
CSC 323 Algorithm Design and Analysis, Fall 2018

Instructor: Dr. Natarajan Meghanathan

Project 1: Brute Force Algorithm for the Element Uniqueness Problem

Due by: Sept. 20th, 11.30 AM

In this project, you will implement the brute force algorithm discussed in Module 1 for the "Element Uniqueness

Problem." Each of you have been assigned two 'm' values that correspond to the maximum value for an element in

the array. The two 'm' values are independent of each other and should be considered separately.

For a particular 'm' value, the values for the array size 'n' are: 0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 0.6m, 0.7m, 0.8m,

0.9m, m. For example, if m = 100, the values of the array size 'n' are: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

As part of your code, you should generate an array of size 'n' whose values are generated randomly in the range

[1...m]. Your algorithm should keep track of the number of comparisons needed to determine whether the array of

random elements (generated as above) is unique or not.

You should run your algorithm/code several times (say, 10000 times using an automated loop) for each (n, m) pair

and determine the average number of comparisons.

For each of the two 'm' values (with 'n' varying from 0.1m to m as described above), plot the values for 'n' vs. the

average number of comparisons for the n value.

Maximum Possible value (m) of the elements in your arrays:

Student Name m values Student Name m values

Clark, Lavaskie 100, 1000 Manuel, Jackie 1000, 10000

Epps, Justin 200, 2000 McIntosh, Blair 1100, 11000

Harris, James 300, 3000 Sheffey, Varlin 1200, 12000

Hester, Larriel 400, 4000 Simmons, Jetnya 1300, 13000

Hopson, Shanice 500, 5000 Thomas, Eriana 1400, 14000

Jackson, Martice 600, 6000 Walker, Brandon 1500, 15000

Jones, Demarius 700, 7000 Wynn, Marcus 1600, 16000

Kang, Ning 800, 8000 Zimmerman, Taba 1700, 17000

Kirk, Damon 900, 9000

Note (For C++): For each iteration, if you create the array using dynamic memory allocation (for example, shown

below), then delete the allocated memory at the end of the iteration. This will prevent you from running out of

memory while running the 10000 iterations, especially with larger array size.

int *array = new int[numElements]; // at the beginning of an iteration

.............

...........

delete[] array; // at the end of an iteration

Submission (through Canvas): Upload the following together as ONE PDF file.

Your code (Java/C++/Python)

Excel plots (as required above for each 'm' value) and your explanation interpreting the results.

Your explanation should address the following:

(1) For a given maximum value 'm' and with increase in the number of elements 'n', does the average number of

comparisons increase, decrease or remain about the same? Give an explanation of why you see the pattern you

observe.

(2) For a given value of 'n', does the average number of comparison depend on the value of 'm' or not? Infer from the

results/figures and explain.

