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Eigenvalue and Eigenvector

• Let A be an nxn matrix.

• A scalar λ is called an Eigenvalue of A if there is a non-
zero vector X such that AX = λX. Such a vector X is called 

an Eigenvector of A corresponding to λ.

• Example:  2    is an Eigenvector of A =  3  2    for λ = 4

1                                            3  -2



Spectral Analysis
• Spectral decomposition is a method of projecting the 

characteristics of a network graph in n-dimensions or 
directions (that are mutually perpendicular) where n is the 
number of vertices in the graph.

• The projection in each direction is represented in the form 
of a scalar value (called the eigenvalue) and its 
corresponding vector with entries for each vertex (called 
the eigenvector).

• The largest eigenvalue of the projection is called the 
principal eigenvalue (a.k.a. spectral radius) and the 
corresponding eigenvector is called the principal 
eigenvector.

• We will use the adjacency matrix of a network graph to 
determine its eigenvalues and eigenvectors.



Example: Eigenvalues and Eigenvectors
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List of edges written in 

the increasing order of 

the node IDs from left to

right and top to bottom.

Node IDs Eigenvalues

Each column corresponds to an Eigenvector with an entry for each node

Property: For a matrix with all

positive entries, the Principal

Eigenvalue is always positive

& the entries in the Principal

Eigenvector are also positive



Spectral Radius Ratio for Node Degree
• Spectral radius ratio for node degree (for an undirected graph) is 

the ratio of the principal eigenvalue of the adjacency matrix and 
the average degree of the vertices in the graph.

• If Kmin, Kavg and Kmax are the minimum, average and 
maximum values for the node degrees, then:
– Kmin ≤ Kavg ≤ Principal Eigenvalue ≤ Kmax

• So, the spectral radius ratio for node degree of a graph is 
always greater than or equal to 1.

• The spectral radius ratio for node degree is a measure of the 
variation in the node degrees. The farther is the value from 1, 
the larger the variation in node degree.

• The spectral radius ratio for node degree can be uniformly 
applied across networks of all size and be used to evaluate the 
relative variation in node degree.

N. Meghanathan, "Spectral Radius as a Measure of Variation in Node Degree for Complex Network 

Graphs," Proceedings of the 3rd International Conference on Digital Contents and Applications, 
(DCA 2014), pp. 30-33, Hainan, China, December 20-23, 2014. 



Spectral Radius Ratio for Node Degree

1

2

3

4

5

6

7
89

10

Avg. Degree = Sum of Node Degrees / N

= (4 + 4 + 4 + 3 + 5 + 2 + 2 + 2 + 1 + 1)/10

= 2.8

Principal Eigenvalue = 3.3893

Spectral Radius Ratio for Node Degree

= 3.3893 / 2.8 = 1.21
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Avg. Degree = Sum of Node Degrees / N

= (4 + 4 + 4 + 3 + 4 + 3 + 3 + 3 + 2 + 2)/10

= 3.2

Principal Eigenvalue = 3.4735

Spectral Radius Ratio for Node Degree

= 3.4735 / 3.2 = 1.09
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Applications

• Bipartivity Index: Detection of bipartivity in 

graphs

• Estrada Index: Protein folding 

• Laplacian Matrix: Determining the number of 

components, connectivity and number of 

spanning trees in a graph

• Hierarchical Community Detection

• Prediction of Graph Isomorphism



Eigen Values of a Bipartite Network

• There are even number of vertices.
• Let λ1, λ2, λ3, …, λn be the n Eigenvalues of an n-

node network.
• For any j = 1, 2, …, n/2, if λj = | - λn-j+1|, then the 

network is almost bi-partite.
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Bipartivity Check
• A bi-partite graph is the one that has two partitions V1 and 

V2 of its vertices such that
– V1 U V2 = V; V1 n V2 = Φ.

– No edges within V1 and within V2.

– All edges are those connecting V1 and V2.

• Graphs can be considered close to bi-partite if there are 
few edges (not a significant number) called the frustrated 
edges that connect vertices within V1 and/or V2.

Computing the Bipartite Measure

Compute the Eigenvalues (λ1, λ2, λ3, …, λn) of the nxn adjacency matrix.
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λ For a “truly” bi-partite graph, 

bS(G) = 1; the sinh terms add to 0.

For a “close-to” bi-partite graph,
bS(G) < 1; the sinh terms add up to

some small positive value.

There should be NO odd length cycles in a truly 

bi-partite network



Bipartivity Measure: Examples 

bS(G) = 1.0 bS(G) = 0.829 bS(G) = 0.769 bS(G) = 0.731

bS(G) = 0.692 bS(G) = 0.645 bS(G) = 0.645 bS(G) = 0.597

For a given number of frustrated links, a larger bipartivity measure is
observed if more of the frustrated links are present in the network with the 

larger subset. Source: Estrada, E.; Rodriguez-Velazquez, J. A. Spectral measures of 

bipartivity in complex networks.Physical Review E 72, 2005, 046105.



Bipartivity of Real Networks
Type: Information

Network Bipartivity

Measure
SciMet 0.500

Roget 0.529

Type: Social

Network Bipartivity

Measure

Drugs 0.500

Corporate Elite 0.500

Karate Club 0.597

Saw Mill 0.749

Type: Food webs

Network Bipartivity

Measure

Coachella 0.500

El Verde 0.500

Grassland 0.743

Stony stream 0.815

Type: PPIs

Network Bipartivity

Measure
Yeast 0.500

Human 0.576

H. Pylori 0.711

A. Fulgidus 0.976

Type: Transcription

Network Bipartivity

Measure

Urchin 0.618

E. Coli 0.831

Yeast 0.960

Type: Technological

Network Bipartivity

Measure

USAir97 0.500

Internet 0.502

Electronic3 0.952

Source: Estrada, E.; 

Rodriguez-Velazquez, 
J. A. Spectral measures 

of bipartivity in complex 

networks.Physical

Review E 72, 2005,

046105.



Identifying Bipartite Subsets using 
Eigenvalue and Eigenvector

• We identify the smallest Eigenvalue (most likely a 
negative value), hereafter called the bi-partite 
Eigenvalue, and its corresponding Eigenvector, 
hereafter called the bi-partite Eigenvector.

• The values in the bi-partite Eigenvector will be 
positive and negative.
– The node IDs whose entries are of the same sign in the 

bi-partite Eigenvector form the two subsets.
• The vertices that are of the same sign are more likely not to 

have links between them, and are more likely to have links with 
vertices of the other sign.

– Each of the two subsets will have the minimum (or zero, 
if possible) number of frustrated links. Most of the links 
are likely to be between the vertices in the two subsets.



Identifying Bipartite Subsets using 

Eigenvalue and Eigenvector: Ex. 1 (1)
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Based on the 

lowest 

Negative

Eigenvalue -2:

1 -0.4082 

2 0.4082

3 -0.4082

4 0.4082 

5 -0.4082 
6 0.4082
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Identifying Bipartite Subsets using 

Eigenvalue and Eigenvector: Ex. 1 (2)

Eigenvalue, λ cosh(λ) sinh(λ)

-2 3.7622 -3.6269

-1 1.5431 -1.1752

-1 1.5431 -1.1752

1 1.5431 1.1752

1 1.5431 1.1752

2 3.7622 3.6269

-----------------------------------------------------------

Total 13.6968 0
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bS(G) = --------------------------

(13.6968 + 0)

= 1.0



Identifying Bipartite Subsets using 

Eigenvalue and Eigenvector: Ex. 2 (1)
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0    0     0    0   1    0     0    0    0     0

1 2
1 3
1 4

1 5
2 3
2 4

2 6
3 4
3 8

5 6
5 7

5 9
5 10

7 8



Identifying Bipartite Subsets using 

Eigenvalue and Eigenvector: Ex. 2 (2)

Based on the lowest Negative

Eigenvalue -2.4870836366555165:

1 0.3711379191456978

2 -0.2979483534591263

3 0.04772178019913417

4 -0.048615713642947846

5 -0.6242087587467021

6 0.3707784887547619

7 0.3085825736313854

8 -0.14326191068896146

9 0.25098020410206323

10 0.250980204102063
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Identifying Bipartite Subsets using 

Eigenvalue and Eigenvector: Ex. 2 (3)

Eigenvalue, λ cosh(λ) sinh(λ)

-2.4871 6.0547 -5.9716

-1.6828 2.7832 -2.5974

-1.3098 1.9877 -1.7178

-0.8564 1.3897 -0.9650

-0.3741 1.0708 -0.3829

0 1.0 0

0.3197 1.0515 0.3252

1.1131 1.6862 1.3576

1.8880 3.3788 3.2274

3.3893 14.839 14.8057

-----------------------------------------------------------

Total 35.2416 8.0812
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Bipartite Partition Detection: Digraph

• When confronted with a directed graph, first 
transform the directed graph to an undirected 
graph and determine the two partitions as 

explained previously using the Eigenvector 
approach. 

• After identifying the partitions, restore the 
directions of the edges. 

• In a directed graph, the edges typically point from 
one set of vertices to the other set of vertices. 

– There could be scenarios where the edges could point 

in the reverse direction; as long as we know the 

direction of the edges, we could restore them after 
determining the two partitions.



Digraph Bipartivity Detection: Example (1)
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1     2     3     4     5     6    7    8     9     10

0     0     0     0     0     1    1    0     1      0

0     0     0     0     0     1    0    0     0      1

0     0     0     0     0     0    1    1     0      0

0     0     0     0     0     0    0    1     1      1

0     0     0     0     0     1    0    0     0      1

1     1     0     0     1     0    0    0     0      0
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0     1     0     1     1     0    0    0     0      0
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Digraph Bipartivity Detection: Example (2)
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Based on the lowest Negative

Eigenvalue -2.4998:

1 -0.3625951312994192

2 -0.32242994615264337

3 -0.17066751642864314

4 -0.3625951312994189

5 -0.32242994615264337

6 0.40300972011359426

7 0.21331972680920852

8 0.21331972680920852

9 0.29009605184492576

10 0.4030097201135942



Protein Folding
• Protein folding is the process by which a protein transforms 

from a random coil (sequence of amino acids: linear 
polypeptide chain) to its characteristic 3-dimensional 
structure that is essential to its expected function. 

• The correct three-dimensional structure is essential to 
function, although some parts of functional proteins may 
remain unfolded.

• Failure to fold into native structure generally produces 
inactive proteins, but in some instances misfolded proteins 
have modified or toxic functionality.

• When modeled as a graph, the more flat (linear chain) is 
the graph, the less the folding and vice-versa.

Source: Wikipedia

Estrada, E. (2000). 

"Characterization of 3D 

molecular structure". Chem. 

Phys. Lett. (319): 713 



Estrada Index of Graphs
• The Estrada Index can be used to determine the degree of 

folding of a protein.
– Larger the Estrada Index, the larger the folding.
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λ1 = -1.618 0.2

λ2 = -1.473 0.23
λ3 = -0.463 0.63

λ4 = 0.618 1.852

λ5 = 2.935 18.654

eλj

EE(G) = 21.56
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Estrada Index of Star and Chain
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λ1 = -2 0.136

λ2 = 0 1

λ3 = 0 1

λ4 = 0 1

λ5 = 2 7.344

eλj

EE(G) = 10.48

1 2 3 4 5

0   1   0   0   0 
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0   1   0   1   0

0   0   1   0   1

0   0   0   1   0

λ1 = -1.7321 0.178

λ2 = -1 0.369

λ3 = 0 1

λ4 = 1 2.71
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Estrada Index of Complete Graph

1 2

3

45

0   1   1  1   1

1   0   1  1   1

1   1   0  1   1

1   1   1  0   1

1   1   1  1   0

A =


=

=
n

j

jeGEE
1

)(
λ

λ1 = -1 0.368

λ2 = -1 0.368
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λ5 = 4 54.576
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Folding Effectiveness

1 2

3 4

5 Folding Effectiveness (G) = 21.56 / 56.048 = 0.385 

1

2

3 4

5

Folding Effectiveness (G) = 16.51 / 56.048 = 0.295 

1 2

3

45

Folding Effectiveness (G) = 10.48 / 56.048 = 0.187

Closer is the value to

1, the more

folded is the protein



Components (Clusters)
• The vertices of a graph are said to be in a single 

component if there is a path between the vertices. 

• A graph is said to be connected if all its vertices are in one 
single component; otherwise, the graph is said to be 
disconnected and consists of multiple components.

– Adding one or more links (bridges) can connect the 
different  components

Bridge



Laplacian Matrix
• Laplacian Matrix L = D – A 

The n eigenvalues of an n x n 

Laplacian matrix are all positive.

The first eigenvalue is always 0.

The number of 0s among the 

Eigenvalues of the Laplacian

Matrix indicates the number of 

Connected components of a graph.

The second smallest eigenvalue of the 

Laplacian matrix is a measure of the 

Connectivity of the graph and is called

(Algebraic Connectivity).

The eigenvalues of the above Laplacian matrix are:

0 1.586 3.0 4.414 5.0
Max. Alg. Conn. for a 
graph of n vertices is n

(for a complete graph).



Algebraic Connectivity

If we remove vertices 1 and 5, Graph 1 will get disconnected, but not Graph 2
Larger the algebraic connectivity of a graph, lower the chances of a network

to get disconnected due to node removal.



Laplacian Matrix 
# Components

The 7 eigenvalues of the Laplacian

Matrix are:
0

0

1.0

3.0

3.0

3.0

4.0
two components

Laplacian Matrix 
# Spanning Trees
If μ1 = 0 < μ2 ≤ μ3 ≤ … ≤ μn are the n

Eigenvalues of the Laplacian matrix

of a connected graph of n vertices  

The # spanning trees of the graph is then

∏
=

n

i

i
n 2

1
µ

The five eigenvalues of the Laplacian matrix
of the above graph are: 0, 1.586, 3.0, 4.414, 5.0

# spanning trees = (1/5)(1.586*3*4.414*5) = 21.



Community
• Community: It is formed by individuals such that those within a group 

interact with each other more frequently than with those outside the 
group.

• The paths among vertices within a community is most likely to involve 
only the other vertices within the community.

• For a highly modular community of vertices, the number of edges 
connecting them within the community is significantly greater than the 
number of edges connecting them to vertices outside the community. 

C1 C2 C3



Modularity Maximization
• Modularity measures the strength of a community partition by taking into 

account the degree distribution.

• Given a network with m edges, the probability of an edge between two 
nodes i and j with degrees di and dj respectively is di*dj / 2m.

1
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4

5

6

7

8

Probability of an edge between

nodes 1 and 2 is (3)(3) / (2*15) = 0.30

Strength of a Community, C
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For a network with k communities and a total of m edges

Modularity: 
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AQ

1 ,

,
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A larger value for Q

indicates a good 

community structure



Modularity Maximization
• The intuition behind the idea of modularity is that a 

community is a structural element of a network that has 
been formed in a manner far from a random process.

• If we consider the actual density of links in a community, it 
should be significantly larger than the density we would 
expect if the links in the network were formed by a random 
process.
– In other words, if two nodes i and j are end up being in the same 

community, there should be more likely a link between them (i.e., 
Aij = 1, leading to an overall high value for Q).

– If i and j end up being in a community such that the chances of 
having a link between them is just as the same as between any two 
nodes in the network (i.e., a random network), then the value of Q 
is more likely to be low (because there could be some Aij = 0 that 
will bring down the value of Q).



Evaluating Modularity (Example 1)
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3 5

4

34

3 5 3Community [1, 4, 5, 7]

Edges with Aij = 1   Modularity
1 – 4 1 – (3)(4)/(2*15) = 0.60
4 – 5 1 – (4)(5)/(2*15) = 0.33
5 – 7 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0

1 – 5 0 – (3)(5)/(2*15) = -0.50
1 – 7 0 – (3)(3)/(2*15) = -0.30
4 – 7 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [1, 4, 5, 7]

0.23

Community [2, 3, 6, 8]
Edges with Aij = 1   Modularity
2 – 3 1 – (3)(4)/(2*15) = 0.60
2 – 6 1 – (3)(5)/(2*15) = 0.50

6 – 8 1 – (3)(5)/(2*15) = 0.50
Edges with Aij = 0
2 – 8 0 – (3)(3)/(2*15) = -0.30
3 – 6 0 – (4)(5)/(2*15) = -0.67
3 – 8 0 – (4)(3)/(2*15) = -0.40

Total Modularity Score for
Community [2, 3, 6, 8]

0. 23Total Modularity for the two 

Communities: 0.23 + 0.23 = 0.46



Evaluating Modularity (Example 2)

1

2

3

4

5

6

7

8

Community [1, 2, 3, 4]

Edges with Aij = 1   Modularity
1 – 2 1 – (3)(3)/(2*15) = 0.70
1 – 3 1 – (3)(4)/(2*15) = 0.60
1 – 4 1 – (3)(4)/(2*15) = 0.60
2 – 3 1 – (3)(3)/(2*15) = 0.70

3 – 4 1 – (4)(4)/(2*15) = 0.47
Edges with Aij = 0
2 – 4 0 – (3)(4)/(2*15) = -0.40

Total Modularity Score for
Community [1, 2, 3, 4]

2.67

Community [5, 6, 7, 8]
Edges with Aij = 1   Modularity
5 – 6 1 – (5)(5)/(2*15) = 0.17
5 – 7 1 – (3)(5)/(2*15) = 0.50

5 – 8 1 – (3)(5)/(2*15) = 0.50
6 – 7 1 – (3)(5)/(2*15) = 0.50
6 – 8 1 – (3)(5)/(2*15) = 0.50
7 – 8 1 – (3)(3)/(2*15) = 0.70

Total Modularity Score for
Community [2, 3, 6, 8]

2.87Total Modularity for the two 

Communities: 2.67 + 2.87 = 5.54
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8

3 5

4 3

3 5 3

4



Using Eigenvectors to Identify Components

• Compute the Eigenvalues and Eigenvectors of the 
Adjacency matrix A

• The principal Eigenvector is the one that corresponds to 
the largest Eigenvalue.

• If all the entries in the “principal Eigenvector” are positive, 
then it implies that all the nodes are in one component.
– Else, the vertices with the positive entries are in one component 

and those with the negative entries are in another component. 
(Note: 0 is considered positive).

• We apply the above interpretation to all the subsequent 
Eigenvectors (in the decreasing order of the corresponding 
Eigenvalues) and identify the smaller communities within 
the larger components.



Example 1: Eigenvectors to Identify 
Communities

1

2

3 4

5

6

0   1   1   0   0   0

1   0   1   0   0   0

1   1   0   1   0   0

0   0   1   0   1   1

0   0   0   1   0   1

0   0   0   1   1   0

A =

The Eigenvalues in the decreasing order and their corresponding Eigenvectors are:

Eigenvalue Eigenvector

2.4142 [0.35; 0.35; 0.5; 0.5; 0.35; 0.35]

1.7321 [-0.44; -0.44; -0.33; 0.33; 0.44; 0.44]

-0.4142 [0.35; 0.35; -0.5; -0.5; 0.35; 0.35]

-1 [-0.71; 0.71; 0; 0; 0; 0]

-1 [0; 0; 0; 0; -0.71; 0.71]

-1.7321 [0.23; 0.23; -0.63; 0.63; -0.23; -0.23]

All entries are +ve; hence all vertices

are in one single component

community

Vertices 1, 2, 3 form one community

Vertices 4, 5, 6 form another comm.

Within 1-2-3; 3 is in one comm.

Within 4-5-6; 4 is in one comm.

1 2

1 3
2 3

3 4

4 5

4 6

5 6



Example 1: Eigenvectors to Identify 
Communities (1)

1

2

3 4

5

6

2.4142 [0.35; 0.35; 0.5; 0.5; 0.35; 0.35]

Edge Modularity

1 – 2 1 – (2*2/2*7) = 0.71

1 – 3 1 – (2*3/2*7) = 0.57

1 – 4 0 – (2*3/2*7) = -0.43

1 – 5 0 – (2*2/2*7) = -0.29

1 – 6 0 – (2*2/2*7) = -0.29

2 – 3 1 – (2*3/2*7) = 0.57

2 – 4 0 – (2*3/2*7) = -0.43

2 – 5 0 – (2*2/2*7) = -0.29
2 – 6 0 – (2*2/2*7) = -0.29

Edge Modularity

3 – 4 1 – (3*3/2*7) = 0.36

3 – 5 0 – (2*3/2*7) = -0.43

3 – 6 0 – (2*3/2*7) = -0.43

4 – 5 1 – (2*3/2*7) = 0.57

4 – 6 1 – (2*3/2*7) = 0.57

Total Modularity = 0.47



Example 1: Eigenvectors to Identify 
Communities (2)

1

2

3 4

5

6

1

2

3 4

5

6

2.4142 [0.35; 0.35; 0.5; 0.5; 0.35; 0.35] 1.7321 [-0.44; -0.44; -0.33; 

0.33; 0.44; 0.44]

Modularity of [1, 2, 3]

Edge Modularity

1 – 2 1 – {(2*2)/(2*7)} = 0.71

1 – 3 1 – {2*3)/(2*7)} = 0.57

2 – 3 1 – {(2*3)/(2*7)} = 0.57

Total Modularity = 1.85

Modularity of [4, 5, 6]

Edge Modularity

4 – 5 1 – {(2*3)/(2*7)} = 0.57

4 – 6 1 – {2*3)/(2*7)} = 0.57

5 – 6 1 – {(2*2)/(2*7)} = 0.71

Total Modularity = 1.85

Total Modularity of [1, 2, 3] and [4, 5, 6] = 3.7



Example 1: Eigenvectors to Identify 
Communities (3)

1

2

3 4

5

6

1

2

3 4

5

6

2.4142 [0.35; 0.35; 0.5; 0.5; 0.35; 0.35]

Modularity of [3] and [4] are 0 each

Modularity of [1, 2] and [5, 6] are 0.71 each

Total Modularity of [1, 2] and [3] is 0.71

is less than the modularity of [1, 2, 3]. Hence, 

We stay with [1, 2, 3] as a community.

Total Modularity of [5, 6[ and [4] is 0.71

is less than the modularity of [4, 5, 6]. Hence,

We stay with [4, 5, 6] as a community.

1

2

3 4

5

6

Final Partition

Total Modularity

Score = 3.7



Example 2
0 1 2

3

5

4 6 9

7 8

Eigenvalue # 9 (2.1175)

Eigenvalue # 10 (4.3515)

Eigenvalue # 8 (1.6723)



Example 2 (1)
0 1 2

3

5

4 6 9

7 8

Eigenvalue # 9 (2.1175)

Modularity for Community [0, 3, 4, 5]

Edge Modularity

0 – 3 1 – {(4*3)/(2*20)} = 0.7 

0 – 4 1 – {(4*3)/(2*20)} = 0.7

0 – 5 1 – {(4*6)/(2*20)} = 0.4

3 – 4 0 – {(3*3)/(2*20)} = -0.23

3 – 5 1 – {(3*6)/(2*20)} = 0.55

4 – 5 1 – {(3*6)/(2*20)} = 0.55

Total Modularity Score for

[0, 3, 4, 5] = 2.67

Edge Modularity

1 – 2 1 – {(6*2)/(2*20)} = 0.7 

1 – 6 0 – {(6*4)/(2*20)} = -0.6

1 – 7 1 – {(6*5)/(2*20)} = 0.25

1 – 8 1 – {(6*4)/(2*20)} = 0.4

1 – 9 0 – {(6*3)/(2*20)} = -0.45

2 – 6 0 – {(2*4)/(2*20)} = -0.2

2 – 7 0 – {(2*5)/(2*20)} = -0.25

2 – 8 1 – {(2*4)/(2*20)} = 0.8

Modularity for Community [1, 2, 6, 7, 8, 9]



Example 2 (2)
0 1 2

3

5

4 6 9

7 8

Edge Modularity

1 – 2 1 – {(6*2)/(2*20)} = 0.7 

1 – 6 0 – {(6*4)/(2*20)} = -0.6

1 – 7 1 – {(6*5)/(2*20)} = 0.25

1 – 8 1 – {(6*4)/(2*20)} = 0.4

1 – 9 0 – {(6*3)/(2*20)} = -0.45

2 – 6 0 – {(2*4)/(2*20)} = -0.2

2 – 7 0 – {(2*5)/(2*20)} = -0.25

2 – 8 1 – {(2*4)/(2*20)} = 0.8

2 – 9 0 – {(2*3)/(2*20)} = -0.15

6 – 7 1 – {(4*5)/(2*20)} = 0.5

6 – 8 0 – {(4*4)/(2*20)} = -0.4

6 – 9 1 – {(4*3)/(2*20)} = 0.7

7 – 8 1 – {(5*4)/(2*20)} = 0.5

7 – 9 1 – {(5*3)/(2*20)} = 0.63

8 – 9 1 – {(4*3)/(2*20)} = 0.7

Total Modularity Score for

[1, 2, 6, 7, 8, 9] = 3.13

Modularity for Community 

[1, 2, 6, 7, 8, 9]



Example 2 (3)
0 1 2

3

5

4 6 9

7 8

Eigenvalue # 8 (1.6723)

Modularity of Community [0, 3] = 0.7

Modularity of Community [4, 5] = 0.55

Total Modularity of [0, 3] and [4, 5] = 1.25

is less than the Modularity of [0, 3, 4, 5] 

= 2.67

Hence, we stay with community [0, 3, 4, 5]   

without further partitioning it.



Example 2 (4)
0 1 2

3

5

4 6 9

7 8

Modularity of Community [1, 2, 8]

Edge Modularity

1 – 2 1 – {(6*2)/(2*20)} = 0.7 

1 – 8 1 – {(6*4)/(2*20)} = 0.4

2 – 8 1 – {(2*4)/(2*20)} = 0.8

Total Modularity of [1, 2, 8] = 1.9

Modularity of Community [6, 7, 9]

Edge Modularity

6 – 7 1 – {(4*5)/(2*20)} = 0.5

6 – 9 1 – {(4*3)/(2*20)} = 0.7

7 – 9 1 – {(5*3)/(2*20)} = 0.63 

Total Modularity of [6, 7, 9] = 1.83

Modularity of [1, 2, 8] = 1.9

Modularity of [6, 7, 9] = 1.83

Total Modularity of [1, 2, 8] and [6, 7, 9]

= 3.73

is larger than the modularity of 

[1, 2, 6, 7, 8, 9] = 3.13

Hence, we allow the partitioning of 

[1, 2, 6, 7, 8, 9] into [1, 2, 8] and [6, 7, 9] 



Example 2 (5)

0 1 2

3

5

4 6 9

7 8

Final Partition

Modularity of [0, 3, 4, 5] = 2.67

Modularity of [1, 2, 8] = 1.9

Modularity of [6, 7, 9] = 1.83

Total Modularity = 6.4 

0, 1, 2, …, 9

0, 3, 4, 5
1, 2, 6, 7, 8, 9

2.67 3.13

1, 2, 8 6, 7, 9
1.9 1.83



Graph Isomorphism
• Two graphs are isomorphic if they are structurally 

similar.
• Two graphs G1 = (V1, E1) and G2 = (V2, E2) are 

isomorphic if:
– |V1| = |V2| (i.e., they have the same number of vertices)

– There exists a one-to-one mapping f of the vertices 
such that

• For every vertex v ε V1, f(v) ε V2

• For every edge (u, v) ε E1, ( f(u), f(v) ) ε E2.

Note that determining whether or not two graphs are isomorphic is a 

NP-hard problem. 

G1 and G2 are

Isomorphic.



Graph Isomorphism
• Isospectral graphs: Two graphs are said to be isospectral if 

they have the same eigenvalues.

• If two graphs are isomorphic, they need to be also 
isospectral, but not vice-versa. Nevertheless, if two graphs 
are isospectral, they are more likely to be isomorphic.
– So, spectral analysis can be used as a precursor to test for graph 

isomorphism.
-2.2054526237741263
-1.6597826641247448
-1.4108549659587828

-0.39398336070224255
0.19153354857068747
0.4572235096192475
1.6791484493002504
3.3421681070697122

Eigenvalues

However, just using the eigenvalues, we cannot

determine the one-to-one mapping of the vertices

in two isomorphic graphs.



Principal Eigenvector for Graph Isomorphism
• Two graphs are more likely to be isomorphic if a non-

increasing order (or non-decreasing order) of the entries in 
the principal eigenvector of the two graphs are the same.

Vertex         Values in the 

Principal Eigenvector

2 0.5364

4 0.4321

3 0.3974

1 0.3596

5 0.3355
0 0.2681
7 0.1749

6 0.1527

Vertex         Values in the 

Principal Eigenvector

3 0.5364

6 0.4321

5 0.3974

0 0.3596

2 0.3355
7 0.2681
1 0.1749

4 0.1527

Mapping of the Vertices

G1 G2          G1  G2

0      7             5     2   

1      0 6    4

2      3 7    1
3      5

4      6



Using Degree vs. Principal Eigenvector
• For graphs to be isomorphic, 

their degree sequence (in non-
increasing order or non-
decreasing order) should be the 
same.

• But, if just the non-increasing (or 
non-decreasing) order of the 
degree sequence of two graphs 
are the same, it need not be 
mean the two graphs are 
isomorphic. There existed a 
number of false negatives (i.e., 
two graphs with identical degree 
sequence turned out to be non-
isomorphic).

• On the other hand, there exists a 
high probability for two graphs to 
be isomorphic if they have the 
same sequence of values (in 
non-increasing order or non-
decreasing order) of the entries 
in the principal eigenvector.

Vertex      Degree 

2 5

4 4

3 3

1 3

5               3 

0               2
7               2
6               2

Vertex       Degree

3                 5

6 4

5 3

0 3

2                 3

7                 2
1                 2
4                 2

G1
G2



Degree Sequence: False Negatives

N. Meghanathan, "Exploiting the Discriminating Power of the Eigenvector Centrality Measure to 

Detect Graph Isomorphism," International Journal in Foundations of Computer Science and 
Technology (IJFCST), vol. 5, no. 6, pp. 1-13, November 2015. 

Link: http://wireilla.com/papers/ijfcst/V5N6/5615ijfcst01.pdf


