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Minimum Spanning Trees
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Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all 

the vertices in the tree and the sum of the weights of all the edges in 
such a spanning tree should be minimum.

• Kruskal algorithm: Consider edges in the increasing order of their 
weights and include an edge in the tree, if and only if, by including 
the edge in the tree, we do not create a cycle!!
– For a graph of E edges, we spend Θ(E*logE) time to sort the edges and 

this is the most time consuming step of the algorithm.

• To start with, each vertex is in its own component.

• In each iteration, we merge two components using an edge of 
minimum weight connecting the vertices across the two 
components.
– The merged component does not have a cycle and the sum of all the 

edge weights within a component is the minimum possible.

• To detect a cycle, the vertices within a component are identified by 
a component ID. If the edge considered for merging two 
components comprises of end vertices with the same component 
ID, then the edge is not considered for the merger.
– An edge is considered for merging two components only if its end

vertices are identified with different component IDs.



Property of any MST Algorithm
• Given two components of 

vertices (that are a tree by 
themselves of the smallest 
possible weights), any MST 
algorithm would choose an 
edge of the smallest weight 
that could connect the two 
components such that the 
merger of the two 
components is also a tree 
and is of the smallest 
possible weight.
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Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph 

G. Let T’ be a minimum spanning tree for G. We need to show that both 
T and T’ have the same weight.

• Assume that wt( T’ ) < wt(T).

• Hence, there should be an edge e in T that is not in T ’ and likewise 
there should be an edge e’ in T’ that is not in T. Because, if every edge 
of T is in T’, then T = T’ and wt(T) = wt( T’ ).

• Remove the edge e’ that is in T’. This would disconnect the T’ to two 
components. The edge e that was in T and not in T’ should be one of 
the edges (along with e’) that cross the two split components of T’. 

• Depending on how Kruskal’s algorithm works, wt(e) ≤ wt(e’). Hence, the 
two components of T’ could be merged using edge e (instead of e’) and 
this would only lower the weight of T’ from what it was before (and not 
increase it). 

• That is, wt(modified T’) = wt(T’ – {e’} U {e}) ≤ wt(T’).

• We could repeat the above procedure for all edges that are in T’ and 
not in T, and eventually transform T’ to T, without increasing the cost of 
the spanning tree. 

• Hence, T is a minimum spanning tree.



T T’

e’

e

Modified T ’ = T ’ – {e’} U {e}

e’

e e

Let T be the spanning tree determined using Kruskal’s

Let T’ be a hypothetical spanning tree that is a MST such that W(T’) < W(T)

Proof of Correctness

Wt(e) ≤Wt(e’)

Wt(T’ – {e’} U {e}) ≤Wt(T’). Hence, by reducing the edge difference and making

T’ approach T, we are able to only decrease the weight of T’ further, if possible, 
making T’ not a MST to start with, a contradiction.

Candidate edges to merge 
the two components



Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could 

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights, 
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weights. 
Assume there are two different spanning trees T and T’, both are of 
minimum weight; but have at least one edge difference. Let e’ be an 
edge in T’ that is not in T. Removing e’ from T’ will split the latter into 
two components. There should be an edge e that is not part of T’ but 
part of T and should also be a candidate edge to connect the two
components of the split T’. 
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Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights, 

then there can be only one minimum spanning tree of the graph.

• Proof (continued..): If wt(e) < wt(e’), then we could merge the two 
components of T’ using e and this would lower the weight of T’ from 
what it was before. Hence, wt(e) ≥ wt(e’).

• However, since the graph has unique edge weights, wt(e) > wt(e’). But, 
if this is the case, then we could indeed remove e from T and have e’ to 
merge the two components of T resulting from the removal of e. This 
would only lower the weight of T from what it was before. 

• So, if T and T’ have to be two different MSTs � wt(e) = wt(e’).
– This is a contradiction to the given statement that the graph has unique 

edge weights. 

• Not (wt(e) = wt(e’) ) � Not (T and T’ have to be two different MSTs)

• That is, wt(e) ≠ wt(e’) � T and T’ have to be the same MST.

• Hence, if a graph has unique edge weights, there can be only one MST 
for the graph. 
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e’

e

W(e) < W(e’)  => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be two different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3

e’

e
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Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree 

such that the sum of its edge weights is the 
maximum.

• We can find a Maximum Spanning Tree through 
any one of the following ways:
– Straightforward approach: Run Kruskal’s algorithm by 

selecting edges in the decreasing order of edge 
weights (i.e., edge with the largest weight is chosen 
first) as long as the end vertices of an edge are in two 
different components

– Alternate approach (Example for Transform and 
Conquer): Given a weighted graph, set all the edge 
weights to be negative, run a minimum spanning tree 
algorithm on the negative weight graph, then turn all 
the edge weights to positive on the minimum 
spanning tree to get a maximum spanning tree.
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Practice Proofs

• Similar to the proof of correctness that we 
saw for the Minimum Spanning Trees, 
write the proof of correctness for the 
Kruskal’s algorithm to find Maximum 
Spanning Trees.

• Prove the following property: If all the 
edges in a weighted graph have unique 
weights, then there can be only one 
maximum spanning tree of the graph.



Dijkstra’s Shortest Path Algorithm



Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a 
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and  (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by 

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise           

:

∑
=

−
=

k

i

ii vvwpw
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Dijkstra Algorithm
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Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v) 

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we 

will pick a vertex u that has the minimum 

weight path to s. We will then explore 

the neighbors of u for which we have not 

yet found a minimum weight path. We will 

try to see if by going through u, we can 

reduce the weight of path from s to v, 

where v is a neighbor of u.

v

Relaxation Condition
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Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈
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Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1     For each vertex v Є V

2           d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4     d [s] ← 0

5     S ← Φ // set of nodes for which we know the min-weight path from s

6     Q ← V // set of nodes for which we know estimate of min-weight path from s

7    While Q ≠ Φ

8 u ← EXTRACT-MIN(Q) 

9          S ← S U {u}

10         For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13             End If

14         End For

15     End While

16  End Dijkstra

∈

Θ(V) time

Θ(V) time to 

Construct a 

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + Θ(ElogV)

Since the |E| ≥ |V|-1, the VlogV term is dominated by the

ElogV term. Hence, overall complexity = Θ(|E|*log|V|)
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Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d 
through the vertices s – a – b – c – d. 

• Then, the shortest path from a to c is also a – b – c. 

• If there is a path of lower weight than the weight of the 
path from a – b – c, then we could have gone from s to d 
through this alternate path from a to c of lower weight 
than a – b – c. 

• However, if we do that, then the weight of the path s – a 
– b – c – d is not the lowest and there exists an alternate 
path of lower weight. 

• This contradicts our assumption that s – a – b – c – d is 
the shortest (lowest weight) path.



Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 2: The weights of the vertices that are optimized are in the 
non-decreasing (i.e., typically increasing) order.

• Proof: We want to prove that if a vertex u is optimized in an earlier iteration 
(say iteration i), then the weight of the vertex v optimized at a later iteration 
(say iteration j; i < j) is always greater than or equal to that of vertex u.

• Vertex v could be either a neighbor of vertex u or not. In either case, the 
weight(v)i-1 ≥ weight(u)i-1 during the beginning of iteration i as vertex u was 
considered to have been optimized instead of vertex v during this iteration.

• During iteration i: we relax the neighbors of vertex u

– If vertex v is a neighbor of vertex u, weight(v)i could have become less 
than weight(v)i-1, but weight(v)i could never become weight(u)i-1 as all 
edge weights are positive (including the weight of the edge u-v). Hence, 
weight(v)i could have become weight(u)i-1 + weight(u-v), but it will still 
be only less than weight(u)i-1, as weight(u-v) > 0.

• If vertex v is not a neighbor of vertex u, then vertex v should ultimately get 
optimized through some neighbor x (that is not u). But all such neighbors x 
should have weight(x)i-1 ≥ weight(u)i-1, as x was not picked for optimization 
in iteration i. Hence, by going through such neighbors x, the weight(v) 
during iterations i or later, could never become still less than weight(u)i-1, as 
all the edge weights w(x-v) are greater than 0.
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Theorems on Shortest Paths and 
Dijsktra Algorithm

• Theorem 3: When a vertex v is picked for 
relaxation/optimization, every intermediate vertex on the 
s…v shortest path is already optimized. 

• Proof: Let there be a path from s to v that includes a 
vertex x (i.e., s...x...v) for which we have not yet found 
the shortest path. 

• From Theorem 1, shortest path weight(s...x) < shortest 
path weight(s...v). 

• From Theorem 2, vertices are optimized in the non-
decreasing order of shortest path weights. 

• So, if vertex v is picked for optimization based on the 
path s…x…v, then the intermediate vertex x should have 
been already picked (before v) for optimization. A 
contradiction. 



• Theorem 4: When a vertex v is picked for relaxation, we have 
optimized the vertex (i.e., found the shortest path for the vertex from a 
source vertex s). 

• Proof: Let P be the path from source s to vertex v based on whose 
weight we decide to relax the vertex. We want to prove P is the 
optimal path of minimum weight from s to v. We will prove this by 
contradiction.

• Let P’ be a hypothetical shortest path from s to v such that w(P’) < 
w(P)

• If all the intermediate vertices from s to v on the path P’ are already 
optimized, we would have indeed found the shortest path from s to v 
of weight w(P’). 

• If P’ is not chosen and P is chosen by Dijkstra algorithm for optimizing 
vertex v, then there should be at least one intermediate vertex (say 
vertex ‘u’) on the path P’ from s to v that is not yet optimized (and 
because of this we were not able to optimize v from s on path P’). 

• From the earlier Theorems, the weight(s…u in P’) ≥ weight(s…v in P) 
because the algorithm picks vertices for optimization in the non-
decreasing (i.e., increasing) order of shortest path weights. 
– So, even if vertex u on path P’ is chosen for optimization after vertex v on 

path P, the weight of the s…u…v path (P’) would be only larger than that 
of the s…v path (P). Hence, a contradiction. 

• Thus, the path P found by Dijkstra algorithm is the shortest path from 
the source s to a vertex v.



s

v

Path P found by

Dijkstra algorithm

Hypothetical Path P’ that 

We assume: 

Weight(s…v)P’ < Weight(s…v)P

u

From Theorem 3, 

If P’ is an optimal path from s to v, 

then all the intermediate vertices on 

the path should have been already 

optimized, and as a result of the 

accompanying relaxations, we would 

have traced the path P’ from s to v as 

the optimal path instead of the path P. 

Hence, if the algorithm did not pick P’

as the optimal path, there should be 

some intermediate vertex u on the 

path P’ that is not yet optimized and 

all the subsequent vertices on the 

path P’ are not optimized either. 

From Theorem 2,

Weight(s…u)P’ ≥ Weight(s…v)P

From Theorem 1,

Weight(s…u…v)P’ > Weight(s…u)P’

Hence: 

Weight(s…u…v)P’ > Weight(s…v)P

Proof for Theorem 4

(by Contradiction)



Bellman-Ford Algorithm
• The Bellman-Ford algorithm is a single source shortest 

path algorithm that can be run for weighted directed 
graphs with positive and/or negative edge weights.
– Note that the Dijkstra algorithm will work only for graphs with 

positive edge weights, and is typically applied for undirected 
graphs.

• The Bellman-Ford algorithm maintains an estimate of the 
shortest path distance from the source to every vertex 
(including itself) and tries to reduce the estimate as 
much as possible by a going through series of iterations.
– In each iteration, we try to reduce the estimate of the shortest

path distance for a node on the basis of the estimate of the 
shortest path distance for its INCOMING neighbors (calculated in
the previous iteration).

• The incoming neighbor node that gives the smallest value for the
estimate is chosen/updated as the predecessor.

– We go through a series of V-1 iterations for a graph of V vertices.

– Optimization: If the estimates for the shortest path distances do 
not change for any vertex during an iteration, stop the algorithm.



Bellman-Ford Algorithm
Operating Principle
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Bellman-Ford Algorithm: Example 1
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Bellman-Ford Algorithm: Example 1

S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4



Bellman-Ford Algorithm: Example 1
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Bellman-Ford Algorithm: Example 1
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Bellman-Ford Algorithm: Example 1
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Bellman-Ford Algorithm: Example 1

Sample Shortest Path (S…D)

S ……………… A ���� D

S ……….. B ���� A ���� D

S …. C ���� B ���� A ���� D

S ���� C ���� B ���� A ���� D
Note that the property “sub path of a shortest

path is also a shortest path” is still satisfied.

S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5



Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2 Note: An entry in the 

cell (i, j) indicates the 

weight of the edge i � j 

(i.e., row i, column j).

The entries in the 

column j indicate the 

weights of the incoming 

edges to vertex v-j.

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Let v1 be the source



Bellman-Ford Algorithm: Example 2
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Bellman-Ford Algorithm: Example 2
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Bellman-Ford Algorithm: Example 2
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Bellman-Ford Algorithm: Example 2
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Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7



Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

Sample Shortest Path (v1 … v2)

v1 ……………… v3 ���� v2

v1 ……….. v4 ���� v3 ���� v2

v1 …. v5 ���� v4 ���� v3 ���� v2

v1 ���� v5 ���� v4 ���� v3 ���� v2
-4        6       -5       4



Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6



Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4
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1

3 6 7
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Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4
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1
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Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6

Note that the

Estimates did

Not change in

Iterations 2 and 3.

We can STOP!



Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

N
O

T 
N

E
E
D

E
D

V1 ���� V3
V1 ���� V3 ���� V2

V1 ���� V3 ���� V4

V1 ���� V3 ���� V5

Optimization

Possible!!



All Pairs Shortest Paths Problem



Dynamic Programming Algorithm 

for All Pairs Shortest Paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

The algorithm we are going to see
was developed by two people 

Floyd and Warshall. We will shortly
refer to the algorithm as the FW algorithm



FW Algorithm: Operating Principle
• Operating Principle: The vertices are numbered from 1 to n. There are ‘n’

iterations. In the kth iteration, the candidate set of vertices available to 
choose from as intermediate vertices are {1, 2, 3, …, k}.

• Initialization: No vertex is a candidate intermediate vertex. There is a path 
between two vertices only if there is a direct edge between them (i.e., i � j); 
otherwise, not.

• Iteration 1: Candidate intermediate vertex {1}. Hence, the candidate paths 
to choose from are (depending on the graph, the following two may be true):
i � j  (or) i � 1 � j

• Iteration 2: Candidate intermediate vertices {1, 2}. Hence, the candidate 
paths to choose from are (depending on the graph; the following in an 
exhaustive list for a complete graph in case of a brute force approach):

i –> j  (or) i � 1 � j (or) i � 2 � j (or) i � 1 � 2 � j (or) i � 2 � 1 � j

• Iteration 3: Candidate intermediate vertices {1, 2, 3}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an 
exhaustive list for a complete graph in case of a brute force approach):
i –> j  (or) i � 1 � j (or) i � 2 � j (or) i � 3 � j (or) i � 1 � 2 � j (or) i � 2 � 1 �

j (or) i � 1 � 3 � j (or) i � 3 � 1 � j (or) i � 2 � 3 � j (or) i � 3 � 2 � j (or) i 
� 1 � 2 � 3 � j (or) i � 3 � 2 � 1 � j (or) i � 1 � 3 � 2 � j (or) i � 3 � 1 
� 2 � j (or) i � 2 � 3 � 1 � j (or) i � 2 � 1 � 3 � j



i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

πij
(k-1)

πkj
(k-1)

the minimum weight 

path from i to j

involving zero or more 

intermediate vertices 

from the set {1, 2, …, k-1}

the minimum weight 

path from k to j

involving zero or more 

intermediate vertices 

from the set {1, 2, …, k-1}

D(k)[i,j] =  min {

D(k-1)[i,j], 

D(k-1)[i,k]  + D(k-1)[k,j]}

the minimum weight path from i to k 

involving zero or more intermediate 

vertices from the set {1, 2, …, k-1}

FW Algorithm: 
Operating Principle



FW Algorithm: Working Principle
• In iteration k, we highlight the 

row and column 
corresponding to vertex k, and 
check whether the values for 
each of the other cells could 
be reduced from what they 
were prior to that iteration. We 
do not change the values for 
the cells in the row and 
column corresponding to 
vertex k.

k

k

i

j
Cell (i, j) Cell (i, k)

Cell (k, j)

We update a cell (i, j) if

the value in the cell is 

greater than the sum of the 

Values of the cells (i, k) and (k, j)

If we update cell (i, j), we also

update the predecessor for (i, j)

to be the value corresponding to

the predecessor for (k, j) in row k.

k

i

j
Cell (i, j)

Cell (k, j)
Distance 

Matrix
Predecessor

Matrix



FW Algorithm: Example 1 (1)
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Iteration 1



FW Algorithm: Example 1 (1)
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FW Algorithm: Example 1 (2)

1 2
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1
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Iteration 2



FW Algorithm: Example 1 (2)

1 2

3 4

2

1
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Iteration 2



FW Algorithm: Example 1 (3)

1 2
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1
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Iteration 3



FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3



FW Algorithm: Example 1 (4)

1 2
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2

1

3 6 7

Iteration 4



FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4



FW Algorithm: Example 1 (5)

1 2

3 4

2

1

3 6 7

Path from v2 to v4
π (v2 … v4) 
= π (v2 … v3) ���� v3 ���� v4
= π (v2 … v1) ���� v1 ���� v3 ���� v4
= v2 ���� v1 ���� v3 ���� v4

Path from v4 to v2
π (v4 … v2) 
= π (v4 … v3) ���� v3 ���� v2
= π (v4 … v1) ���� v1 ���� v3 ���� v2
= v4 ���� v1 ���� v3 ���� v2



FW Algorithm 
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)



FW Algorithm: Example 2(1)

1 3

45
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Iteration 1



FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1



FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2



FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2



FW Algorithm: Example 2(3)

1 3

45
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Iteration 3



FW Algorithm: Example 2(4)

1 3

45

2

Iteration 4



FW Algorithm: Example 2(5)

1 3

45

2

Iteration 5



FW Algorithm: Example 2(6)

1 3

45

2

Path from v3 to v1
π (v3 … v1) 
= π (v3 … v4) ���� v4 ���� v1
= π (v3 … v2) ���� v2 ���� v4 ���� v1
= v3 ���� v2 ���� v4 ���� v1

Path from v1 to v3
π (v1 … v3) 
= π (v1 … v4) ���� v4 ���� v3
= π (v1 … v5) ���� v5 ���� v4 ���� v3
= v1 ���� v5 ���� v4 ���� v3



Comparison of the Shortest Path 
Algorithms

Θ(V3)Θ(E*V)Θ(E*logV)Time 

Complexity

Positive and/ or 

Negative

Positive and/ or 

Negative

Positive onlyEdge 
Weights

Undirected and 

Directed

DirectedUndirectedTypical 

Graphs

All pairs shortest 

path

Single source 

shortest path

Single source 

shortest path

Type

Floyd-WarshallBellman-FordDijkstra



Number of Walks in a Graph
• An u-v walk between two vertices u and v is a sequence of zero 

or more intermediate vertices (that could be even repeated). 
• The length of a walk is one plus the number of intermediate 

vertices

– Example: 2 – 3 – 1 – 4 – 1 is a walk of length 4.
• A walk is a path if the intermediate vertices, if any, are not 

repeated. 
– Example: 2 – 3 – 1 is a walk as well as a path, but the walk 

2 – 3 – 1 – 4 – 1 is not a path.
• The number of walks of length k between any two vertices in a 

graph could be determined by finding Ak where A is the binary 
adjacency matrix of the graph.

1 2

3

4

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1
3    1     1     0     0

4    1     1     0     0

# Walks of 

Length 2 (A2)

1     2     3     4

1    3     2     1     1

2 2     3     1     1
3    1     1     2     2

4    1     1     2     2

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1
3    1     1     0     0

4    1     1     0     0

x =



Number of Walks in a Graph

1 2

3

4

# Walks of 

Length 3 (A3)

1     2     3     4

1    4     5     5     5

2 5     4     5     5

3    5     5     2     2

4    5     5     2     2

# Walks of 

Length 2 (A2)

1     2     3     4

1    3     2     1     1

2 2     3     1     1

3    1     1     2     2

4    1     1     2     2

Adjacency Matrix 

(A)

1     2     3     4

1    0     1     1     1

2 1     0     1     1

3    1     1     0     0

4    1     1     0     0

x =

• Basic Rules for Matrix Multiplication

• To multiply two matrices A and B and get a product 
matrix P = A * B:

• (1) The number of columns in the first matrix A 
should be equal to the number of rows in the second 
matrix B

• (2) To get the value of a cell (i, j) in the product 
matrix P, do a pair-wise multiplication of the elements 
in row i of the first matrix with the elements in column j 
of the second matrix.



To find # Walks of Length ‘n’

# Walks of Length 4: Find A4.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

a

b

c

d

a   b   c   d

11  2   6   6

2    3   4   4

6    4   5   6

6    4   6   7

A4 = 

To find the number of walks length 4 between 

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.


