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5.1   Graph Traversal Algorithms



Depth First Search (DFS)
• Visits graph’s vertices (also called nodes) by always moving away 

from last visited vertex to unvisited one, backtracks if there is no 
adjacent unvisited vertex.

• Break any tie to visit an adjacent vertex, by visiting the vertex with the 
lowest ID or the lowest alphabet (label).

• Uses a stack

– a vertex is pushed onto the stack when it’s visited for the first time

–a vertex is popped off the stack when it becomes a dead end, i.e., 
when there is no adjacent unvisited vertex

• “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph):

– Whenever a new unvisited vertex is reached for the first time, it is attached 
as a child to the vertex from which it is being reached. Such an edge is 
called a tree edge.

– While exploring the neighbors of a vertex, it the algorithm encounters an 
edge leading to a previously visited vertex other than its immediate 
predecessor (i.e., its parent in the tree), such an edge is called a back edge.

– The leaf nodes have no children; the root node and other intermediate 
nodes have one more child.



Pseudo Code of DFS



Example 1: 
DFS

Source: Figure 3.10: Levitin, 3rd Edition: 

Introduction to the Design and Analysis 
of Algorithms, 2012.
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DFS
• DFS can be implemented with graphs represented as:

–adjacency matrices: Θ(V2); adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
–order in which vertices are first encountered (pushed onto stack)

–order in which vertices become dead-ends (popped off stack)

• Applications:
–checking connectivity, finding connected components

• The set of vertices that we can visit through DFS, starting from a 
particular vertex in the set constitute a connected component.

• If a graph has only one connected component, we need to run DFS 
only once and it returns a tree; otherwise, the graph has more than 
one connected component and we determine a forest – comprising of 
trees for each component.

–checking for cycles (a DFS run on an undirected graph returns a 
back edge)

–finding articulation points and bi-connected components
• An articulation point of a connected component is a vertex that when 

removed disconnects the component. 

• A graph is said to have bi-connected components if none of its 
components have an articulation point.



Example 2: DFS
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• Notes on Articulation Point
– The root of a DFS tree is an articulation point if it has more than 

one child connected through a tree edge. (In the above DFS tree,
the root node ‘a’ is an articulation point)

– The leaf nodes of a DFS tree are not articulation points.

– Any other internal vertex v in the DFS tree, if it has one or more 
sub trees rooted at a child (at least one child node) of v that does 
NOT have an edge which climbs ’higher ’ than v (through a back 
edge), then v is an articulation point. 



Deciding whether an Internal Node 
is an Articulation Point or not

• An internal node is NOT an articulation point if there exist one or 
more back edges from each of the sub trees of the node to one or 
more ancestral nodes in the DFS tree (like the left side example)
– In other words, an internal node is an articulation point if there exists at 

least one sub tree from which there is no back edge that goes above the 
node in the DFS tree (like the right side example).
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DFS: Articulation Points

• In the above graph, vertex ‘a’ is the only articulation point.

• Vertices ‘e’ and ‘f’ are leaf nodes.

• Vertices ‘b’ and ‘c’ are candidates for articulation points. But, they cannot 
become articulation point, because there is a back edge from the only sub 
tree rooted at their child nodes (‘d’ and ‘g’ respectively) that have a back edge 
to ‘a’.

• By the same argument, vertices ‘d’ and ‘g’ are not articulation points, because 
they have only child node (f and e respectively); each of these child nodes 
are connected to a higher level vertex (b and a respectively) through a back 
edge. 
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Example 3: DFS and Articulation Points
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Example 4: DFS and Articulation Points
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• In the above new graph (different from the previous example: note edges b –
f, a – d and a – e are missing), vertices ‘a’, ‘b’, ‘c’, ‘d’ and ‘g’ are articulation 
points, because:
– Vertex ‘a’ is the root node of the DFS tree and it has more than one child

node
– Vertex ‘b’ is an intermediate node; it has one sub tree rooted at its child node 

(d) that does not have any node, including ‘d’, to climb higher than ‘b’. So, 
vertex ‘b’ is an articulation point.

– Vertex ‘c’ is also an articulation point, by the same argument as above – this 
time, applied to the sub tree rooted at child node ‘g’.

– Vertices ‘d’ and ‘g’ are articulation points; because, they have one child node 
(‘f’ and ‘e’ respectively) that are not connected to any other vertex higher than 
‘d’ and ‘g’ respectively. 



Example 5: DFS and 

Articulation Points
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1) Root Vertex ‘a’ has more than one child; so, it is an articulation point.
2) Vertices ‘d’, ‘g’ and ‘j’ are leaf nodes
3) Vertex ‘b’ is not an articulation point because
the only sub tree rooted at its child node ‘c’ has
a back edge to a vertex higher than ‘b’ (in this
case to the root vertex ‘a’)
4) Vertex ‘c’ is an articulation point. One of its
child vertex ‘d’ does not have any sub tree 
rooted at it. The other vertex ‘e’ has a sub 
tree rooted at it and this sub tree has no
back edge higher up than ‘c’. 
5) By argument (4), it follows that vertex ‘e’
is not an articulation point because the sub tree
rooted at its child node ‘f’ has a back edge higher
up than ‘e’ (to vertex ‘c’); 
6) Vertices ‘f’ and ‘k’ are not articulation points because
they have only one child node each and the child nodes
are connected to a vertex higher above ‘f’ and ‘k’.
7) Vertex ‘i’ is not an articulation point because the only 
sub tree rooted at its child has a back edge higher up (to vertices ‘a’ and ‘h’). 
8) Vertex ‘h’ is not an articulation point because the only sub tree rooted at ‘h’ has a 
back edge higher up (to the root vertex ‘a’).

Identification of the Articulation Points 
of the Graph in Example 5
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Bridge Edges in a Graph
• An edge is a “bridge” edge in a connected graph if its removal 

would disconnect the vertices in the graph. 

• We can identify the bridge edges of a graph using DFS
– The “back” edges are not bridge edges

– A tree edge u – v is a bridge if there do not exist any back edge to 
reach u or an ancestor of u in the sub tree rooted at v.

• An undirected graph with no bridge edges is said to be “2-edge connected”
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Bridge Edges in a 
Graph: Example 1
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Edge 0 – 1 is not a bridge edge as there is a 

back edge from the sub tree rooted at vertex 1 

to vertex 0

Edge 1 – 2 is not a bridge edge as there is a 

back edge from the sub tree rooted at vertex 2 

to an ancestor of vertex 1

Edge 0 – 2 is not a bridge edge as it is a back 

edge

Edge 0 – 3 is a bridge edge as there is no back 

edge from the sub tree rooted at vertex 3 to 

either vertex 0 or an ancestor of vertex 0.

Edge 3 – 4 is a bridge edge as there is no back 

edge from the sub tree rooted at vertex 4 to 
either vertex 3 or an ancestor of vertex 3.



Bridge Edges in a 
Graph: Example 2
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DFS: Edge Terminology for directed 

graphs
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Tree edge

Back edge

Forward edge

Cross edge

Tree edge – an edge from a parent node to a child node in the tree

Back edge – an edge from a vertex to its ancestor node in the tree

Forward edge – an edge from an ancestor node to its descendant node in the tree. 

The two nodes do not have a parent-child relationship. The back and forward 

edges are in a single component (the DFS tree). 
Cross edge – an edge between two different components of the DFS Forest. 
So, basically an edge other than a tree edge, back edge and forward edge
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Directed Acyclic Graphs (DAG)
• A directed graph is a graph with directed edges between 

its vertices (e.g., u � v).

• A DAG is a directed graph (digraph) without cycles.

– A DAG is encountered for many applications that 

involve pre-requisite restricted tasks (e.g., course 

scheduling)
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a a 

DAGDAG

not a not a 
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To test whether a directed graph is a DAG, run DFS on the directed graph. If a

back edge is not encountered, then the directed graph is a DAG.



DFS on a DAG: Example 1
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Topological Sort of a DAG
• Topological sort of a DAG is a listing of the vertices 

(each vertex appears exactly once) in such a way that 
for any edge u � v, u appears somewhere before v      
(u …. v) in the topological sort.

• A topological sort can be written for a directed graph if 
only if it is a DAG.
– Directed graph is a DAG � Topological sort exists
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Topological Sort
• Topological sort is an ordering of the vertices of a directed 

acyclic graph (DAG) – a directed graph (a.k.a. digraph) 
without cycles.
– This implies if there is an edge u� v in the digraph, then u should 

be listed ahead of v in the topological sort: … u … v …

– Being a DAG is the necessary and sufficient condition to be able to 
do a topological sorting for a digraph. 

– Proof for Necessary Condition: If a digraph is not a DAG and 
lets say it has a topological sorting. Consider a cycle (in the 
digraph) comprising of vertices u1, u2, u3, …, uk, u1. In other 
words, there is an edge from uk to u1 and there is a directed path 
to uk from u1. So, it is not possible to decide whether u1 should be 
ahead of uk or after uk in the topological sorting of the vertices of 
the digraph. Hence, there cannot be a topological sorting of the
vertices of a digraph, if the digraph has even one cycle. To be able 
to topologically sort the vertices of a digraph, the digraph has
to first of all be a DAG. [Necessary Condition]. We will next 
prove that this is also the sufficient condition.



Topological Sort
Proof for Sufficient Condition

• After running DFS on the directed graph (also a DAG), the 
topological sorting is the listing of the vertices of the DAG in
the reverse order according to which they are removed 
from the stack. 
– Consider an edge u � v in the DAG. 

– If there exists an ordering that lists v ahead of u, then it implies that 
u was popped out from the stack ahead of v. That is, vertex v has 
been already added to the stack and we were to able to visit vertex 
u by exploring a path leading from v to u. This means the edge u �

v has to be a back edge. This implies, the digraph has a cycle and 
is not a DAG. We had earlier proved that if a digraph has a cycle, 
we cannot generate a topological sort of its vertices. 

– For an edge u->v, if v is listed ahead of u ==> the graph is not a 
DAG  (Note that a ==> b, then !b ==> !a)

– If the graph is a DAG ==> u should be listed ahead of v for every 
edge u � v.

– Hence, it is sufficient for a directed to be DAG to generate a 
topological sort for it.



Assigning 

Directions to 

Undirected Edges 

in a Graph (DAG)
• Consider a directed graph that has 

a mix of undirected and directed 
edges. The directed edges of the 
graph do not create a cycle. We 
want to assign directions to the 
undirected edges so that the 
directed graph remains acyclic.

• Solution:

• Run DFS on the directed edges 
alone and determine a topological 
sort of the directed edges (a DAG)

• Consider an undirected edge u – v. 
Assign the direction u � v if u 
appears before v in the topological 
sort; otherwise, assign v � u
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Assigning 

Directions to 

Undirected Edges 

in a Graph (DAG): 

Example 2

1 2

3 4

5 6

7 8

Given Graph

1 2

3 4

5 6

7 8

Graph of Directed Edges 

(a DAG)

Topological Sort

5, 6, 1, 3, 2, 7, 8, 4

1, 6 2, 4 

3, 1 4, 3 
5, 2

6, 5

7, 8 8, 7

1 2

3 4

5 6

7 8



Strongly and Weakly Connected 
Components of a Directed Graph

• Recall, a component is the largest subset of the vertices 
that satisfy a particular property and if we add any other 
vertex to that component, the property will no longer be 
satisfied.

• A strongly connected component of a directed graph is 
the subset of the vertices that are reachable from each 
other, either directly or through a multi-hop path.
– Note that if a directed graph is a DAG, there are no strongly 

connected components of size more than 1.

• A weakly connected component of a directed graph is 
the subset of the vertices that are reachable from each 
other in the undirected version of the graph.



Strongly Connected Components 
(SCC) of a Directed Graph

• We maintain two stacks: Regular-Stack and SCC-Stack

• We conduct DFS on the given directed graph (G) and 
use the Regular-Stack to push and pop vertices as part 
of the DFS.
– Whenever a vertex is popped out of the Regular-Stack, push it to 

the SCC-Stack.

– Run DFS until all vertices are visited.

• Reverse the directions of the edges in the directed graph 
(call it G’).

• Pop the topmost vertex from SCC-Stack and run DFS on 
G’ starting from that vertex. All the vertices visited as 
part of this DFS are said to form a strongly connected 
component.
– Remove all the vertices visited from G’ and the SCC-Stack

– Run DFS on the remaining version of G’ starting from the 
topmost vertex in the SCC-Stack. 

– Continue DFS until are vertices in G’ are visited.



Strongly Connected Components 
for a Directed Graph: Example 1
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Strongly Connected Components 
for a Directed Graph: Example 1
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Strongly Connected Components 
of a Directed Graph: Example 2
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Strongly Connected Components 
of a Directed Graph: Example 3
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Strongly Connected Components 
of a Directed Graph: Example 3
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Strongly Connected Components 
of a Directed Graph: Example 3
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Assigning Directions to Edges in an 
Undirected Graph (Strongly 
Connected Directed Graph)

• We are given an undirected graph that is connected and 
has no bridges (i.e., the graph is 2-edge connected).

• We want to assign directions to the edges of this graph 
so that the resulting directed graph has all the vertices in 
a single strongly connected component (i.e., the 
resulting directed graph is strongly connected).

• Solution:

• Run DFS on the given undirected graph and make sure 
it is connected and has no bridges (use the structure of 
the DFS tree)

• If the undirected graph is “2-edge connected” use the 
structure of the DFS tree and orient all the tree edges to 
be away from the root and all the back edges to be 
towards the root. 
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Ex-2
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Breadth First Search (BFS)
BFS(G, s)

Queue queue

queue.enqueue(s) // ‘s’ is the starting vertex

Level[s] = 0

Level[v] = ∞;  for all vertices v other than ‘s’

// The level # is also the estimated number of edges

// on the minimum edge path (shortest path) from ‘s’

Visited[v] = false; for all vertices v other than ‘s’

while (!queue.isEmpty()) do

u = queue.dequeue();

for every vertex v that is a neighbor of u

if (Visited[v] = false) then

Level[v] = Level[u] + 1

Visited[v] = true

Queue.enqueue(v)

Edge u-v is a tree edge

end if

else

Edge u-v is a cross edge

end for

end while

End BFS

Time Complexity:

If there are ‘V’ vertices and ‘E’

edges, we traverse each edge 

exactly once as well as enqueue

and dequeue each vertex exactly 

once. Hence, the time 

complexity of BFS is Θ(V+E) 

when implemented using an 

Adjacency list and Θ(V2) when 

implemented using an 

Adjacency matrix.
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BFS: Example 1
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Bipartite Graph
• A graph in which the vertices could be 

partitioned to two disjoint sets such that 
all the edges in the graph are between 
the vertices in the two sets and there are 
no edges between vertices in the same 
set.

• An undirected graph is bipartite if there 
are no cross edges between vertices at 
the same level while doing BFS.
– Note there could be cross edges between 

vertices at different levels. This is fine.

• A bipartite graph is also said to be “2-
colorable”. 
– There are only two colors to color the vertices

– For each edge u – v, the end vertices should 
be of different color.
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BFS: Example 2
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BFS: Example 2

Iteration 4: Queue = {4, 8, 5}

1

2

3

4

5

6

7

0 1 2

∞21

1

8

2

Iteration 5: Queue = {8, 5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 6: Queue = {5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 7: Queue = {6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2



BFS: Example 2

Iteration 8: Queue = {}
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The graph is not bipartite as there are

edges 2 – 7 and 2 – 4 that are cross edges
between vertices at the same level. The presence
of even one such edge rules out the graph from

being bipartite.



Connected Undirected Graph
• An undirected graph is said to 

be “connected” if we could start 
BFS from any arbitrary vertex in 
the graph and be able to visit 
the rest of the vertices in the 
graph.
– All the vertices in a connected 

undirected graph are said to be 
in “one component”.

• If even on vertex is not 
reachable from the starting 
vertex of BFS, the graph is 
considered to be “not 
connected” and will be 
composed of two or more 
components.
– A component is the largest 

subset of the vertices in the 
graph such that all the vertices 
within the subset (component) 
are reachable from each other.
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The graph above comprises of

“two” components; the graph

below has only “one” component
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Comparison of DFS and BFS

Source: Table 3.1: Levitin, 3rd Edition: Introduction to the Design and Analysis of Algorithms, 

2012.

With the levels of a tree, referenced starting from the root node, 
A back edge in a DFS tree could connect vertices at different levels; whereas, a cross edge
in a BFS tree always connects vertices that are either at the same level or at adjacent levels.

There is always only a unique ordering of the vertices, according to BFS, in the order they 
are visited (added and removed from the queue in the same order). 
On the other hand, with DFS – vertices could be ordered in the order they are pushed to the 
Stack, typically different from the order in which they are popped from the stack.



Minimum Spanning Trees
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Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all 

the vertices in the tree and the sum of the weights of all the edges in 
such a spanning tree should be minimum.

• Kruskal algorithm: Consider edges in the increasing order of their 
weights and include an edge in the tree, if and only if, by including 
the edge in the tree, we do not create a cycle!!
– For a graph of E edges, we spend Θ(E*logE) time to sort the edges and 

this is the most time consuming step of the algorithm.

• To start with, each vertex is in its own component.

• In each iteration, we merge two components using an edge of 
minimum weight connecting the vertices across the two 
components.
– The merged component does not have a cycle and the sum of all the 

edge weights within a component is the minimum possible.

• To detect a cycle, the vertices within a component are identified by 
a component ID. If the edge considered for merging two 
components comprises of end vertices with the same component 
ID, then the edge is not considered for the merger.
– An edge is considered for merging two components only if its end

vertices are identified with different component IDs.



Property of any MST Algorithm
• Given two components of 

vertices (that are a tree by 
themselves of the smallest 
possible weights), any MST 
algorithm would choose an 
edge of the smallest weight 
that could connect the two 
components such that the 
merger of the two 
components is also a tree 
and is of the smallest 
possible weight.

1

3

2

1

3

4

2

3

2

7

5

4

1

3

2

1

3

4

22 1

3

2

1

3

4

22



xws

yvu

3 5

54

2

1

3

14

xws

yvu

Initialization

xws

yvu

Iteration 1

xws

yvu

Iteration 2

1

11

xws

yvu

Iteration 3

11

2

xws

yvu

Iteration 4

11

2 3

xws

yvu
Iteration 5
Min. Spanning Tree

11

2 3

3

s w x

u v y

s w x

u v x

s v x

u v x

s u x

u u x

s u u

u u u

s s s

s s s

MST

Weight

10



AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF G G

Initialization

AA B
B

C

C

DA
E E

FF G G

Iteration 1

5

AA B
B

C

C

DA
E C

FF G G

Iteration 2

5 5



AA B
B

C

C

DA
E C

FA G G

Iteration 3

5 5

6

AA B
A

C

C

DA
E C

FA G G

Iteration 4

5 5

6

7

AA B
A

C

A

DA
E A

FA G G

Iteration 5

5 5

6

7

7

AA B
A

C

A

DA
E A

FA G A

Iteration 6: Min. Sp Tree

5 5

6

7

7

9

MST

Weight

39



Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph 

G. Let T’ be a minimum spanning tree for G. We need to show that both 
T and T’ have the same weight.

• Assume that wt( T’ ) < wt(T).

• Hence, there should be an edge e in T that is not in T ’ and likewise 
there should be an edge e’ in T’ that is not in T. Because, if every edge 
of T is in T’, then T = T’ and wt(T) = wt( T’ ).

• Remove the edge e’ that is in T’. This would disconnect the T’ to two 
components. The edge e that was in T and not in T’ should be one of 
the edges (along with e’) that cross the two split components of T’. 

• Depending on how Kruskal’s algorithm works, wt(e) ≤ wt(e’). Hence, the 
two components of T’ could be merged using edge e (instead of e’) and 
this would only lower the weight of T’ from what it was before (and not 
increase it). 

• That is, wt(modified T’) = wt(T’ – {e’} U {e}) ≤ wt(T’).

• We could repeat the above procedure for all edges that are in T’ and 
not in T, and eventually transform T’ to T, without increasing the cost of 
the spanning tree. 

• Hence, T is a minimum spanning tree.



T T’

e’

e

Modified T ’ = T ’ – {e’} U {e}

e’

e e

Let T be the spanning tree determined using Kruskal’s

Let T’ be a hypothetical spanning tree that is a MST such that W(T’) < W(T)

Proof of Correctness

Wt(e) ≤Wt(e’)

Wt(T’ – {e’} U {e}) ≤Wt(T’). Hence, by reducing the edge difference and making

T’ approach T, we are able to only decrease the weight of T’ further, if possible, 
making T’ not a MST to start with, a contradiction.

Candidate edges to merge 
the two components



Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could 

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights, 
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weights. 
Assume there are two different spanning trees T and T’, both are of 
minimum weight; but have at least one edge difference. Let e’ be an 
edge in T’ that is not in T. Removing e’ from T’ will split the latter into 
two components. There should be an edge e that is not part of T’ but 
part of T and should also be a candidate edge to connect the two
components of the split T’. 
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2 1
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Graph One Min. Spanning Tree Another Min. Spanning Tree



Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights, 

then there can be only one minimum spanning tree of the graph.

• Proof (continued..): If wt(e) < wt(e’), then we could merge the two 
components of T’ using e and this would lower the weight of T’ from 
what it was before. Hence, wt(e) ≥ wt(e’).

• However, since the graph has unique edge weights, wt(e) > wt(e’). But, 
if this is the case, then we could indeed remove e from T and have e’ to 
merge the two components of T resulting from the removal of e. This 
would only lower the weight of T from what it was before. 

• So, if T and T’ have to be two different MSTs � wt(e) = wt(e’).
– This is a contradiction to the given statement that the graph has unique 

edge weights. 

• Not (wt(e) = wt(e’) ) � Not (T and T’ have to be two different MSTs)

• That is, wt(e) ≠ wt(e’) � T and T’ have to be the same MST.

• Hence, if a graph has unique edge weights, there can be only one MST 
for the graph. 



T T’

e’

e

W(e) < W(e’)  => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be two different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3

e’

e

Candidate edges to merge 
the two components



Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree 

such that the sum of its edge weights is the 
maximum.

• We can find a Maximum Spanning Tree through 
any one of the following ways:
– Straightforward approach: Run Kruskal’s algorithm by 

selecting edges in the decreasing order of edge 
weights (i.e., edge with the largest weight is chosen 
first) as long as the end vertices of an edge are in two 
different components

– Alternate approach (Example for Transform and 
Conquer): Given a weighted graph, set all the edge 
weights to be negative, run a minimum spanning tree 
algorithm on the negative weight graph, then turn all 
the edge weights to positive on the minimum 
spanning tree to get a maximum spanning tree.
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Practice Proofs

• Similar to the proof of correctness that we 
saw for the Minimum Spanning Trees, 
write the proof of correctness for the 
Kruskal’s algorithm to find Maximum 
Spanning Trees.

• Prove the following property: If all the 
edges in a weighted graph have unique 
weights, then there can be only one 
maximum spanning tree of the graph.



Dijkstra’s Shortest Path Algorithm



Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a 
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and  (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by 

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise           

:

∑
=

−
=

k

i

ii vvwpw
1

1 ),()(

p



Dijkstra Algorithm
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Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v) 

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we 

will pick a vertex u that has the minimum 

weight path to s. We will then explore 

the neighbors of u for which we have not 

yet found a minimum weight path. We will 

try to see if by going through u, we can 

reduce the weight of path from s to v, 

where v is a neighbor of u.

v

Relaxation Condition
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route from s to v, we will
go through u to reach v from s

We will stay with the current
route we know from s to v.
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Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈
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Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈

Θ(V) time

Θ(V) time to 

Construct a 

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + Θ(ElogV)

Since the |E| ≥ |V|-1, the VlogV term is dominated by the

ElogV term. Hence, overall complexity = Θ(|E|*log|V|)



69

0 ∞ ∞

∞ ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Initial

0 5 ∞

3 ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 1

0 4 ∞

3 11 ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 2

0 4 10

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 4

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 5

Shortest Path Tree

Dijkstra Algorithm 
Example 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2



Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d 
through the vertices s – a – b – c – d. 

• Then, the shortest path from a to c is also a – b – c. 

• If there is a path of lower weight than the weight of the 
path from a – b – c, then we could have gone from s to d 
through this alternate path from a to c of lower weight 
than a – b – c. 

• However, if we do that, then the weight of the path s – a 
– b – c – d is not the lowest and there exists an alternate 
path of lower weight. 

• This contradicts our assumption that s – a – b – c – d is 
the shortest (lowest weight) path.



Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 2: The weights of the vertices that are optimized are in the 
non-decreasing (i.e., typically increasing) order.

• Proof: We want to prove that if a vertex u is optimized in an earlier iteration 
(say iteration i), then the weight of the vertex v optimized at a later iteration 
(say iteration j; i < j) is always greater than or equal to that of vertex u.

• Vertex v could be either a neighbor of vertex u or not. In either case, the 
weight(v)i-1 ≥ weight(u)i-1 during the beginning of iteration i as vertex u was 
considered to have been optimized instead of vertex v during this iteration.

• During iteration i: we relax the neighbors of vertex u

– If vertex v is a neighbor of vertex u, weight(v)i could have become less 
than weight(v)i-1, but weight(v)i could never become weight(u)i-1 as all 
edge weights are positive (including the weight of the edge u-v). Hence, 
weight(v)i could have become weight(u)i-1 + weight(u-v), but it will still 
be only less than weight(u)i-1, as weight(u-v) > 0.

• If vertex v is not a neighbor of vertex u, then vertex v should ultimately get 
optimized through some neighbor x (that is not u). But all such neighbors x 
should have weight(x)i-1 ≥ weight(u)i-1, as x was not picked for optimization 
in iteration i. Hence, by going through such neighbors x, the weight(v) 
during iterations i or later, could never become still less than weight(u)i-1, as 
all the edge weights w(x-v) are greater than 0.
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Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 3: When a vertex v is picked for 
relaxation/optimization, every intermediate vertex on the 
s…v shortest path is already optimized. 

• Proof: Let there be a path from s to v that includes a 
vertex x (i.e., s...x...v) for which we have not yet found 
the shortest path. 

• From Theorem 1, shortest path weight(s...x) < shortest 
path weight(s...v). 

• From Theorem 2, vertices are optimized in the non-
decreasing order of shortest path weights. 

• So, if vertex v is picked for optimization based on the 
path s…x…v, then the intermediate vertex x should have 
been already picked (before v) for optimization. A 
contradiction. 



• Theorem 4: When a vertex v is picked for relaxation, we have 
optimized the vertex (i.e., found the shortest path for the vertex from a 
source vertex s). 

• Proof: Let P be the path from source s to vertex v based on whose 
weight we decide to relax the vertex. We want to prove P is the 
optimal path of minimum weight from s to v. We will prove this by 
contradiction.

• Let P’ be a hypothetical shortest path from s to v such that w(P’) < 
w(P)

• If all the intermediate vertices from s to v on the path P’ are already 
optimized, we would have indeed found the shortest path from s to v 
of weight w(P’). 

• If P’ is not chosen and P is chosen by Dijkstra algorithm for optimizing 
vertex v, then there should be at least one intermediate vertex (say 
vertex ‘u’) on the path P’ from s to v that is not yet optimized (and 
because of this we were not able to optimize v from s on path P’). 

• From the earlier Theorems, the weight(s…u in P’) ≥ weight(s…v in P) 
because the algorithm picks vertices for optimization in the non-
decreasing (i.e., increasing) order of shortest path weights. 
– So, even if vertex u on path P’ is chosen for optimization after vertex v on 

path P, the weight of the s…u…v path (P’) would be only larger than that 
of the s…v path (P). Hence, a contradiction. 

• Thus, the path P found by Dijkstra algorithm is the shortest path from 
the source s to a vertex v.



s

v

Path P found by

Dijkstra algorithm

Hypothetical Path P’ that 

We assume: 

Weight(s…v)P’ < Weight(s…v)P

u

From Theorem 3, 

If P’ is an optimal path from s to v, 

then all the intermediate vertices on 

the path should have been already 

optimized, and as a result of the 

accompanying relaxations, we would 

have traced the path P’ from s to v as 

the optimal path instead of the path P. 

Hence, if the algorithm did not pick P’

as the optimal path, there should be 

some intermediate vertex u on the 

path P’ that is not yet optimized and 

all the subsequent vertices on the 

path P’ are not optimized either. 

From Theorem 2,

Weight(s…u)P’ ≥ Weight(s…v)P

From Theorem 1,

Weight(s…u…v)P’ > Weight(s…u)P’

Hence: 

Weight(s…u…v)P’ > Weight(s…v)P

Proof for Theorem 4

(by Contradiction)



All Pairs Shortest Paths Problem



Dynamic Programming Algorithm 

for All Pairs Shortest Paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

The algorithm we are going to see
was developed by two people 

Floyd and Warshall. We will shortly
refer to the algorithm as the FW algorithm



FW Algorithm: Operating Principle
• Operating Principle: The vertices are numbered from 1 to n. There are ‘n’

iterations. In the kth iteration, the candidate set of vertices available to 
choose from as intermediate vertices are {1, 2, 3, …, k}.

• Initialization: No vertex is a candidate intermediate vertex. There is a path 
between two vertices only if there is a direct edge between them (i.e., i � j); 
otherwise, not.

• Iteration 1: Candidate intermediate vertex {1}. Hence, the candidate paths 
to choose from are (depending on the graph, the following two may be true):
i � j  (or) i � 1 � j

• Iteration 2: Candidate intermediate vertices {1, 2}. Hence, the candidate 
paths to choose from are (depending on the graph; the following in an 
exhaustive list for a complete graph in case of a brute force approach):

i –> j  (or) i � 1 � j (or) i � 2 � j (or) i � 1 � 2 � j (or) i � 2 � 1 � j

• Iteration 3: Candidate intermediate vertices {1, 2, 3}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an 
exhaustive list for a complete graph in case of a brute force approach):
i –> j  (or) i � 1 � j (or) i � 2 � j (or) i � 3 � j (or) i � 1 � 2 � j (or) i � 2 � 1 �

j (or) i � 1 � 3 � j (or) i � 3 � 1 � j (or) i � 2 � 3 � j (or) i � 3 � 2 � j (or) i 
� 1 � 2 � 3 � j (or) i � 3 � 2 � 1 � j (or) i � 1 � 3 � 2 � j (or) i � 3 � 1 
� 2 � j (or) i � 2 � 3 � 1 � j (or) i � 2 � 1 � 3 � j



i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

πij
(k-1)

πkj
(k-1)

the minimum weight 

path from i to j

involving zero or more 

intermediate vertices 

from the set {1, 2, …, k-1}

the minimum weight 

path from k to j

involving zero or more 

intermediate vertices 

from the set {1, 2, …, k-1}

D(k)[i,j] =  min {

D(k-1)[i,j], 

D(k-1)[i,k]  + D(k-1)[k,j]}

the minimum weight path from i to k 

involving zero or more intermediate 

vertices from the set {1, 2, …, k-1}

FW Algorithm: 
Operating Principle



FW Algorithm: Working Principle
• In iteration k, we highlight the 

row and column 
corresponding to vertex k, and 
check whether the values for 
each of the other cells could 
be reduced from what they 
were prior to that iteration. We 
do not change the values for 
the cells in the row and 
column corresponding to 
vertex k.

k

k

i

j
Cell (i, j) Cell (i, k)

Cell (k, j)

We update a cell (i, j) if

the value in the cell is 

greater than the sum of the 

Values of the cells (i, k) and (k, j)

If we update cell (i, j), we also

update the predecessor for (i, j)

to be the value corresponding to

the predecessor for (k, j) in row k.

k

i

j
Cell (i, j)

Cell (k, j)
Distance 

Matrix
Predecessor

Matrix



FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1



FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1



FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2



FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2



FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3



FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3



FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4



FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4



FW Algorithm: Example 1 (5)

1 2

3 4

2

1

3 6 7

Path from v2 to v4
π (v2 … v4) 
= π (v2 … v3) ���� v3 ���� v4
= π (v2 … v1) ���� v1 ���� v3 ���� v4
= v2 ���� v1 ���� v3 ���� v4

Path from v4 to v2
π (v4 … v2) 
= π (v4 … v3) ���� v3 ���� v2
= π (v4 … v1) ���� v1 ���� v3 ���� v2
= v4 ���� v1 ���� v3 ���� v2



FW Algorithm 
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)



FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1



FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1



FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2



FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2



FW Algorithm: Example 2(3)

1 3

45

2

Iteration 3



FW Algorithm: Example 2(4)

1 3

45

2

Iteration 4



FW Algorithm: Example 2(5)

1 3

45

2

Iteration 5



FW Algorithm: Example 2(6)

1 3

45

2

Path from v3 to v1
π (v3 … v1) 
= π (v3 … v4) ���� v4 ���� v1
= π (v3 … v2) ���� v2 ���� v4 ���� v1
= v3 ���� v2 ���� v4 ���� v1

Path from v1 to v3
π (v1 … v3) 
= π (v1 … v4) ���� v4 ���� v3
= π (v1 … v5) ���� v5 ���� v4 ���� v3
= v1 ���� v5 ���� v4 ���� v3



Centrality Metrics
• Centrality metrics quantify the importance of a vertex 

based on its position (topological importance) in the 
graph

• Among the various centrality metrics that exist, we will 
look at one of the most important metrics called the 
Betweenness Centrality (BWC) of a vertex.

• The BWC of a vertex is a measure of the presence of the 
vertex (as an intermediate vertex) on the shortest paths 
between any two pairs of vertices

Y ZX

A

B

C

D

In the graph shown here, there exists

only one shortest path between any

two vertices. 

Vertex Y is an intermediate vertex on

all the ‘9’ shortest paths between 

any vertex in the set {A, B, X} and any

vertex in the set {Z, C, D}.

Vertices A, B, C and D do not lie on 

the shortest path for any two vertices.



Betweeness Centrality

• We will now discuss how to find the total number of 
shortest paths between any two vertices j and k as well 
as to find out how many of these shortest paths go 
through a vertex i (j ≠ k ≠ i).

• Use Breadth First Search (BFS) to find the shortest path 
tree from vertex j to every other vertex k
– Root vertex j is at level 0

– Vertices that are 1-hop away from j are at level 1; 2-hops away 
from j are at level 2, and so on.

– The number of shortest paths from j to a vertex k at level p is the 
sum of the number of shortest paths from j to the neighbors of k
in the original graph that are at level p-1 

– The number of shortest paths from j to k that go through vertex i
is the maximum of the number of shortest paths from j to i and 
the number of shortest paths from k to i. 

Time Complexity: Θ(VE + V2)
(j < k for undirected graphs)



Betweenness 
Centrality Example

BWC for node 0: 0.0

BWC for node 1

Pair (0, 5): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (2, 5): ���� 1 / 3

BWC (1) = 2.333

BWC for node 4

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (2, 5) ���� 1 / 3

Pair (2, 6) ���� 1 / 1

Pair (2, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2

BWC (2) = 4.333

BWC for node 3

Pair (2, 5) ���� 1 / 3

BWC (3) = 0.333

BWC for node 5

Pair (0, 6) ���� 1 / 2

Pair (0, 7) ���� 1 / 2

Pair (1, 3) ���� 1 / 2

Pair (1, 4) ���� 1 / 2

Pair (1, 6) ���� 1 / 1

Pair (1, 7) ���� 1 / 1

Pair (3, 6) ���� 1 / 2

Pair (3, 7) ���� 1 / 2
BWC (5) = 5.0

BWC for node 6: 0.0
BWC for node 7: 0.0

BWC for node 2

Pair (0, 3): ���� 1 / 1

Pair (0, 4): ���� 1 / 1

Pair (0, 6): ���� 1 / 2

Pair (0, 7): ���� 1 / 2

Pair (1, 3): ���� 1 / 2

Pair (1, 4): ���� 1 / 2
BWC (2): 4.0

ID BWC
0 0.0

1 2.333

2 4.0

3 0.333

4 4.333

5 5.0

6 0.0

7 0.0



For vertices

1, 6 and 7

BWC = 0



a b c g

d f e

a b c g

d f e

0

1

1

2 3

3 4

a b c g

d f e

1

1

1

2 2

2 4

Levels of 

Vertices on

the BFS tree

# shortest paths

from the root

to the other 

vertices

a b c g

d f e

01

1
2

3

34

a b c g

d f e

11

1
2

2

24

# shortest paths from a to g that go through c

is the product(# shortest paths from a to c,

# shortest paths from g to c)

= product (2, 1) = 2

BWC (‘c’ with respect to pair a-g) = 2/4



# Shortest Paths from the Root to a 
Vertex

• The number of shortest paths from 
the root of a Breadth First Search 
(BFS) tree to a vertex ‘x’ (at level ‘L’
in the BFS tree) is the sum of the 
number of shortest paths from the 
root to the predecessors of ‘x’ (that 
are at level ‘L-1’ in the BFS tree) to 
which ‘x’ has an edge in the graph.

• In the example shown on the right 
side, vertex ‘x’ (at level L) has an 
edge to vertices ‘u’, ‘v’ and ‘w’ (at 
level L-1 in the BFS tree) in the 
given graph. The # shortest paths 
from the root to ‘x’ is the sum of the 
# shortest paths from the root to 
each of ‘u’, ‘v’ and ‘w’. 

root

x

u v w

# Shortest Paths from the root to ‘x’

= # Shortest Paths from the root to ‘u’ +

# Shortest Paths from the root to ‘v’ +

# Shortest Paths from the root to ‘w’

= 3 + 2 + 4 = 9.



0

1

2

3

4

5

6 7

To determine how many

Shortest paths from nodes

1 to 7 that go through

node 4.

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

Level Numbers of 

the vertices starting 

from root ‘1’.

Level Numbers of 

the vertices starting 

from root ‘7’.



To determine how many Shortest paths from nodes

1 to 7 that go through node 4: = Product(2, 1) = 2

0

1

2

3

4

5

6 7

0

1 1

2

3

4

5 5

0

1

2

3

4

5

6 7

5

4 4

3

2

1

1 0

0

1

2

3

4

5

6 7

1

1 1

2

2

2

2 2

0

1

2

3

4

5

6 7

2

1 1

1

1

1

1 1

BFS Tree

rooted at 

Vertex 1

BFS Tree

rooted at 

Vertex 7

# shortest paths

from vertex 1 to

the other vertices

# shortest paths

from vertex 7 to

the other vertices

BWC(node 4 with respect to pair 1-7) = 2/2



Number of Walks in a Graph
• An u-v walk between two vertices u and v is a sequence of zero 

or more intermediate vertices (that could be even repeated). 
• The length of a walk is one plus the number of intermediate 

vertices

– Example: 2 – 3 – 1 – 4 – 1 is a walk of length 4.
• A walk is a path if the intermediate vertices, if any, are not 

repeated. 
– Example: 2 – 3 – 1 is a walk as well as a path, but the walk 

2 – 3 – 1 – 4 – 1 is not a path.
• The number of walks of length k between any two vertices in a 

graph could be determined by finding Ak where A is the binary 
adjacency matrix of the graph.

1 2

3

4

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1
3    1     1     0     0

4    1     1     0     0

# Walks of 

Length 2 (A2)

1     2     3     4

1    3     2     1     1

2 2     3     1     1
3    1     1     2     2

4    1     1     2     2

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1
3    1     1     0     0

4    1     1     0     0

x =



Number of Walks in a Graph

1 2

3

4

# Walks of 

Length 3 (A3)

1     2     3     4

1    4     5     5     5

2 5     4     5     5

3    5     5     2     2

4    5     5     2     2

# Walks of 

Length 2 (A2)

1     2     3     4

1    3     2     1     1

2 2     3     1     1

3    1     1     2     2

4    1     1     2     2

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1

3    1     1     0     0

4    1     1     0     0

x =

• Basic Rules for Matrix Multiplication

• To multiply two matrices A and B and get a product 
matrix P = A * B:

• (1) The number of columns in the first matrix A 
should be equal to the number of rows in the second 
matrix B

• (2) To get the value of a cell (i, j) in the product 
matrix P, do a pair-wise multiplication of the elements 
in row i of the first matrix with the elements in column j 
of the second matrix.



To find # Walks of Length ‘n’

# Walks of Length 4: Find A4.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

a

b

c

d

a   b   c   d

11  2   6   6

2    3   4   4

6    4   5   6

6    4   6   7

A4 = 

To find the number of walks length 4 between 

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.


