
CSC 323 Algorithm Design and Analysis, Spring 2018

Instructor: Dr. Natarajan Meghanathan

Project 8: Use the Results of Breadth First Search to Extract the Shortest Paths from a Particular

Vertex to the Rest of the Vertices in an Undirected Graph

Due: April 19, 2018: by 1 PM (in Canvas)

The objective of this project is to use the Breadth First Search (BFS) algorithm to determine the shortest

paths (and print them) from a particular vertex to the rest of the vertices in the graph. You are given the

code for running the BFS algorithm starting from a particular vertex (say, vertex 0). The Graph class has

member variables to keep track of the predecessor vertex for every vertex (in the form of the

predecessorList array) on the BFS tree rooted at the starting vertex. The code given for the BFS algorithm

also updates the entries in the predecessorList array as part of the traversal.

Your task in this project would be to use the results (like the entries in the predecessorList array) of

running the BFS algorithm starting from vertex 0 and write an iterative or recursive function that would

print the actual shortest paths (sequence of edges) from vertex 0 to the rest of the vertices in the graph.

You could add the iterative or recursive function as part of the Graph class and access it from the main

function. Your main function can also print the predecessor for every vertex in the BFS tree rooted at

vertex 0, as shown in the sample output.

A sample output (printing the predecessor entries and the shortest paths from vertex 0) for an example

graph is shown below.

Submission (as one Word or PDF document)

(1) The entire code, including the function added to the Graph class to print the shortest paths from the

starting vertex (0) to the rest of the vertices in the graph.

(2) Do this manually: Draw a graph of 10 or more vertices, run the BFS algorithm on the graph (and

identify the tree edges that connect a vertex to its predecessor vertex) and list down the predecessor for

each vertex in the graph. The predecessor for the root vertex (0) is set as -1 and every other vertex should

have a valid entry for its predecessor vertex in the BFS tree rooted at vertex 0. Using the tree edges, also

list the shortest paths from vertex 0 to every other vertex in the graph (as shown in the sample screenshot

above).

(3) Construct the edge list file for the test graph of 10 or more vertices created in part-2 and input the edge

list file and the number of vertices to the code developed in part-1 and generate the output (for the

predecessor list and the shortest paths from vertex 0) similar to the one shown in the above sample

screenshot. The outputs in part-2 and part-3 are expected to match, if ties (arising while deciding to visit a

neighbor vertex) are broken in favor of vertices with lower ID.

