
Module 1:
Analyzing the Efficiency of

Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm
cannot be compromised

– The range of inputs for which an algorithm works has to be
specified carefully.

– The same algorithm can be implemented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with
dramatically different speeds

Problem

Algorithm

ComputerInput Output

The Analysis Framework
• Time efficiency (time complexity): indicates how fast an algorithm

runs

• Space efficiency (space complexity): refers to the amount of

memory units required by the algorithm in addition to the space

needed for its input and output

• Algorithms that have non-appreciable space complexity are said to

be in-place.

• The time efficiency of an algorithm is typically as a function of the

input size (one or more input parameters)

– Algorithms that input a collection of values:

• The time efficiency of sorting a list of integers is represented in terms of the
number of integers (n) in the list

• For matrix multiplication, the input size is typically referred as n*n.

• For graphs, the input size is the set of Vertices (V) and edges (E).

– Algorithms that input only one value:

• The time efficiency depends on the magnitude of the integer. In such cases,
the algorithm efficiency is represented as the number of bits 1+
needed to represent the integer n

 n2log

Units for Measuring Running Time
• The running time of an algorithm is to be measured with a unit that is

independent of the extraneous factors like the processor speed,

quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is

executed on inputs of size n.

Examples for
Input Size and Basic Operations

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

Orders of Growth
• We are more interested in the order of growth on the number of times

the basic operation is executed on the input size of an algorithm.

• Because, for smaller inputs, it is difficult to distinguish efficient

algorithms vs. inefficient ones.

• For example, if the number of basic operations of two algorithms to

solve a particular problem are n and n2 respectively, then

– if n = 3, then we may say there is not much difference between requiring

3 basic operations and 9 basic operations and the two algorithms have

about the same running time.

– On the other hand, if n = 10000, then it does makes a difference whether

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions

Best-case, Average-case, Worst-case
• For many algorithms, the actual running time may not only

depend on the input size; but, also on the specifics of a
particular input.

– For example, sorting algorithms (like insertion sort) may run
faster on an input sequence that is almost-sorted rather than on a
randomly generated input sequence.

• Worst case: Cworst(n) – maximum number of times the basic
operation is executed over inputs of size n

• Best case: Cbest(n) – minimum # times over inputs of size n

• Average case: Cavg(n) – “average” over inputs of size n

– Number of times the basic operation will be executed on typical
input

– NOT the average of worst and best case

– Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs

Example for Worst and Best-Case
Analysis: Sequential Search

• Worst-Case: Cworst(n) = n

• Best-Case: Cbest(n) = 1

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

Basic operation: Comparison (as highlighted in red)

Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer
c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0

Thumb Rule for using Big-O and Big-Θ
• We say a function f(n) = O(g(n)) if the rate of growth of

g(n) is either at the same rate or faster than that of f(n).
– If the functions are polynomials, the rate of growth is decided by

the degree of the polynomials.

– Example: 2n2 + 3n + 5 = O(n2);

2n2 + 3n + 5 = O(n3);

– note that, we can also come up with innumerable number of
such functions for what goes inside the Big-O notation as long as
the function inside the Big-O notation grows at the same rate or
faster than that of the function on the left hand side.

• We say a function f(n) = Θ(g(n)) if both the functions f(n)
and g(n) grow at the same rate.
– Example: 2n2 + 3n + 5 = Θ(n2) and not Θ(n3);

– For a given f(n), there can be only one function g(n) that goes
inside the Θ-notation.

Asymptotic Notations: Example
2n ≤ 0.05 n2

for n ≥ 40
c = 0.05, n0 = 40

2n = O(n2)

More generally,

n = O(n2).

Asymptotic Notations: Example

for n ≥ 1

n ≤ 2n ≤ 5n

2n = Θ(n)

n

5n

2n

n

Relationship and Difference between
Big-O and Big-Θ

• If f(n) = Θ(g(n)), then f(n) = O(g(n)).

• If f(n) = O(g(n)), then f(n) need not be Θ(g(n)).

• Note: To come up with the Big-O/Θ term, we exclude the lower order
terms of the expression for the time complexity and consider only the
most dominating term. Even for the most dominating term, we omit
any constant coefficient and only include the variable part inside the
asymptotic notation.

• Big-Θ provides a tight bound (useful for precise analysis); whereas,
Big-O provides an upper bound (useful for worst-case analysis).

• Examples:

(1) 5n2 + 7n + 2 = Θ(n2)
– Also, 5n2 + 7n + 2 = O(n2)

(2) 5n2 + 7n + 2 = O(n3),

Also, 5n2 + 7n + 2 = O(n4), But, 5n2 + 7n + 2 ≠ Θ(n3) and ≠ Θ(n4)

• The Big-O complexity of an algorithm can be technically more than
one value, but the Big-Θ of an algorithm can be only one value and it
provides a tight bound. For example, if an algorithm has a complexity
of O(n3), its time complexity can technically be also considered as
O(n4).

When to use
Big-O and

Big-Θ
• If the best-case and

worst-case time
complexity of an
algorithm is guaranteed
to be of a certain
polynomial all the time,
then we will use Big-Θ.

• If the time complexity of
an algorithm could
fluctuate from a best-
case to worst-case of
different rates, we will
use Big-O notation as it
is not possible to come
up with a Big-Θ for such
algorithms.

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

O(n) only

and not

Θ(n)

Θ(n)

�It is also

O(n)

Another Example to Decide
whether Big-O or Big-Θ

Skeleton of a pseudo code

Input size: n

Begin Algorithm

If (certain condition) then

for (i = 1 to n) do

print a statement in unit time

end for

else

for (i = 1 to n) do

for (j = 1 to n) do

print a statement in unit time

end for

end for

End Algorithm

Best Case

The condition in the if block

is true

-- Loop run ‘n’ times

Worst Case

The condition in the if block

is false

-- Loop run ‘n2’ times

Time Complexity: O(n2)

It is not possible to come up

with a Θ-based time complexity

for this algorithm.

Asymptotic Notations: Examples
• Let t(n) and g(n) be any non-negative functions defined on

a set of all real numbers.

• We say t(n) = O(g(n)) for all functions t(n) that have a

lower or the same order of growth as g(n), within a

constant multiple as n � ∞.

– Examples:

• We say t(n) = Θ(g(n)) for all functions t(n) that have the

same order of growth as g(n), within a constant multiple

as n � ∞.

– Examples: an2 + bn + c = Θ(n2);

n2 + logn = Θ(n2)

Useful Property of Asymptotic
Notations

• If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)) , then

t1(n) + t2(n) ∈ O(max{g1(n), g2(n)})

• If t1(n) ∈ Θ(g1(n)) and t2(n) ∈ Θ(g2(n)) , then

t1(n) + t2(n) ∈ Θ(max{g1(n), g2(n)})

Using Limits to Compare Order of Growth

The first case means t(n) = O(g(n)

if the second case is true, then t(n) = Θ(g(n))

The last case means g(n) = O(t(n))

L’Hopital’s Rule

Note: t’(n) and g’(n) are first-order derivatives of t(n) and g(n)

Stirling’s Formula

Example (1)
• Let f(n) = 5n3 + 6n + 2. Find a function g(n) such that f(n) =

O(g(n)) and f(n) ≠ ϴ(g(n)). Show that your choice for g(n) is
correct using the Limits approach.

• Solution:

• We need to function for g(n) that must gro faster than f(n).

• Let g(n) = n4.

0
265

lim
265

lim
)(

)(
lim

434

3

=







++=

++
=

∞→∞→∞→ nnnn

nn

ng

nf

nnn

The limit value is 0. Hence, the denominator grows faster than the numerator.

f(n) = O(g(n))

5n3 + 6n + 2 = O(n4)

Example (2)
• Let

• Find a function g(n) such that f(n) = Θ(g(n)) using the
Limits approach.

• Solution:

• The most dominating term inside the square root is the
n2 term.

245)(2
++= nnnf

nnng ==
2)(

5
24

5lim
245

lim

245
lim

)(

)(
lim

22

2

2

2

=++=
++

=

++
=

∞→∞→

∞→∞→

nnn

nn

n

nn

ng

nf

nn

nn

(a non-zero

constant)

Hence, f(n) = Θ(g(n)) = Θ(n)

Example (3)

• Relate the two functions f(n) = n(n-1)/2 and g(n)
= n2 using the most appropriate asymptotic
notation.

• Solution:

2

11
1lim

2

1
lim

2

12

)1(

lim
)(

)(
lim

2

2

2
=








−=

−
=








 −

=
∞→∞→∞→∞→ nn

nn

n

nn

ng

nf

nnnn

(a non-zero

constant)

Hence, f(n) = Θ(g(n)); that is, n(n-1)/2 = Θ(n2).

Logarithm Basics
an

b bna =⇒=log
38

2 283log =⇒=

q

b

p

b

qp

b logloglog *
+=

q

b

p

b

qp

b logloglog /
−=

b

e

n

en

b
log

log
log =

b

n
n

b

10

10

log

log
log =

22
log

log
log

e

n

en
=

() 







=)(

)(

1
log)(

nf
dn

d

nfdn

d nf

e

()
n

n
n

n
dn

d

ndn

d n

e

2
2*

11
log

2

2

2

2

==







=

()

nn

n
dn

d

ndn

d n

e

1
1*

1

1
log

==









=

Example (4)
• Compare the growth rate of the two functions logn and √n

• Solution:

nng

nf
n

=

=

)(

log)(2

∞

∞
==

∞→∞→ nng

nf
n

nn

2log
lim

)(

)(
lim

Differentiate the numerator and denominator

separately with respect to n

222

22

log*

11
*

log

1
log

log

1

log

log
log)('

ee

n

e

e

e

n

en

nndn

d

dn

d

dn

d
nf

===









==

2/1

1
2

1

2/1

2

1

2

1

)('

n
n

n
dn

d
n

dn

d
ng

==

==

−

Apply L’Hopital’s Rule

)('

)('
lim

)(

)(
lim

ng

nf

ng

nf

nn ∞→∞→
=

Example (4)
• Compare the growth rate of the two functions logn and √n

• Solution:

nng

nf
n

=

=

)(

log)(2

∞

∞
==

∞→∞→ nng

nf
n

nn

2log
lim

)(

)(
lim

Apply L’Hopital’s Rule

)('

)('
lim

)(

)(
lim

ng

nf

ng

nf

nn ∞→∞→
=

0*
log

2
lim

2

1

log*

1

lim

)('

)('
lim

)(

)(
lim

2/1

2

2/1

2

==



















=

=

∞→∞→

∞→∞→

n

n

n

n

ng

nf

ng

nf

e
n

e

n

nn
Hence, the denominator

grows faster.

f(n) = O(g(n))

()nO
n

=2log

Example (5)
• Compare the growth rate of the two functions

log2n and logn2

• Solution:

2

2

log)(

log)(

nng

nnf

=

=

∞==
∞→∞→ n

nn

ng

nf

nn log*2

log*log
lim

)(

)(
lim

()nOn
22 loglog =

nnn

nnnng

nnnnf

log*2loglog

)*log(log)(

log*loglog)(

2

2

=+=

==

==

Hence, f(n) grows faster than g(n).
g(n) = O(f(n))

Probability-based Average-Case
Analysis of Sequential Search

• If p is the probability of finding an element in the list, then (1-p) is the
probability of not finding an element in the list.

To do a successful search on a list of ‘n’ elements,

the average number of comparisons would be the

sum of the number of comparisons to search

for each of the elements divided by the total number

of elements n

nn

n

n

2

)1(

...321

+
=

++++

To do a unsuccessful search on a list of ‘n’ elements, the average number

of comparisons would be ‘n’, as it is the number of comparisons it would

take for a unsuccessful search with any key that is not in the list.

Average Number of Comparisons for Sequential Search

= p * (Average # Comparisons for successful search) +

(1-p) * (Average # Comparisons for unsuccessful search)

() { } np
n

pnp
n

nn
p *)1(

2

1
)()1(

2

)1(
* −+







 +
=−+
















 +

Time Efficiency of Non-recursive
Algorithms: General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of size

n, if the number of times the basic operation gets executed

varies with specific instances (inputs)

• Set up a sum for the number of times the basic operation is

executed

• Simplify the sum using standard formulas and rules

Useful Summation Formulas and Rules

Σl≤i≤u1 = 1+1+…+1 = u - l + 1

In particular, Σl≤i≤n1 = n - 1 + 1 = n ∈ Θ(n)

Σ1≤i≤n i = 1+2+…+n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2)

Σ1≤i≤n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)

Σ0≤i≤n ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a ≠ 1

In particular, Σ0≤i≤n 2i = 20 + 21 +…+ 2n = 2n+1 - 1 ∈ Θ(2n)

Σ(ai ± bi) = Σai ± Σbi Σcai = cΣai Σl≤i≤uai = Σl≤i≤mai + Σm+1≤i≤uai

∑
=

+−=
u

li

lu)1(1

Examples on Summation
• 1 + 3 + 5 + 7 + …. + 999

• 2 + 4 + 8 + 16 + … + 1024

Example 1: Finding Max. Element

• The basic operation is the comparison executed on each repetition of
the loop.

• In this algorithm, the number of comparisons is the same for all arrays
of size n.

• The algorithm makes one comparison on each execution of the loop,
which is repeated for each value of the loop’s variable i within the
bounds 1 and n-1 (inclusively). Hence,

Note: Best case = Worst case for this problem

Example 2: Sequential Key Search

• Worst-Case: Cworst(n) = n

• Best-Case: Cbest(n) = 1

Asymptotic time complexity: O(n)

Basic Operation: Comparison

Example 3: Element Uniqueness Problem

Best-case situation:

If the two first elements of the array are the same, then we can exit
after one comparison. Best case = 1 comparison.

Worst-case situation:

• The basic operation is the comparison in the inner loop. The worst-
case happens for two-kinds of inputs:

– Arrays with no equal elements

– Arrays in which only the last two elements are the pair of equal
elements

Example 3: Element Uniqueness Problem
• For these kinds of inputs, one comparison is made for each repetition

of the innermost loop, i.e., for each value of the loop’s variable j
between its limits i+1 and n-1; and this is repeated for each value of the
outer loop i.e., for each value of the loop’s variable i between its limits 0
and n-2. Accordingly, we get,

Asymptotic time complexity = O(n2)

Best-case: 1 comparison

Worst-case: n2/2 comparisons

Example 4: Bubble Sort
• A classical sorting algorithm in which (for an array of ‘n’

elements, with indexes 0 to n-1) during the ith iteration,
the (n-i-1)th largest element is bubbled all the way to its
final position.

• During the ith iteration, starting from index j = 0 to n-i-2,
the element at index j is compared with the element at
index j+1 and is swapped if the former is larger than the
latter.

– Optimization: If there is no swap during an iteration, the array is
sorted and we can stop!

• Example

45 78 23 12 59 72

Iteration 0 45 23 12 59 72 78

Iteration 1 23 12 45 59 72 78

Iteration 2 12 23 45 59 72 78

Iteration 3 12 23 45 59 72 78

(no swap: STOP!!)

0 1 2 3 4 5

78 72 59 45 23 12

Iteration 0 72 59 45 23 12 78

Iteration 1 59 45 23 12 72 78

Iteration 2 45 23 12 59 72 78

Iteration 3 23 12 45 59 72 78

Iteration 4 12 23 45 59 72 78

Bubble Sort: Pseudo Code and
Analysis

Input: Array A [0….n-1]

Begin

for (i = 0 to n-2) do

boolean didSwap = false

for (j = 0 to n-i-2) do

if A[j] > A[j+1] then

swap(A[j], A[j+1])

didSwap = true

end if

end for

if (didSwap == false) then

return; // STOP the algorithm

end if

end for

End

Best Case (array is already sorted):

1 Iteration
(i = 0): j = 0 to n-2
n-1 comparisons ~ n

Worst Case (array is reverse sorted):

all iterations

~ n2
Asymptotic
time complexity

= O(n2)

Example 5: Insertion Sort
• Given an array A[0…n-1], at any time, we have the array

divided into two parts: A[0,…,i-1] and A[i…n-1].
– The A[0…i-1] is the sorted part and A[i…n-1] is the unsorted part.

– In any iteration, we pick an element v = A[i] and scan through the
sorted sequence A[0…i-1] to insert v at the appropriate position.

• The scanning is proceeded from right to left (i.e., for index j
running from i-1 to 0) until we find the right position for v.

• During this scanning process, v = A[i] is compared with A[j].

• If A[j] > v, then we v has to be placed somewhere before A[j] in the
final sorted sequence. So, A[j] cannot be at its current position (in
the final sorted sequence) and has to move at least one position to
the right. So, we copy A[j] to A[j+1] and decrement the index j, so
that we now compare v with the next element to the left.

• If A[j] ≤ v, we have found the right position for v; we copy v to
A[j+1]. This also provides the stable property, in case v = A[j].

Insertion Sort
Pseudo Code and Analysis

The element A[j] is not in its final position

Needs to be moved to the right

// v < A[j]

Since the sub array from index 0 to i-1 is

sorted, there is no way we can move ‘v’

further to the left, if we come across an A[j]

such that v ≥ A[j]

Best Case: If the array is already sorted

For each value of index i, we just do one

comparison (A[i] with A[i-1]), and decide to

keep v = A[i] at its current location. Index i

varies from 1 to n-1. Hence, there are ‘n-1’

comparisons.

Worst Case: If the array is reverse sorted. For each value

of index i, the element A[i] needs to be compared with

all the values to its left (i.e., from j index i-1 to 0).

∑∑ ∑ ∑ ∑∑
−

= −=

−

=

−

=

−

=

−

=

−
==+−−==

1

1

0

1

1

1

1

1

1

1

1

0 2

)1(
10)1(11

n

i ij

n

i

n

i

n

i

i

j

nn
ii

Average Case: On average for a random input sequence, we would be visiting half

of the sorted sequence A[0…i-1] to put A[i] at the proper position.

∑ ∑∑∑ ∑
−

=

−

=

−

=

−

=

−

−=

+=
+

=+
−

==
1

1

1

1

1

1

1

1

2/)1(

1

)1(
2

1

2

)1(
1

2

)1(
1)(

n

i

n

i

n

i

n

i

i

ij

i
ii

nC

Example: Given sequence (also initial): 45 23 8 12 90 21

Iteration 1 (v = 23):

45 45 8 12 90 21

23 45 8 12 90 21

Iteration 2 (v = 8):

23 45 45 12 90 21

23 23 45 12 90 21

8 23 45 12 90 21

Iteration 3 (v = 12):

8 23 45 45 90 21

8 23 23 45 90 21

8 12 23 45 90 21

Iteration 4 (v = 90):

8 12 23 45 90 21

9 12 23 45 90 21

Iteration 5 (v = 21):

9 12 23 45 90 90

9 12 23 45 45 90

9 12 23 23 45 90

9 12 21 23 45 90

The colored elements are in the sorted sequence

and the circled element is at index j of the algorithm.

Index

-1

Asymptotic

time complexity

= O(n2)

Considering the

Best case and

Worst case

4

1
1

2

)1(

2

1
]1...321[

2

1
]...32[

2

1 2
−+

=







−

+
=−++++=+++=

nnnn
nn

Property: It takes steps to ‘k-tuple’
an integer from 1 to a value less than or equal to n.

• Verification (k=2): It takes

steps to double an
integer from 1 to a value

less than or equal to n.

– Example: Let n = 30

– Initial: j = 1

– Step 1: j = j * 2 = 1 * 2 = 2

– Step 2: j = j * 2 = 2 * 2 = 4

– Step 3: j = j * 2 = 4 * 2 = 8

– Step 4: j = j * 2 = 8 * 2 = 16

– Step 5: j = j * 2 = 16 * 2 = 32

• Note:

 log2

n

 log2

30 4=

• Verification (k=3): It takes

steps to triple an
integer from 1 to a value

less than or equal to n.

– Example: Let n = 30

– Initial j = 1

– Step 1: j = j * 3 = 1 * 3 = 3

– Step 2: j = j * 3 = 3 * 3 = 9

– Step 3: j = j * 3 = 9 * 3 = 27

– Step 4: j = j * 3 = 27 * 3 = 81

• Note:

 log3

n

 log3

30 3=

 log (log)k

n
n= Θ

Example 6 (1): Logarithmic Time
Complexity Analysis

Input: n

k = 0

for (i = n/2; i ≤ n; i++) {

for (j = 1; j ≤ n; j = j * 2) {

k = k + n/2

}

}

Basic operation: The division ‘/’

inside the inner loop

We know the j-loop will run

ϴ(logn) times for a particular value of i.

times the basic operation is executed

()Θ Θ Θ Θ Θ(log) (log) (log) * * (log) log
//

n n n n
n n

n n n
i n

n

i n

n

= = − +






 = +







 =

==

∑∑ 1
2

1
2

1
22

Input: n

k = 0

for (i = n/2; i ≤ n; i++) {

for (j = 2; j ≤ n; j = j * 2) {

k = k + n/2

}

}

Still, for a particular value of i,

we can say that the j-loop will

run ϴ(logn) times (even though the

starting value for j is 2 and not 1)

and the whole algorithm will run in

ϴ(nlogn) time

Example 6 (2): Logarithmic Time
Complexity Analysis

Input: n

a = 0; j = n

while (j > 0) do

a = a + j

j = j / 2

end while

The property can also be applied for

division: It takes ϴ(logn) steps to

reduce an integer by a factor of 1/k

in each step, all the way to 1.

Time Efficiency of Recursive
Algorithms: General Plan for Analysis

• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is executed may vary
on different inputs of the same size. (If it may, the worst, average, and
best cases must be investigated separately.)

• Set up a recurrence relation with an appropriate initial condition
expressing the number of times the basic op. is executed.

• Solve the recurrence (or, at the very least, establish its solution’s order
of growth) by backward substitutions or another method.

Recursive Evaluation of n!
Definition: n ! = 1 ∗∗∗∗ 2 ∗∗∗∗ … ∗∗∗∗(n-1) ∗∗∗∗ n for n ≥ 1 and 0! = 1

• Recursive definition of n!: F(n) = F(n-1) ∗∗∗∗ n for n ≥ 1 and

F(0) = 1

M(nM(n--1) = M(n1) = M(n--2) + 1; 2) + 1; M(nM(n--2) = M(n2) = M(n--3)+13)+1

M(nM(n) = [M(n) = [M(n--2)+1] + 1 = M(n2)+1] + 1 = M(n--2) + 2 = [M(n2) + 2 = [M(n--3)+1+2] = M(n3)+1+2] = M(n--3) + 3 = 3) + 3 = M(nM(n--ii) + i) + i

for 0 for 0 ≤≤ i i ≤≤ nn

Put i = n; Put i = n; M(nM(n) =) = M(nM(n--nn) + n = M(0) + n = 0 + n = n) + n = M(0) + n = 0 + n = n

Overall time Complexity: Θ(n)

YouTube Link: https://www.youtube.com/watch?v=K25MWuKKYAY

Hint: To find the upper

limit for i, put n-i is

equal to the value of

of n in the basic

condition; in this case

it is 0

Counting the # Bits of an Integer

bits (n) = # bits() + 1; for n > 1

bits (1) = 1

Either Division or Addition could be considered the

Basic operation, as both are executed once for each

recursion. We will treat “addition” as the basic operation.

Let A(n) be the number of additions needed to compute # bits(n)

Additions

Since the recursive calls end when n is equal to 1 and there are no additions

made, the initial condition is: A(1) = 0.

Counting the # Bits of an Integer
Solution Approach: If we use the backward substitution method (as we did in

the previous two examples, we will get stuck for values of n that are not powers

of 2).

We proceed by setting n = 2k for k ≥ 0.

New recurrence

relation to solve:

To find the upper limit for i

Put 2k-i = 20

k-i = 0

i = k

Examples for

Solving

Recurrence

RelationsPut n – i = 1

i = n – 1

X(n-i) = X(1)

Put n – i = 1

i = n – 1

Put 3k-i = 30

k – i = 0

i = k

Polynomial Function
• A polynomial is an expression consisting of variables

and coefficients, that involves only the operations of
addition, subtraction, multiplication, and non-negative

integer exponents of variables.

• Example: f(n) = n3 + 4n2 – 2n + 1 is a polynomial (of

degree 3). But f(n) = n-3 + 1 is not a polynomial (because

of the negative exponent).

• A monotonically increasing polynomial function is a

polynomial function (say, of an independent variable n)

whose value either increases or remains the same with
increase in n.

– That is, the function should be a non-decreasing function.

Introduction to Divide and Conquer
• Divide and Conquer is an algorithm design strategy of dividing a

problem into sub problems, solving the sub problems and merging
the solutions of the sub problems to get a solution for the larger
problem.
– Algorithms based on this strategy will be covered in Module 2.

• In this module, we will focus on solving the recurrence relations that
could arise for algorithms based on this strategy.

• Let a problem space of size ‘n’ (for example: an n-element array
used for sorting) be divided into sub problems of size ‘n/b’ each,
which could be either overlapping or non-overlapping.

• Let us say we solve ‘a’ of these sub problems of size n/b.

• Let f(n) represent the time complexity of merging the solutions of the
sub problems to get a solution for the larger problem.

• The general format of the recurrence relation can be then written as
follows: where T(n/b) is the time complexity to solve a sub problem
of size n/b and T(n) is the overall time complexity to solve a problem
of size n.

T(n) = a * T(n/b) + f(n)

Recurrence Relations for Divide and Conquer

Non-Overlapping Sub Problems

‘n’

‘n/3’ ‘n/3’ ‘n/3’

T(n)

= 3 * T (n/3)

+ f(n)

Overlapping Sub Problems (a ≠ b)

‘n’

‘n/3’

‘n/3’

‘n/3’

T(n)

= 4 * T (n/3)

+ f(n)

‘n/3’

Master Theorem to Solve Recurrence
Relations: T(n) = a * T(n/b) + f(n)

Note: To apply Master Theorem, the function f(n) should be a polynomial and

should be monotonically increasing

Note: To satisfy the definition

of a polynomial, ‘d’ should be

a non-negative integer.

where d ≥ 0 and an integer

Master Theorem (O - version)

Note: We will try to apply the Θ – version
wherever possible. If the Θ – version

cannot be applied, we will try to apply the

O-version.

Master Theorem (Θ - version)

1)1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

can be written as

T(n) = 4 T(n/2) + Θ(n)

a = 4; b = 2; d = 1 � a > bd

())()(24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

Can be written as

T(n) = 4 T(n/2) + Θ(n2)

a = 4; b = 2; d = 2 � a = bd

()nnnT log)(2
Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

Can be written as

T(n) = 4 T(n/2) + Θ(n3)

a = 4; b = 2; d = 3 � a < bd

()3)(nnT Θ=

4) 4) T(nT(n) = 4T(n/2) + 1) = 4T(n/2) + 1

Can be written as

T(n) = 4 T(n/2) + Θ(n0)

a = 4; b = 2; d = 0 � a > bd

())()(24log2 nnnT Θ=Θ=

5) T(n) = 4T(n/2) + (1/n)

T(n) = 4T(n/2) + n-1

a = 4, b = 2, d = -1 (< 0)

f(n) = 1/n is not a polynomial.

Master Theorem cannot be applied.

Master Theorem: More Problems

Master Theorem: More Problems

Space-Time Tradeoff

In-place vs. Out-of-place Algorithms
• An algorithm is said to be “in-place” if it uses a minimum

and/or constant amount of extra storage space to
transform or process an input to obtain the desired output.
– Depending on the nature of the problem, an in-place algorithm may

sometime overwrite an input to the desired output as the algorithm
executes (as in the case of in-place sorting algorithms); the output
space may sometimes be a constant (for example in the case of
string-matching algorithms).

• Algorithms that use significant amount of extra storage
space (sometimes, additional space as large as the input
– example: merge sort) are said to be out-of-place in
nature.

• Time-Space Complexity Tradeoffs of Sorting Algorithms:
– In-place sorting algorithms like Selection Sort, Bubble Sort, Insertion Sort

and Quick Sort have a worst-case time complexity of Θ(n2).

– On the other hand, Merge sort has a space-complexity of Θ(n), but has a
worst-case time complexity of Θ(nlogn).

Hash table
• Maps the elements (values) of a collection to a unique key and

stores them as key-value pairs.

• Hash table of size m (where m is the number of unique keys,
ranging from 0 to m-1) uses a hash function H(v) = v mod m

• The hash value (a.k.a. hash index) for an element v is H(v) = v mod
m and corresponds to one of the keys of the hash table.

• The size of the Hash table is typically a prime integer.

• Example: Consider a hash table of size 7. Its hash function is H(v) =
v mod 7.

• Let an array A = {45, 67, 89, 45, 85, 12, 88, 90, 13, 14}

Value, v 45 67 89 45 85 12 88 90 13 14

H(v) = v mod 7 3 4 5 3 1 5 4 6 6 0

0 1 2 3 4 5 6

45

45

67

88
89

12

85 90

13

14

We will implement Hash table as

an array of singly linked lists

Space-Time Tradeoff
• Note: At the worst case, there could be only one linked

list in the hash table (i.e., all the elements map to the
same key).

• On average, we expect the ‘n’ elements to be evenly
divided across the ‘m’ keys, so that the length of a linked
list is n/m. Nevertheless, for a hash table of certain size
(m), ‘n’ is the only variable.

• Space complexity: Θ(n)
– For an array of ‘n’ elements, we need to allocate space for ‘n’

nodes (plus the ‘m’ head nodes) across the ‘m’ linked lists.

– Since usually, n >> m, we just consider the overhead associated
with storing the ‘n’ nodes

• Time complexity:
– Insert/Delete/Lookup: O(n), we may have to traverse the entire

linked list

– isEmpty: O(m), we have to check whether each index in the
Hash table has an empty linked list or not.

Example: Number of Comparisons
Array, A = {45, 23, 11, 78, 89, 44, 22, 28, 41, 30}

H(v) = v mod 7

0 1 2 3 4 5 6Hash table

4523

44

30

1178

22

8928 41

Average Number of Comparisons for a Successful Search (Hash table)

Successful

Search, # comparisons

1

2

3

= (7*1) + (2*2) + (1*3) 14

---------------------------- = ------- = 1.4

10 10

Worst Case Number of Comparisons for a Successful Search (Hash table) = 3

Worst Case Number of Comparisons for an Unsuccessful Search (Hash table) = 3

Example: Number of Comparisons
Array, A = {45, 23, 11, 78, 89, 44, 22, 28, 41, 30}

H(v) = v mod 7

0 1 2 3 4 5 6Hash table

4523

44

30

1178

22

8928 41

Average Number of Comparisons

for a Successful Search (Hash table)

Successful

Search, # comparisons

1

2

3

(7*1) + (2*2) + (1*3) 14

= ---------------------------- = ------- = 1.4

10 10

Worst Case Number of Comparisons
For a Successful Search
For an unsuccessful Search

Average Number of Comparisons

for a Successful Search (Array)

1 + 2 + 3 + … + 10 10*11/2

= --------------------------- = ------------- = 5.5

10 10

Hash table Array
3 10
3 10

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Given two arrays AL (larger array) and AS (smaller array) of distinct
elements, we want to find whether AS is a subset of AL.

• Example: AL = {11, 1, 13, 21, 3, 7}; AS = {11, 3, 7, 1}; AS is a subset of AL.

• Solution: Use (open) hashing. Hash the elements of the larger array, and
for each element in the smaller array: search if it is in the hash table for
the larger array. If even one element in the smaller array is not there in
the larger array, we could stop!

• Time-complexity:
– Θ(n) to construct the hash table on the larger array of size n, and another Θ(n)

to search the elements of the smaller array.

– A brute-force approach would have taken Θ(n2) time.

• Space-complexity: Θ(n) with the hash table approach and Θ(1) with the
brute-force approach.

• Note: The above solution could also be used to find whether two sets are
disjoint or not. Even if one element in the smaller array is there in the
larger array, we could stop!

Applications of Hashing (1)
Finding whether an array is a Subset of another array

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 1}; AS is a subset of AL.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 11) + 2 (for 3) +

1 (for 7) + 2 (for 1) = 6

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 1 (for 11) + 5 (for 3) +

6 (for 7) + 2 (for 1) = 14

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {11, 3, 7, 4}; AS is NOT a subset of AL.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 11) +

2 (for 3) + 1 (for 7) + 0 (for 4)

= 4 comparisons

The brute-force approach would take: 1 (for 11) + 5 (for 3) + 6 (for 7) + 6 (for 4)

= 18 comparisons.

Applications of Hashing (1)
Finding whether two arrays are disjoint are not

• Example 1: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 28}; They are disjoint.

• Let H(K) = K mod 5.

0 1 2 3 4

11

1

21

13

3

7

comparisons = 1 (for 22) + 0 (for 25) +

1 (for 27) + 2 (for 28) = 4

Hash table approach

Brute-force approach: Pick every element in the smaller array and do a linear

search for it in the larger array.

comparisons = 6 comparisons for each element * 4 = 24

• Example 2: AL = {11, 1, 13, 21, 3, 7};

• AS = {22, 25, 27, 1}; They are NOT disjoint.

• Let H(K) = K mod 5.

The hash table approach

would take just 1 (for 22) +

0 (for 25) + 1 (for 27) + 2 (for

1) = 4 comparisons

The brute-force approach would take: 6 (for 22) + 6 (for 25) + 6 (for 27) + 2 (for 1)

= 20 comparisons.

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Given an array A of unique integers, we want to find the
contiguous subsequences of length 2 or above as well as the
length of the largest subsequence.

• Assume it takes Θ(1) time to insert or search for an element
in the hash table.

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44

45

55

57

34 43 32 33 91

93

42 31

33

34

35

36

37

41

41

42

43

44

32

33

34

35
36

Applications of Hashing (1)
Finding Consecutive Subsequences in an Array

• Algorithm

Insert the elements of A in a hash table H

Largest Length = 0

for i = 0 to n-1 do
if (A[i] – 1 is not in H) then

j = A[i] // A[i] is the first element of a possible cont. sub seq.

j = j + 1

while (j is in H) do

j = j + 1

end while

if (j – A[i] > 1) then // we have found a cont. sub seq. of length > 1

Print all integers from A[i] … (j-1)

if (Largest Length < j – A[i]) then

Largest Length = j – A[i]

end if

end if

end if

end for

L searches in the Hash table H for

sub sequences of length L

Applications of Hashing (2)
Finding Consecutive Subsequences in an Array

• Time Complexity Analysis

• For each element at index i in the array A we do at least one search (for
element A[i] – 1) in the hash table.

• For every element that is the first element of a sub seq. of length 1 or
above (say length L), we do L searches in the Hash table.

• The sum of all such Ls should be n.

• For an array of size n, we do n + n = 2n = Θ(n) hash searches. The first
‘n’ corresponds to the sum of all the lengths of the contiguous sub
sequences and the second ‘n’ is the sum of all the 1s (one 1 for each
element in the array)

36 41 56 35 44 33

34 92 43 32 42

H(K) = K mod 7

0 1 2 3 4 5 6

36

92

43

41

34

56

35

42

44 3332

36 41 56 35 44 33 34 92 43 32 42

35 40

42

43

44
45

55

57

34 43 32 33 91

93

42 31

33

34

35
36
37

41

