\qquad

CSC 641 Network Science, Fall 2018
Exam 1 (Take Home: Due: Sept. 25, 2018: 7.30 PM)
Total: 100 pts
Hardcopy (Neatly written or typed), due in Class

1) ($\mathbf{2 0} \mathbf{p t s})$ For the graph given below:
(a -9 pts) Find the probability distribution for the degree of the vertices
(b-4 pts) Use the probability distribution of (a) to determine the average degree of the vertices in the graph.
(d-13 pts) Determine the average local clustering coefficient of the vertices in the graph.
($\mathrm{g}-12 \mathrm{pts}$) Determine the number of paths of length 4 between vertices 1 and 3 .

Dave, Hitanshu

Davis, Carolyn

Evans, Rashad

Faris, Amanuel

Fiesha, Temesgen

Ramos, Ciji

Sarker, Md Imran

Jones, Daryl
\qquad
\qquad
2) ($\mathbf{2 5} \mathbf{~ p t s}$) The graph given below is bipartite.
(a) Use the Breadth First Search (BFS) algorithm to determine the two partitions of the graph.
(b) Let the smaller partition determined from (a) be considered as the "Vertex Set" and the larger partition be considered as the "Group Set". Find the Group Projection of the bipartite graph.
Show all the work.

Dave, Hitanshu

Fiesha, Temesgen

Tutika, Raj

Davis, Carolyn

Ramos, Ciji

Whitfield, Nicholas

Evans, Rashad

Sarker, Md Imran

Faris, Amanuel

Jones, Daryl
\qquad
\qquad
3) ($\mathbf{3 5} \mathbf{~ p t s}$) Determine the maximal node matching and maximal assortative matching for the following graph. Determine the following for each of the above: (i) the set of edges constituting the matching (ii) the $\%$ of node matches (iii) assortative index of the matching.

Dave, Hitanshu

Fiesha, Temesgen

Tutika, Raj

Jones, Daryl

Davis, Carolyn

Ramos, Ciji

Whitfield, Nicholas

Evans, Rashad

Sarker, Md Imran

Faris, Amanuel
\qquad
\qquad
4) ($\mathbf{2 0} \mathbf{~ p t s}$) For the directed graph assigned to you below, determine the following:
i) Cocitation coupling matrix. Determine the pair(s) of vertices that are most strongly coupled.
ii) Bibliographic coupling matrix. Determine the pair(s) of vertices that are most strongly coupled.

Dave, Hitanshu

Fiesha, Temesgen

Davis, Carolyn

Evans, Rashad

Sarker, Md Imran

Faris, Amanuel

Tutika, Raj

Whitfield, Nicholas

Jones, Daryl

