
Module 5

Graph Algorithms

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Minimum Spanning Trees

3

Minimum Spanning Tree Problem
• Given a weighted graph, we want to determine a tree that spans all

the vertices in the tree and the sum of the weights of all the edges in
such a spanning tree should be minimum.

• Kruskal algorithm: Consider edges in the increasing order of their
weights and include an edge in the tree, if and only if, by including
the edge in the tree, we do not create a cycle!!
– For a graph of E edges, we spend Θ(E*logE) time to sort the edges and

this is the most time consuming step of the algorithm.

• To start with, each vertex is in its own component.

• In each iteration, we merge two components using an edge of
minimum weight connecting the vertices across the two
components.
– The merged component does not have a cycle and the sum of all the

edge weights within a component is the minimum possible.

• To detect a cycle, the vertices within a component are identified by
a component ID. If the edge considered for merging two
components comprises of end vertices with the same component
ID, then the edge is not considered for the merger.
– An edge is considered for merging two components only if its end

vertices are identified with different component IDs.

Property of any MST Algorithm
• Given two components of

vertices (that are a tree by
themselves of the smallest
possible weights), any MST
algorithm would choose an
edge of the smallest weight
that could connect the two
components such that the
merger of the two
components is also a tree
and is of the smallest
possible weight.

1

3

2

1

3

4

2

3

2

7

5

4

1

3

2

1

3

4

22 1

3

2

1

3

4

22

xws

yvu

3 5

54

2

1

3

14

xws

yvu

Initialization

xws

yvu

Iteration 1

xws

yvu

Iteration 2

1

11

xws

yvu

Iteration 3

11

2

xws

yvu

Iteration 4

11

2 3

xws

yvu
Iteration 5
Min. Spanning Tree

11

2 3

3

s w x

u v y

s w x

u v x

s v x

u v x

s u x

u u x

s u u

u u u

s s s

s s s

MST

Weight

10

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF G G

Initialization

AA B
B

C

C

DA
E E

FF G G

Iteration 1

5

AA B
B

C

C

DA
E C

FF G G

Iteration 2

5 5

AA B
B

C

C

DA
E C

FA G G

Iteration 3

5 5

6

AA B
A

C

C

DA
E C

FA G G

Iteration 4

5 5

6

7

AA B
A

C

A

DA
E A

FA G G

Iteration 5

5 5

6

7

7

AA B
A

C

A

DA
E A

FA G A

Iteration 6: Min. Sp Tree

5 5

6

7

7

9

MST

Weight

39

Proof of Correctness: Kruskal’s Algorithm
• Let T be the spanning tree generated by Kruskal’s algorithm for a graph

G. Let T’ be a minimum spanning tree for G. We need to show that both
T and T’ have the same weight.

• Assume that wt(T’) < wt(T).

• Hence, there should be an edge e in T that is not in T ’ and likewise
there should be an edge e’ in T’ that is not in T. Because, if every edge
of T is in T’, then T = T’ and wt(T) = wt(T’).

• Remove the edge e’ that is in T’. This would disconnect the T’ to two
components. The edge e that was in T and not in T’ should be one of
the edges (along with e’) that cross the two split components of T’.

• Depending on how Kruskal’s algorithm works, wt(e) ≤ wt(e’). Hence, the
two components of T’ could be merged using edge e (instead of e’) and
this would only lower the weight of T’ from what it was before (and not
increase it).

• That is, wt(modified T’) = wt(T’ – {e’} U {e}) ≤ wt(T’).

• We could repeat the above procedure for all edges that are in T’ and
not in T, and eventually transform T’ to T, without increasing the cost of
the spanning tree.

• Hence, T is a minimum spanning tree.

T T’

e’

e

Modified T ’ = T ’ – {e’} U {e}

e’

e e

Let T be the spanning tree determined using Kruskal’s

Let T’ be a hypothetical spanning tree that is a MST such that W(T’) < W(T)

Proof of Correctness

Wt(e) ≤Wt(e’)

Wt(T’ – {e’} U {e}) ≤Wt(T’). Hence, by reducing the edge difference and making

T’ approach T, we are able to only decrease the weight of T’ further, if possible,
making T’ not a MST to start with, a contradiction.

Candidate edges to merge
the two components

Properties of Minimum Spanning Tree
• Property 2: If a graph does not have unique edge weights, there could

be more than one minimum spanning tree for the graph.
• Proof (by Example)

• Property 3: If all the edges in a weighted graph have unique weights,
then there can be only one minimum spanning tree of the graph.

• Proof: Consider a graph G whose edges are of distinct weights.
Assume there are two different spanning trees T and T’, both are of
minimum weight; but have at least one edge difference. Let e’ be an
edge in T’ that is not in T. Removing e’ from T’ will split the latter into
two components. There should be an edge e that is not part of T’ but
part of T and should also be a candidate edge to connect the two
components of the split T’.

1

2

2

1

1

2 1

1

2

1

Graph One Min. Spanning Tree Another Min. Spanning Tree

Properties of Minimum Spanning Tree
• Property 3: If all the edges in a weighted graph have unique weights,

then there can be only one minimum spanning tree of the graph.

• Proof (continued..): If wt(e) < wt(e’), then we could merge the two
components of T’ using e and this would lower the weight of T’ from
what it was before. Hence, wt(e) ≥ wt(e’).

• However, since the graph has unique edge weights, wt(e) > wt(e’). But,
if this is the case, then we could indeed remove e from T and have e’ to
merge the two components of T resulting from the removal of e. This
would only lower the weight of T from what it was before.

• So, if T and T’ have to be two different MSTs � wt(e) = wt(e’).
– This is a contradiction to the given statement that the graph has unique

edge weights.

• Not (wt(e) = wt(e’)) � Not (T and T’ have to be two different MSTs)

• That is, wt(e) ≠ wt(e’) � T and T’ have to be the same MST.

• Hence, if a graph has unique edge weights, there can be only one MST
for the graph.

T T’

e’

e

W(e) < W(e’) => T’ is not a MST

W(e) > W(e’) => T is not a MST

Hence, for both T and T’ to be two different MSTs � W(e) = W(e’).

But the graph has unique edge weights.

W(e) ≠W(e) � Both T and T’ have to be the same.

Assume that both T and T’ are MSTs, but different MSTs to start with.

Property 3

e’

e

Candidate edges to merge
the two components

Maximum Spanning Tree
• A Maximum Spanning Tree is a spanning tree

such that the sum of its edge weights is the
maximum.

• We can find a Maximum Spanning Tree through
any one of the following ways:
– Straightforward approach: Run Kruskal’s algorithm by

selecting edges in the decreasing order of edge
weights (i.e., edge with the largest weight is chosen
first) as long as the end vertices of an edge are in two
different components

– Alternate approach (Example for Transform and
Conquer): Given a weighted graph, set all the edge
weights to be negative, run a minimum spanning tree
algorithm on the negative weight graph, then turn all
the edge weights to positive on the minimum
spanning tree to get a maximum spanning tree.

AA B
B

C

C

DD
E E

FF
G G

5

7

9

8

7
5

15

6
8

11

9

AA B
B

C

C

DD
E E

FF G G

Initialization

AA B
B

C

C

DD
E D

FF G G

Iteration 1 Iteration 2

15

AA B
B

C

C

DD
E D

FF G F

15

11

Iteration 3 Iteration 4

Iteration 5 Iteration 6: Max. Sp Tree

MST

Weight

59

AA B
B

C

C

DD
E D

FD G D

15

11

9

AA B
B

C

C

DB
E B

FB G B

15

11

9

9

AA B
B

C

B

DB
E B

FB G B

15

11

9

9

8
AA B

A

C

A

DA
E A

FA G A

15

11

9

9

87

Practice Proofs

• Similar to the proof of correctness that we
saw for the Minimum Spanning Trees,
write the proof of correctness for the
Kruskal’s algorithm to find Maximum
Spanning Trees.

• Prove the following property: If all the
edges in a weighted graph have unique
weights, then there can be only one
maximum spanning tree of the graph.

Dijkstra’s Shortest Path Algorithm

Shortest Path (Min. Wt. Path) Problem

• Path p of length k from a vertex s to a vertex d is a
sequence (v0, v1, v2, …, vk) of vertices such that v0 = s
and vk = d and (vi-1, vi) Є E, for i =1, 2,…, k

• Weight of a path p = (v0, v1, v2, …, vk) is

• The weight of a shortest path from s to d is given by

δ(s, d) = min {w(p): s d if there is a path from s to d}

= ∞ otherwise

:

∑
=

−
=

k

i

ii vvwpw
1

1),()(

p

Dijkstra Algorithm

20

Principle of Dijkstra Algorithm

0 Ws-u

Ws-v

Path from s to u

s u

W
(u

, v
)

If Ws-v > Ws-u + W(u, v) then

Ws-v = Ws-u + W(u, v)

Predecessor (v) = u

else

Retain the current path from s to v

Principle in a nutshell

During the beginning of each iteration we

will pick a vertex u that has the minimum

weight path to s. We will then explore

the neighbors of u for which we have not

yet found a minimum weight path. We will

try to see if by going through u, we can

reduce the weight of path from s to v,

where v is a neighbor of u.

v

Relaxation Condition

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

5

0 Ws-u

= 40

Ws-v

= 45

Path from s to u

s u

W
(u

, v
)

v

5

Instead of using the current

route from s to v, we will
go through u to reach v from s

We will stay with the current
route we know from s to v.

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

35

0 Ws-u

= 40

Ws-v

= 70

Path from s to u

s u

W
(u

, v
)

v

35

∞∞0

∞∞∞

3 5

54

2

1

3

13

s

u
v

w
x

y

∞30

∞54

3
5

5
4

2

1

3

13

s

u
v

w
x

y

830

644

3
5

54

2

1

3

13

s

u
v

w
x

y

830

644

3 5

54

2

1

3

13

s

u
v

w
x

y
v v

Given Graph, Initialization Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

830

644

3 5

54

2

1

3

13

s

u

w
x

y

730

644

3 5

54

2

1

3

13

s

u

w
x

y

v

730

644

3

4 1 13

s

u

w
x

y

Shortest Path Tree

Dijkstra Algorithm
Example 1

23

0

∞ ∞

∞

∞ ∞

5

7

6

1

3

2

4

3

Initial

A

B D

F

C E

0

5 ∞

∞

3 ∞

5
7

6

1

3

2

4

3

Iteration 1

A

B D

F

C E

0

4 ∞

∞

3 7

5

7

6

1

3

2

4

3

Iteration 2

A

B D

F

C E

0

4 11

∞

3 7

5

7

6

1

3

2

4

3

Iteration 3

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 4

A

B D

F

C E

0

4 9

10

3 7

5

7

6

1

3

2

4

3

Iteration 5

A

B D

F

C E

Shortest Path TreeDijkstra Algorithm
Example 2

0

4 9

10

3 7

1

3

2

4

3A

B D

F

C E

24

Dijkstra Algorithm
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

25

Dijkstra Algorithm: Time Complexity
Begin Algorithm Dijkstra (G, s)

1 For each vertex v Є V

2 d [v] ← ∞ // an estimate of the min-weight path from s to v

3 End For

4 d [s] ← 0

5 S ← Φ // set of nodes for which we know the min-weight path from s

6 Q ← V // set of nodes for which we know estimate of min-weight path from s

7 While Q ≠ Φ

8 u ← EXTRACT-MIN(Q)

9 S ← S U {u}

10 For each vertex v such that (u, v) Є E

11 If v Q and d [v] > d [u] + w (u, v) then

12 d [v] ← d [u] + w (u, v)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

16 End Dijkstra

∈

Θ(V) time

Θ(V) time to

Construct a

Min-heap

done |V| times = Θ(V) time

Each extraction takes Θ(logV) time

done Θ(E) times totally

It takes Θ(logV) time when

done once

Overall Complexity: Θ(V) + Θ(V) + Θ(VlogV) + Θ(ElogV)

Since the |E| ≥ |V|-1, the VlogV term is dominated by the

ElogV term. Hence, overall complexity = Θ(|E|*log|V|)

26

0 ∞ ∞

∞ ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Initial

0 5 ∞

3 ∞ ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 1

0 4 ∞

3 11 ∞

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 2

0 4 10

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 4

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Iteration 5

Shortest Path Tree

Dijkstra Algorithm
Example 3

0 4 9

3 6 6

A B C

DEF

5 6

8 5

3 31 2 2

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 1: Sub path of a shortest path is also shortest.

• Proof: Lets say there is a shortest path from s to d
through the vertices s – a – b – c – d.

• Then, the shortest path from a to c is also a – b – c.

• If there is a path of lower weight than the weight of the
path from a – b – c, then we could have gone from s to d
through this alternate path from a to c of lower weight
than a – b – c.

• However, if we do that, then the weight of the path s – a
– b – c – d is not the lowest and there exists an alternate
path of lower weight.

• This contradicts our assumption that s – a – b – c – d is
the shortest (lowest weight) path.

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 2: The weights of the vertices that are optimized are in the
non-decreasing (i.e., typically increasing) order.

• Proof: We want to prove that if a vertex u is optimized in an earlier iteration
(say iteration i), then the weight of the vertex v optimized at a later iteration
(say iteration j; i < j) is always greater than or equal to that of vertex u.

• Vertex v could be either a neighbor of vertex u or not. In either case, the
weight(v)i-1 ≥ weight(u)i-1 during the beginning of iteration i as vertex u was
considered to have been optimized instead of vertex v during this iteration.

• During iteration i: we relax the neighbors of vertex u

– If vertex v is a neighbor of vertex u, weight(v)i could have become less
than weight(v)i-1, but weight(v)i could never become weight(u)i-1 as all
edge weights are positive (including the weight of the edge u-v). Hence,
weight(v)i could have become weight(u)i-1 + weight(u-v), but it will still
be only less than weight(u)i-1, as weight(u-v) > 0.

• If vertex v is not a neighbor of vertex u, then vertex v should ultimately get
optimized through some neighbor x (that is not u). But all such neighbors x
should have weight(x)i-1 ≥ weight(u)i-1, as x was not picked for optimization
in iteration i. Hence, by going through such neighbors x, the weight(v)
during iterations i or later, could never become still less than weight(u)i-1, as
all the edge weights w(x-v) are greater than 0.

s

Path from s to u

u

v

Weight(u)i-1

Weight(u-v) > 0

Weight(v)i-1Before Iteration i

(at the end of

Iteration i-1)

s

Path from s to u

u

v

Weight(u)i-1

Weight(u-v) > 0

Weight(v)iAt the end of

Iteration i

Weight(v)i-1 ≥ Weight(u)i-1
Weight(v)i ≥ Weight(u)i-1

Proof for Theorem 2

Scenario: Vertex v is a neighbor of Vertex u

s

Path from s to u

u

v

Weight(u)i-1

Weight

(x-v) > 0

Weight(v)i-1
Before Iteration i (at the end of

Iteration i-1)

At the end of

Iteration i

Weight(x)i-1 ≥ Weight(u)i-1

Proof for Theorem 2

Scenario: Vertex v is NOT a neighbor of Vertex u, but
a neighbor of some other vertex x

xWeight(x)i-1

Weight(v)i-1 ≥ Weight(u)i-1

s

Path from s to u

u

v

Weight(u)i-1

Weight

(x-v) > 0

Weight(v)i

xWeight(x)i

Weight(x)i ≥ Weight(u)i-1
Weight(v)i ≥ Weight(u)i-1

Theorems on Shortest Paths and
Dijsktra Algorithm

• Theorem 3: When a vertex v is picked for
relaxation/optimization, every intermediate vertex on the
s…v shortest path is already optimized.

• Proof: Let there be a path from s to v that includes a
vertex x (i.e., s...x...v) for which we have not yet found
the shortest path.

• From Theorem 1, shortest path weight(s...x) < shortest
path weight(s...v).

• From Theorem 2, vertices are optimized in the non-
decreasing order of shortest path weights.

• So, if vertex v is picked for optimization based on the
path s…x…v, then the intermediate vertex x should have
been already picked (before v) for optimization. A
contradiction.

• Theorem 4: When a vertex v is picked for relaxation, we have
optimized the vertex (i.e., found the shortest path for the vertex from a
source vertex s).

• Proof: Let P be the path from source s to vertex v based on whose
weight we decide to relax the vertex. We want to prove P is the
optimal path of minimum weight from s to v. We will prove this by
contradiction.

• Let P’ be a hypothetical shortest path from s to v such that w(P’) <
w(P)

• If all the intermediate vertices from s to v on the path P’ are already
optimized, we would have indeed found the shortest path from s to v
of weight w(P’).

• If P’ is not chosen and P is chosen by Dijkstra algorithm for optimizing
vertex v, then there should be at least one intermediate vertex (say
vertex ‘u’) on the path P’ from s to v that is not yet optimized (and
because of this we were not able to optimize v from s on path P’).

• From the earlier Theorems, the weight(s…u in P’) ≥ weight(s…v in P)
because the algorithm picks vertices for optimization in the non-
decreasing (i.e., increasing) order of shortest path weights.
– So, even if vertex u on path P’ is chosen for optimization after vertex v on

path P, the weight of the s…u…v path (P’) would be only larger than that
of the s…v path (P). Hence, a contradiction.

• Thus, the path P found by Dijkstra algorithm is the shortest path from
the source s to a vertex v.

s

v

Path P found by

Dijkstra algorithm

Hypothetical Path P’ that

We assume:

Weight(s…v)P’ < Weight(s…v)P

u

From Theorem 3,

If P’ is an optimal path from s to v,

then all the intermediate vertices on

the path should have been already

optimized, and as a result of the

accompanying relaxations, we would

have traced the path P’ from s to v as

the optimal path instead of the path P.

Hence, if the algorithm did not pick P’

as the optimal path, there should be

some intermediate vertex u on the

path P’ that is not yet optimized and

all the subsequent vertices on the

path P’ are not optimized either.

From Theorem 2,

Weight(s…u)P’ ≥ Weight(s…v)P

From Theorem 1,

Weight(s…u…v)P’ > Weight(s…u)P’

Hence:

Weight(s…u…v)P’ > Weight(s…v)P

Proof for Theorem 4

(by Contradiction)

Bellman-Ford Algorithm
• The Bellman-Ford algorithm is a single source shortest

path algorithm that can be run for weighted directed
graphs with positive and/or negative edge weights.
– Note that the Dijkstra algorithm will work only for graphs with

positive edge weights, and is typically applied for undirected
graphs.

• The Bellman-Ford algorithm maintains an estimate of the
shortest path distance from the source to every vertex
(including itself) and tries to reduce the estimate as
much as possible by a going through series of iterations.
– In each iteration, we try to reduce the estimate of the shortest

path distance for a node on the basis of the estimate of the
shortest path distance for its INCOMING neighbors (calculated in
the previous iteration).

• The incoming neighbor node that gives the smallest value for the
estimate is chosen/updated as the predecessor.

– We go through a series of V-1 iterations for a graph of V vertices.

– Optimization: If the estimates for the shortest path distances do
not change for any vertex during an iteration, stop the algorithm.

Bellman-Ford Algorithm
Operating Principle

S

N2

N1

N2

N3
S

D

12

14

11

5

2

3

S

N2

N1

N2

N3
S

D

12

14

11

5

2

3

11 + 3 = 14 is lower than

12 + 5 and 14 + 2. So,
N3 is chosen as the

Predecessor for D

Bellman-Ford Algorithm: Example 1

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4

S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

Bellman-Ford Algorithm: Example 1

S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4

Bellman-Ford Algorithm: Example 1

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4
S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

Bellman-Ford Algorithm: Example 1

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4
S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

Bellman-Ford Algorithm: Example 1

S

D2

A

S B

-26

B

A C
D

5
-3

7

C

S A

7 8 D

C A

9 -4
S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

Bellman-Ford Algorithm: Example 1

Sample Shortest Path (S…D)

S ……………… A ���� D

S ……….. B ���� A ���� D

S …. C ���� B ���� A ���� D

S ���� C ���� B ���� A ���� D
Note that the property “sub path of a shortest

path is also a shortest path” is still satisfied.

S

A B

C D

6

7

9

2

8 -4 -3
7

-2
5

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2 Note: An entry in the

cell (i, j) indicates the

weight of the edge i � j

(i.e., row i, column j).

The entries in the

column j indicate the

weights of the incoming

edges to vertex v-j.

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Let v1 be the source

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

v1

v4

2

v2

v1

3

v3

4

v3

v1

8

v4

-5

v4

v2 v5

1 6

v5

v1 v2

-4 7

Bellman-Ford Algorithm: Example 2

v1 v3

v4v5

v2

Sample Shortest Path (v1 … v2)

v1 ……………… v3 ���� v2

v1 ……….. v4 ���� v3 ���� v2

v1 …. v5 ���� v4 ���� v3 ���� v2

v1 ���� v5 ���� v4 ���� v3 ���� v2
-4 6 -5 4

Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6

Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6

Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6

Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

v1

v4

v2

v3

7

v3

v1

3

v4

v3

1

v5

v3 v4

3 5

v2

2 6

Note that the

Estimates did

Not change in

Iterations 2 and 3.

We can STOP!

Bellman-Ford Algorithm: Example 3

v1 v2

v3 v4

2

1

3 6 7

v5
3

5

N
O

T
N

E
E
D

E
D

V1 ���� V3
V1 ���� V3 ���� V2

V1 ���� V3 ���� V4

V1 ���� V3 ���� V5

Optimization

Possible!!

All Pairs Shortest Paths Problem

Dynamic Programming Algorithm

for All Pairs Shortest Paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

The algorithm we are going to see
was developed by two people

Floyd and Warshall. We will shortly
refer to the algorithm as the FW algorithm

FW Algorithm: Operating Principle
• Operating Principle: The vertices are numbered from 1 to n. There are ‘n’

iterations. In the kth iteration, the candidate set of vertices available to
choose from as intermediate vertices are {1, 2, 3, …, k}.

• Initialization: No vertex is a candidate intermediate vertex. There is a path
between two vertices only if there is a direct edge between them (i.e., i � j);
otherwise, not.

• Iteration 1: Candidate intermediate vertex {1}. Hence, the candidate paths
to choose from are (depending on the graph, the following two may be true):
i � j (or) i � 1 � j

• Iteration 2: Candidate intermediate vertices {1, 2}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):

i –> j (or) i � 1 � j (or) i � 2 � j (or) i � 1 � 2 � j (or) i � 2 � 1 � j

• Iteration 3: Candidate intermediate vertices {1, 2, 3}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):
i –> j (or) i � 1 � j (or) i � 2 � j (or) i � 3 � j (or) i � 1 � 2 � j (or) i � 2 � 1 �

j (or) i � 1 � 3 � j (or) i � 3 � 1 � j (or) i � 2 � 3 � j (or) i � 3 � 2 � j (or) i
� 1 � 2 � 3 � j (or) i � 3 � 2 � 1 � j (or) i � 1 � 3 � 2 � j (or) i � 3 � 1
� 2 � j (or) i � 2 � 3 � 1 � j (or) i � 2 � 1 � 3 � j

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

πij
(k-1)

πkj
(k-1)

the minimum weight

path from i to j

involving zero or more

intermediate vertices

from the set {1, 2, …, k-1}

the minimum weight

path from k to j

involving zero or more

intermediate vertices

from the set {1, 2, …, k-1}

D(k)[i,j] = min {

D(k-1)[i,j],

D(k-1)[i,k] + D(k-1)[k,j]}

the minimum weight path from i to k

involving zero or more intermediate

vertices from the set {1, 2, …, k-1}

FW Algorithm:
Operating Principle

FW Algorithm: Working Principle
• In iteration k, we highlight the

row and column
corresponding to vertex k, and
check whether the values for
each of the other cells could
be reduced from what they
were prior to that iteration. We
do not change the values for
the cells in the row and
column corresponding to
vertex k.

k

k

i

j
Cell (i, j) Cell (i, k)

Cell (k, j)

We update a cell (i, j) if

the value in the cell is

greater than the sum of the

Values of the cells (i, k) and (k, j)

If we update cell (i, j), we also

update the predecessor for (i, j)

to be the value corresponding to

the predecessor for (k, j) in row k.

k

i

j
Cell (i, j)

Cell (k, j)
Distance

Matrix
Predecessor

Matrix

FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1

FW Algorithm: Example 1 (1)

1 2

3 4

2

1

3 6 7

Iteration 1

FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2

FW Algorithm: Example 1 (2)

1 2

3 4

2

1

3 6 7

Iteration 2

FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3

FW Algorithm: Example 1 (3)

1 2

3 4

2

1

3 6 7

Iteration 3

FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4

FW Algorithm: Example 1 (4)

1 2

3 4

2

1

3 6 7

Iteration 4

FW Algorithm: Example 1 (5)

1 2

3 4

2

1

3 6 7

Path from v2 to v4
π (v2 … v4)
= π (v2 … v3) ���� v3 ���� v4
= π (v2 … v1) ���� v1 ���� v3 ���� v4
= v2 ���� v1 ���� v3 ���� v4

Path from v4 to v2
π (v4 … v2)
= π (v4 … v3) ���� v3 ���� v2
= π (v4 … v1) ���� v1 ���� v3 ���� v2
= v4 ���� v1 ���� v3 ���� v2

FW Algorithm
(pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Θ(n2)

FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1

FW Algorithm: Example 2(1)

1 3

45

2

Iteration 1

FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2

FW Algorithm: Example 2(2)

1 3

45

2

Iteration 2

FW Algorithm: Example 2(3)

1 3

45

2

Iteration 3

FW Algorithm: Example 2(4)

1 3

45

2

Iteration 4

FW Algorithm: Example 2(5)

1 3

45

2

Iteration 5

FW Algorithm: Example 2(6)

1 3

45

2

Path from v3 to v1
π (v3 … v1)
= π (v3 … v4) ���� v4 ���� v1
= π (v3 … v2) ���� v2 ���� v4 ���� v1
= v3 ���� v2 ���� v4 ���� v1

Path from v1 to v3
π (v1 … v3)
= π (v1 … v4) ���� v4 ���� v3
= π (v1 … v5) ���� v5 ���� v4 ���� v3
= v1 ���� v5 ���� v4 ���� v3

Comparison of the Shortest Path
Algorithms

Θ(V3)Θ(E*V)Θ(E*logV)Time

Complexity

Positive and/ or

Negative

Positive and/ or

Negative

Positive onlyEdge
Weights

Undirected and

Directed

DirectedUndirectedTypical

Graphs

All pairs shortest

path

Single source

shortest path

Single source

shortest path

Type

Floyd-WarshallBellman-FordDijkstra

Number of Walks in a Graph
• An u-v walk between two vertices u and v is a sequence of zero

or more intermediate vertices (that could be even repeated).
• The length of a walk is one plus the number of intermediate

vertices

– Example: 2 – 3 – 1 – 4 – 1 is a walk of length 4.
• A walk is a path if the intermediate vertices, if any, are not

repeated.
– Example: 2 – 3 – 1 is a walk as well as a path, but the walk

2 – 3 – 1 – 4 – 1 is not a path.
• The number of walks of length k between any two vertices in a

graph could be determined by finding Ak where A is the binary
adjacency matrix of the graph.

1 2

3

4

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1
3 1 1 0 0

4 1 1 0 0

Walks of

Length 2 (A2)

1 2 3 4

1 3 2 1 1

2 2 3 1 1
3 1 1 2 2

4 1 1 2 2

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1
3 1 1 0 0

4 1 1 0 0

x =

Number of Walks in a Graph

1 2

3

4

Walks of

Length 3 (A3)

1 2 3 4

1 4 5 5 5

2 5 4 5 5

3 5 5 2 2

4 5 5 2 2

Walks of

Length 2 (A2)

1 2 3 4

1 3 2 1 1

2 2 3 1 1

3 1 1 2 2

4 1 1 2 2

Adjacency Matrix

(A)

1 2 3 4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 0

4 1 1 0 0

x =

• Basic Rules for Matrix Multiplication

• To multiply two matrices A and B and get a product
matrix P = A * B:

• (1) The number of columns in the first matrix A
should be equal to the number of rows in the second
matrix B

• (2) To get the value of a cell (i, j) in the product
matrix P, do a pair-wise multiplication of the elements
in row i of the first matrix with the elements in column j
of the second matrix.

To find # Walks of Length ‘n’

Walks of Length 4: Find A4.

Note: Rule for Matrix Multiplication

To find the value of an entry in cell (i, j) in the product matrix P = A * B,

Do a pair-wise multiplication and addition of the elements in row ‘i’ of the first matrix A

and the elements in column ‘j’ of the second matrix B.

x

a

b

c

d

a b c d

11 2 6 6

2 3 4 4

6 4 5 6

6 4 6 7

A4 =

To find the number of walks length 4 between

vertices b and c, just simply do a pair-wise multiplication

and addition of the elements corresponding to the row

for vertex ‘b’ in A2 with the elements corresponding to

the column for vertex ‘c’ in A2.

