v4
π (v2 … v4)
= π (v2 … v3) ���� v3 ���� v4
= π (v2 … v1) ���� v1 ���� v3 ���� v4
= v2 ���� v1 ���� v3 ���� v4

Path from v4 to v2
π (v4 … v2)
= π (v4 … v3) ���� v3 ���� v2
= π (v4 … v1) ���� v1 ���� v3 ���� v2
= v4 ���� v1 ���� v3 ���� v2

FW Algorithm
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)

FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1

FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1

FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2

FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2

FW Algorithm: Example 2(3)

1 3

45

2

Iteration 3

FW Algorithm: Example 2(4)

1 3

45

2

Iteration 4

FW Algorithm: Example 2(5)

1 3

45

2

Iteration 5

FW Algorithm: Example 2(6)

1 3

45

2

Path from v3 to v1
π (v3 … v1)
= π (v3 … v4) ���� v4 ���� v1
= π (v3 … v2) ���� v2 ���� v4 ���� v1
= v3 ���� v2 ���� v4 ���� v1

Path from v1 to v3
π (v1 … v3)
= π (v1 … v4) ���� v4 ���� v3
= π (v1 … v5) ���� v5 ���� v4 ���� v3
= v1 ���� v5 ���� v4 ���� v3

Centrality Metrics
• Centrality metrics quantify the importance of a vertex

based on its position (topological importance) in the
graph

• Among the various centrality metrics that exist, we will
look at one of the most important metrics called the
Betweenness Centrality (BWC) of a vertex.

• The BWC of a vertex is a measure of the presence of the
vertex (as an intermediate vertex) on the shortest paths
between any two pairs of vertices

Y ZX

A

B

C

D

In the graph shown here, there exists

only one shortest path between any

two vertices.

Vertex Y is an intermediate vertex on

all the ‘9’ shortest paths between

any vertex in the set {A, B, X} and any

vertex in the set {Z, C, D}.

Vertices A, B, C and D do not lie on

the shortest path for any two vertices.

Betweeness Centrality

• We will now discuss how to find the total number of
shortest paths between any two vertices j and k as well
as to find out how many of these shortest paths go
through a vertex i (j ≠ k ≠ i).

• Use Breadth First Search (BFS) to find the shortest path
tree from vertex j to every other vertex k
– Root vertex j is at level 0

– Vertices that are 1-hop away from j are at level 1; 2-hops away
from j are at level 2, and so on.

– The number of shortest paths from j to a vertex k at level p is the
sum of the number of shortest paths from j to the neighbors of k
in the original graph that are at level p-1

– The number of shortest paths from j to k that go through vertex i
is the maximum of the number of shortest paths from j to i and
the number of shortest paths from k to i.

Time Complexity: Θ(VE + V2)
(j < k for undirected graphs)

Betweenness
Centrality Example

BWC for node 0: 0.0

BWC for node 1

Pair (0, 5): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (2, 5): ���� 1 / 3

BWC (1) = 2.333

BWC for node 4

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (2, 5) ���� 1 / 3

Pair (2, 6) ���� 1 / 1

Pair (2, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2

BWC (2) = 4.333

BWC for node 3

Pair (2, 5) ���� 1 / 3

BWC (3) = 0.333

BWC for node 5

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (1, 3) ���� 1 / 2

Pair (1, 4) ���� 1 / 2

Pair (1, 6) ���� 1 / 1

Pair (1, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2
BWC (5) = 5.0

BWC for node 6: 0.0
BWC for node 7: 0.0

BWC for node 2

Pair (0, 3): ���� 1 / 1

Pair (0, 4): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (1, 3): ���� 1 / 2

Pair (1, 4): ���� 1 / 2
BWC (2): 4.0

ID BWC
0 0.0

1 2.333

2 4.0

3 0.333

4 4.333

5 5.0

6 0.0

7 0.0

For vertices

1, 6 and 7

BWC = 0

a b c g

d f e

a b c g

d f e

0

1

1

2 3

3 4

a b c g

d f e

1

1

1

2 2

2 4

Levels of

Vertices on

the BFS tree

shortest paths

from the root

to the other

vertices

a b c g

d f e

01

1
2

3

34

a b c g

d f e

11

1
2

2

24

shortest paths from a to g that go through c

is the product(# shortest paths from a to c,

shortest paths from g to c)

= product (2, 1) = 2

BWC (‘c’ with respect to pair a-g) = 2/4

Shortest Paths from the Root to a
Vertex

• The number of shortest paths from
the root of a Breadth First Search
(BFS) tree to a vertex ‘x’ (at level ‘L’
in the BFS tree) is the sum of the
number of shortest paths from the
root to the predecessors of ‘x’ (that
are at level ‘L-1’ in the BFS tree) to
which ‘x’ has an edge in the graph.

• In the example shown on the right
side, vertex ‘x’ (at level L) has an
edge to vertices ‘u’, ‘v’ and ‘w’ (at
level L-1 in the BFS tree) in the
given graph. The # shortest paths
from the root to ‘x’ is the sum of the
shortest paths from the root to
each of ‘u’, ‘v’ and ‘w’.

root

x

u v w

Shortest Paths from the root to ‘x’

= # Shortest Paths from the root to ‘u’ +

Shortest Paths from the root to ‘v’ +

Shortest Paths from the root to ‘w’

= 3 + 2 + 4 = 9.

0

1

2

3

4

5

6 7

To determine how many

Shortest paths from nodes

1 to 7 that go through

node 4.

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

Level Numbers of

the vertices starting

from root ‘1’.

Level Numbers of

the vertices starting

from root ‘7’.

To determine how many Shortest paths from nodes

1 to 7 that go through node 4: = Product(2, 1) = 2

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

0

1

2

3

4

5

6 7

1

1 1

2

2

2

2 2

0

1

2

3

4

5

6 7

2

1 1

1

1

1

1 1

BFS Tree

rooted at

Vertex 1

BFS Tree

rooted at

Vertex 7

shortest paths

from vertex 1 to

the other vertices

shortest paths

from vertex 7 to

the other vertices

BWC(node 4 with respect to pair 1-7) = 2/2

Number of Walks in a Graph
• An u-v walk between two vertices u and v is a sequence of zero

or more intermediate vertices (that could be even repeated).
• The length of a walk is one plus the number of intermediate

vertices

– Example: 2 – 3 – 1 – 4 – 1 is a walk of length 4.
• A walk is a path if the intermediate vertices, if any, are not

repeated.
– Example: 2 – 3 – 1 is a walk as well as a path, but the walk

2 – 3 – 1 – 4 – 1 is not a path.
• The number of walks of length k between any two vertices in a

graph could be determined by finding Ak where A is the binary
adjacency matrix of the graph.

1 2

3

4

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1
3 1 1 0 0

4 1 1 0 0

Walks of

Length 2 (A2)

1 2 3 4

1 3 2 1 1

2 2 3 1 1
3 1 1 2 2

4 1 1 2 2

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1
3 1 1 0 0

4 1 1 0 0

x =

Number of Walks in a Graph

1 2

3

4

Walks of

Length 3 (A3)

1 2 3 4

1 4 5 5 5

2 5 4 5 5

3 5 5 2 2

4 5 5 2 2

Walks of

Length 2 (A2)

1 2 3 4

1 3 2 1 1

2 2 3 1 1

3 1 1 2 2

4 1 1 2 2

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 0

4 1 1 0 0

x =

• Basic Rules for Matrix Multiplication

• To multiply two matrices A and B and get a product
matrix P = A * B:

• (1) The number of columns in the first matrix A
should be equal to the number of rows in the second
matrix B

• (2) To get the value of a cell (i, j) in the product
matrix P, do a pair-wise multiplication of the elements
in row i of the first matrix with the elements in column j
of the second matrix.

To find # Walks of Length ‘n’

Walks of Length 4: Find A4.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

a

b

c

d

a b c d

11 2 6 6

2 3 4 4

6 4 5 6

6 4 6 7

A4 =

To find the number of walks length 4 between

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.

