
Module 1:
Asymptotic Time Complexity and

Intro to Abstract Data Types

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm
cannot be compromised

– The range of inputs for which an algorithm works has to be
specified carefully.

– The same algorithm can be represented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with
dramatically different speeds

Problem

Algorithm

ComputerInput Output

The Analysis Framework
• Time efficiency (time complexity): indicates how fast an algorithm

runs

• Space efficiency (space complexity): refers to the amount of

memory units required by the algorithm in addition to the space

needed for its input and output

• Algorithms that have non-appreciable space complexity are said to

be in-place.

• The time efficiency of an algorithm is typically as a function of the

input size (one or more input parameters)

– Algorithms that input a collection of values:

• The time efficiency of sorting a list of integers is represented in terms of the
number of integers (n) in the list

• For matrix multiplication, the input size is typically referred as n*n.

• For graphs, the input size is the set of Vertices (V) and edges (E).

– Algorithms that input only one value:

• The time efficiency depends on the magnitude of the integer. In such cases,
the algorithm efficiency is represented as the number of bits 1+
needed to represent the integer n

 n2log

Units for Measuring Running Time
• The running time of an algorithm is to be measured with a unit that is

independent of the extraneous factors like the processor speed,

quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is

executed on inputs of size n.

Examples to

Illustrate Basic

Operations

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

Best Case: 1 comparison

Worst Case: ‘n’ comparisons

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

Best Case: n-1 comparisons

Worst Case: n-1 comparisons

Note: Average Case number of

Basic operations is the expected

number of basic operations

considered as a random variable

under some assumption about

the probability distribution of all

possible inputs

Why Time Complexity is important?

Motivating Example

• An integer ‘n’ is prime if it is divisible (i.e., the remainder
is 0) only by 1 and itself.

• Algorithm A (naïve) Algorithm B (optimal)
Input n Input n

Begin Begin

for i = 2 to n-1 for i = 2 to √n

if (n mod i == 0) if (n mod i == 0)

return “n is not prime” return “n is not prime”

end if end if

end for end for

“return n is prime” “return n is prime”

End End

Best-case: 1 division Best-case: 1 division

Worst-case: (n-1) – 2 + 1 Worst-case: √n – 2 +1

= n-2 divisions = √n – 1 divisions

For larger n: ≈ n For larger n: √n

Comparison of ‘n’ and ‘√n’

Input size (n) Algorithm A (n) Algorithm B(√n)

1 1 1

10 10 3.16

100 100 10

1000 1000 31.62

10000 10000 100

100000 100000 316.23

1000000 1000000 1000

10000000 10000000 3162.28

Orders of Growth
• We are more interested in the order of growth on the number of times

the basic operation is executed on the input size of an algorithm.

• Because, for smaller inputs, it is difficult to distinguish efficient

algorithms vs. inefficient ones.

• For example, if the number of basic operations of two algorithms to

solve a particular problem are n and n2 respectively, then

– if n = 3, then we may say there is not much difference between requiring

3 basic operations and 9 basic operations and the two algorithms have

about the same running time.

– On the other hand, if n = 10000, then it does makes a difference whether

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions

Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer
c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0

Thumb Rule for using Big-O and Big-Θ
• We say a function f(n) = O(g(n)) if the rate of growth of

g(n) is either at the same rate or faster than that of f(n).
– If the functions are polynomials, the rate of growth is decided by

the degree of the polynomials.

– Example: 2n2 + 3n + 5 = O(n2);

2n2 + 3n + 5 = O(n3);

– note that, we can also come up with innumerable number of
such functions for what goes inside the Big-O notation as long as
the function inside the Big-O notation grows at the same rate or
faster than that of the function on the left hand side.

• We say a function f(n) = Θ(g(n)) if both the functions f(n)
and g(n) grow at the same rate.
– Example: 2n2 + 3n + 5 = Θ(n2) and not Θ(n3);

– For a given f(n), there can be only one function g(n) that goes
inside the Θ-notation.

Asymptotic Notations: Example
2n ≤ 0.05 n2

for n ≥ 40
c = 0.05, n0 = 40

2n = O(n2)

More generally,

n = O(n2).

Asymptotic Notations: Example

for n ≥ 1

n ≤ 2n ≤ 5n

2n = Θ(n)

n

5n

2n

n

Relationship and Difference between
Big-O and Big-Θ

• If f(n) = Θ(g(n)), then f(n) = O(g(n)).

• If f(n) = O(g(n)), then f(n) need not be Θ(g(n)).

• Note: To come up with the Big-O/Θ term, we exclude the lower order
terms of the expression for the time complexity and consider only the
most dominating term. Even for the most dominating term, we omit
any constant coefficient and only include the variable part inside the
asymptotic notation.

• Big-Θ provides a tight bound (useful for precise analysis); whereas,
Big-O provides an upper bound (useful for worst-case analysis).

• Examples:

(1) 5n2 + 7n + 2 = Θ(n2)
– Also, 5n2 + 7n + 2 = O(n2)

(2) 5n2 + 7n + 2 = O(n3),

Also, 5n2 + 7n + 2 = O(n4), But, 5n2 + 7n + 2 ≠ Θ(n3) and ≠ Θ(n4)

• The Big-O complexity of an algorithm can be technically more than
one value, but the Big-Θ of an algorithm can be only one value and it
provides a tight bound. For example, if an algorithm has a complexity
of O(n3), its time complexity can technically be also considered as
O(n4).

When to use
Big-O and

Big-Θ
• If the best-case and

worst-case time
complexity of an
algorithm is guaranteed
to be of a certain
polynomial all the time,
then we will use Big-Θ.

• If the time complexity of
an algorithm could
fluctuate from a best-
case to worst-case of
different rates, we will
use Big-O notation as it
is not possible to come
up with a Big-Θ for such
algorithms.

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

O(n) only

and not

Θ(n)

Θ(n)

�It is also

O(n)

Another Example to Decide
whether Big-O or Big-Θ

Skeleton of a pseudo code

Input size: n

Begin Algorithm

If (certain condition) then

for (i = 1 to n) do

print a statement in unit time

end for

else

for (i = 1 to n) do

for (j = 1 to n) do

print a statement in unit time

end for

end for

End Algorithm

Best Case

The condition in the if block

is true

-- Loop run ‘n’ times

Worst Case

The condition in the if block

is false

-- Loop run ‘n2’ times

Time Complexity: O(n2)

It is not possible to come up

with a Θ-based time complexity

for this algorithm.

Recursion
• Recursion: A function calling itself.

• Recursions are represented using a
recurrence relation (incl. a base or
terminating condition)

• Example
• Factorial (n) = n * Factorial(n-1) for n > 0
• Factorial (n) = 1 for n = 0

Factorial(n)

if (n == 0)

return 1;

else

return n * Factorial(n-1)

Factorial(0) = 1

Factorial(1) = 1 * Factorial(0)

Factorial(2) = 2 * Factorial(1)

Factorial(3) = 3 * Factorial(2)

Factorial(4) = 4 * Factorial(3)

Factorial(5) = 5 * Factorial(4)

Factorial (5)
= 5 * Factorial (4)

Factorial (4)

= 4 * Factorial (3)

Factorial (3)

= 3 * Factorial (2)

Factorial (2)

= 2 * Factorial (1)

Factorial (1)

= 1 * Factorial (0)

Factorial (0) = 1

M
e

m
o

ry
 S

ta
c

k

Data processed by an Algorithm
• The design and development as well as the time and

storage complexities of an algorithm for a problem
depend on how we store and process the data on which
the algorithm is run.

• For example: if the words in a dictionary are not sorted, it
would take a humongously long time to come up with an
algorithm to search for a word in the dictionary.

• Sometimes, the data need not be linear (like a
dictionary) and need to be hierarchical (like a road map
or file system).

• Layman example
– Abstract view of a car (any user should expect these features for

any car): Should be able to start the car, turn steering, press
brake to stop and press gas to accelerate, change gear, etc.

– Implementation (responsibility of the manufacturer and not the
user): How each of the above is implemented? Varies with the
targeted gas efficiency, usage purpose, etc.

Abstract Data Type (ADT) vs.
Data Structures

• Data processed by an algorithm could be
represented at two levels:
– Abstract level (also called logical or user level):

merely state the possible values for the data and what
operations/functions the algorithm will call to store
and access the data

– Implementation level (also called system level): deals
with how the implementation should be done to
perform the functions defined for the data at the
abstract level.

• The abstract (logical) representation of data is
commonly referred to as Abstract Data Type
(ADT)

• The term “data structure” is considered to
represent the implementation model of an ADT.

Common ADTs and the Data
Structures for their Implementation

• List, Stack, Queue

– Arrays, Linked List

• Priority Queue

– Heap

• Dictionary

– Hash Table, Binary Search Tree

• Graph

– Adjacency List, Adjacency Matrix

List ADT

• Data type

– Store a given number of elements of any data
type

• Functions/Operations

– Create an initial empty list

– Test whether or not a list is empty

– Read element based on its position in the list.

– Insert, delete or modify an entity at a specific
position in the list

10 23 13 17

0 1 2 3

Stack ADT
• Data type

– Store a given number of elements of any data type

• Unique characteristic: Last In First Out (LIFO)

• Functions/Operations

– Insert

• Push an element to the top of the stack

– Delete

• Pop the last element that was pushed

– Read

• Peek at the last element that was pushed

– Check if empty
10

23

13

Peek

10

23

13

17

Push

10

23

13

17

Pop

Queue ADT
• Data type

– Store a given number of elements of any data type

• Unique characteristic: First In First Out (FIFO)
• Functions/Operations

– Insert
• Enqueue: Append an element to the end of queue

– Delete
• Dequeue: Remove the element at the head of the queue

– Read
• Peek: Look at the element at the head of the queue

– Check if empty

10 23 13

head tail

peek

10 23 13 17

head tail

Enqueue

10 23 13 17

head tail

Dequeue

array
#include <iostream>
#include <stdlib.h>
#include <time.h>

using namespace std;

int* TurnNegative(int* Array, int ArraySize){

 int* negativeArray = new int[ArraySize];

 for (int i = 0; i < ArraySize; i++)

 negativeArray[i] = -1*Array[i];

 return negativeArray;

}

int addALL(int* Array, int ArraySize){

 int sum = 0;

 for (int i = 0; i < ArraySize; i++)

 sum += Array[i];

 return sum;

}

int main(){

 int arraySize;

 cout << "Enter the array size: ";

 cin >> arraySize;

 int maxValue;

 cout << "Enter the maximum value for an element: ";

 cin >> maxValue;

 int *array = new int[arraySize];

 srand(time(NULL)); // initialize the random number generator with the
current system time as the seed

 for (int i = 0; i < arraySize; i++){

 array[i] = 1 + rand() % maxValue;

 }

Page 1

array

 cout << "Sum of all elements is " << addALL(array, arraySize) << endl;

 int *negArray = TurnNegative(array, arraySize);

 cout << "Negative Values of the Elements " << endl;

 for (int i = 0; i < arraySize; i++)

 cout << negArray[i] << " ";

 cout << endl;

 delete[] array;

 delete[] negArray;

return 0;

}

Page 2

oop
#include <iostream>
#include <stdlib.h>
#include <time.h>

using namespace std;

class Packet{

 private:

 int id;

 double data;

 public:

 Packet(){}

 Packet(int ID, double Data){

 setID(ID);

 setData(Data);

 }

 void setID(int ID){

 id = ID;

 }

 void setData(double Data){

 data = Data;

 }

 int getID(){

 return id;

 }

 double getData(){

 return data;

 }

};

int main(){

 Packet packet1;

 packet1.setID(1);

 packet1.setData(10);

 cout << "Packet " << packet1.getID() << " " << packet1.getData() << endl;

Page 1

oop

 Packet packet2(2, 20);

 cout << "Packet " << packet2.getID() << " " << packet2.getData() << endl;

 Packet* packetPtr = &packet2;

 packetPtr->setData(25);

 cout << "After change: Packet " << packetPtr->getID() << " " <<
packetPtr->getData() << endl;

 Packet* pktPtr = new Packet();

 pktPtr->setID(3);

 pktPtr->setData(30);

 cout << "Packet " << pktPtr->getID() << " " << pktPtr->getData() << endl;

 pktPtr = new Packet(4, 40);

 cout << "Packet " << pktPtr->getID() << " " << pktPtr->getData() << endl;

 delete pktPtr; // delete the memory allocated for the Packet object
pointed (latest) to by this pointer.

 cout << "...................." << endl;

 int numPackets;

 cout << "Enter the number of packets to create as an array: ";

 cin >> numPackets;

 Packet* packetArray = new Packet[numPackets];

 for (int id = 0; id < numPackets; id++){

 packetArray[id].setID(id);

 packetArray[id].setData(id*10);

 }

 cout << "...................." << endl;

 for (int id = 0; id < numPackets; id++){

 cout << packetArray[id].getID()+1 << " " <<
packetArray[id].getData() << endl;

 }

 return 0;

}

Page 2

