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Introduction to Divide and Conquer
• Divide and Conquer is an algorithm design strategy of dividing a

problem into sub problems, solving the sub problems and merging 
the solutions of the sub problems to get a solution for the larger 
problem.

• Let a problem space of size ‘n’ (for example: an n-element array 
used for sorting) be divided into sub problems of size ‘n/b’ each, 
which could be either overlapping or non-overlapping. 

• Let us say we solve ‘a’ of these sub problems of size n/b.

• Let f(n) represent the time complexity of merging the solutions of the 
sub problems to get a solution for the larger problem.

• The general format of the recurrence relation can be then written as 
follows: where T(n/b) is the time complexity to solve a sub problem 
of size n/b and T(n) is the overall time complexity to solve a problem 
of size n. 

T(n) = a * T(n/b) + f(n)



Recurrence Relations for Divide and Conquer

Non-Overlapping Sub Problems

‘n’

‘n/3’ ‘n/3’ ‘n/3’

T(n) 

= 3 * T (n/3) 

+ f(n)

Overlapping Sub Problems (a ≠ b)

‘n’

‘n/3’

‘n/3’

‘n/3’

T(n) 

= 4 * T (n/3) 

+ f(n)

‘n/3’



Master Theorem to Solve Recurrence 
Relations: T(n) = a * T(n/b) + f(n)

Note: To apply Master Theorem, the function f(n) should be a polynomial and 

should be monotonically increasing

Note: To satisfy the definition 

of a polynomial, ‘d’ should be 

a non-negative integer.

where d ≥ 0 and an integer

Master Theorem (O - version)

Note: We will try to apply the Θ – version
wherever possible. If the Θ – version

cannot be applied, we will try to apply the 

O-version.

Master Theorem (Θ - version)



Merge Sort
• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of 
the arrays:

• compare the first elements in the remaining 
unprocessed portions of the arrays

• copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

– Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
other array into A.



Merge Sort



Merge Algorithm

Incase of a tie B[i] = C[j]

Insert the element in the 

Left sub array in A.



Example for Merge Sort

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9



The order 
recursion runs

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9

1

9

2

3

4

5

6

7

8

10

11

12

13

14



Analysis of Merge Sort



Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort, bubble sort, 
selection sort) we saw in Module 1, Merge sort incurs a 
worst-case time-complexity of Θ(nlogn), whereas the 
other sorting algorithms we have seen incur a worst-
case time complexity of O(n2).

• The tradeoff is Merge sort requires additional space 
proportional to the size of the array being sorted. That is, 
the space-complexity of merge sort is Θ(n), whereas the 
other sorting algorithms we have seen incur a space-
complexity of Θ(1).
– Algorithms that incur a Θ(1) space complexity are said to be 

“in place”



Number of Inversions in an Array

• Given an array A, an inversion 
is said to have occurred if i < j 
and A[i] > A[j].

• Example 2      8      1     9      3     7
0        1         2        3        4       5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

The number of inversions in an array can be computed as the

Sum of the number of inversions encountered in each of the

Merging steps of the Merge Sort algorithm.

i

0       1       2        3 4        5       6         7

j

Sorted Left Half Sorted Right Half

Mid = 4, the index of the

first element in the right half

If A[i] > A[j], then 

everything to the right of

Index in the sorted left

half are also going to be

greater than A[j]. Hence,

the number of inversions

due to A[i] > A[j] is:

Mid – i. 



# Inversions in the Merge Step (Ex.2)

0       1       2       3       4 5          6        7        8        9

14     17     19     22      25 13        16     18       20       27

Mid = 5

# Inversions in the 

Merging Step

= 5 + 4 + 3 + 2

= 14



# Inversions in the Merge Step (Ex.2)

0       1       2       3       4 5          6        7        8        9

2       3       8       9      10 1         4        5         7       8  

Mid = 5

# Inversions in the 

Merging Step

= 5 + 3 + 3 + 3 + 2

= 16



Total # Inversions (all Merging Steps): Ex. 3

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9

0         1          2        3         4        5         6   7

0         1          2         3 4         5        6         7

0         1 2         3 4         5 6         7

0 1 2 3 4 5 6 7

1 0
0         1 2         3

2

0         1          2         3

4 5 6 7
1 1

4         5        6         7

0         1          2        3         4        5         6   7

(8, 3)

(3, 2)

(8, 2) 2

(7, 4)

(7, 5)

10(2, 1); (3, 1); (8, 1);

(9, 1); (8, 4); (9, 4);

(8, 5); (9, 5); (8, 7); (9, 7)

(7, 1) (5, 4)

Total # Inversions = 1 + 0 + 2 + 1 + 1 + 2 + 10 = 17



Total # Inversions: Ex. 4

2      8       1      9      3      7

2      8       1

2 8      1

2 8      1

1      8

1      2       8

0         1          2        3         4        5

0         1          2

0 1         2

0 1 2

1
1         2

1

0         1          2

(2, 1)

2(8, 3)

(8, 7)
Total # Inversions = 1 + 1 + 2 + 2 = 6

9      3       7

3         4          5

(8, 1)

9 3      7

9 3      7

3      7

3      7       9

3 4         5

3 4 5

4         5

2

3         4          5(9, 3)

(9, 7)

1      2       3      7      8      9

0         1          2        3         4        5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)



Finding the Maximum Integer in an 
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index 

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index 

positions of the maximum element 

in the sub arrays, We do not need to 

create additional space. So, this 

algorithm is in-place.

Divide part

Conquer part

Terminating Condition

Getting ready to

divide



Max Integer Index Problem: Time 
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2) ) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the 

time-complexity. The overhead comes with recursion.



FindMaxIndex: Example



FindMaxIndex: Example (contd..)

0 1 5 6

1 2

1

3 4

3

3

5 7 8 9

5 9

5



Binary Search
• Binary search is a Θ(log n), highly efficient search 

algorithm, in a sorted array. 

• It works by comparing a search key K with the array’s 

middle element A[m]. If they match, the algorithm stops; 

otherwise, the same operation is repeated recursively for 

the first half of the array if K < A[m], and for the second 

half if K > A[m].

• Though binary search in based on a recursive idea, it can 

be easily implemented as a non-recursive algorithm.



Binary Search
Search Key

K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7

C(n) = C(n/2) + 1 for n > 1

C(1) = 1

C(n) = C(n/2) + Θ(1) for n > 1

a = 1, b = 2, d = 0
a = bd

C(n) = Θ(n0logn) = Θ(logn)



Unsuccessful Search

Search K = 10

l=0   r=12   m=6

l=0   r=5     m=2

l=0   r=1     m=0

l=1   r=1     m=1

l=1   r=0    STOP!!

Binary Search



Applications of Binary Search (1)
Searching for a Threshold Value for a Function

• Sample Scenario

• Consider a monotonically decreasing function f(n) = 2/n2, 
where n is a positive integer (n > 0). 

• We need to develop a Θ(logn) algorithm that would 
determine the smallest value of n (called the threshold 
value) for which f(n) would be less than a target value 't‘
(say, t = 0.01). 

n f(n) = 2/n2
n f(n) = 2/n2

1 2 9 0.0247

2 0.5 10 0.02

3 0.222 11 0.0165

4 0.125 12 0.0139

5 0.08 13 0.0118

6 0.0556 14 0.0102

7 0.0408 15 0.0089

8 0.0313 16 0.0078



• Solution Approach

• Invariants (something that will remain true throughout the algorithm):

– We will keep the Left Index as an ‘n’ value for which f(n) is always going 

to be greater than or equal to the threshold value

– We will keep the Right Index as an ‘n’ value for which f(n) is always 

going to be less than the threshold value.

• We will go through a sequence of iterations of Binary Search until 

the difference between the Right Index and Left Index is greater

than ONE (note: we are dealing with integers here). 

– In each iteration, the middle index is the average of the Left 

Index and Right Index.

• If f(Middle Index) < target, we set: Right Index = Middle Index

• If f(Middle Index) >= target, we set: Left Index = Middle Index

• In each iteration, either the Left Index increases or the Right 

Index decreases.

– The moment the difference between the Left Index and Right 

Index is equal to 1, we will exit from the loop and say that the

value of the Right Index is the threshold (smallest integer) value 

of ‘n’ for which the function value is less than the target.



It # Left Index Right Index Middle Index f(Middle Index)

1 1 100 (1 + 100)/2 = 50 0.0008 < target

2 1 50 (1 + 50)/2 = 25 0.0032 < target

3 1 25 (1 + 25)/2 = 13 0.0118 > target

4 13 25 (13 + 25)/2 = 19 0.0055 < target

5 13 19 (13 + 19)/2 = 16 0.0078 < target

6 13 16 (13 + 16)/2 = 14 0.0102 > target

7 14 16 (14 + 16)/2 = 15 0.0089 < target

8 14 15 STOP!

Function f(n) = 2/n2; for n > 0

Target = 0.01

Left Index = 1; f(Left Index) = 2  > target 

Right Index = 100; f(Right Index) = 2/1002 = 0.0002 < target

Threshold = Value of Right Index when we stop the iterations

= 15

Solution: 

15 is the smallest integer for which the function f(n) = 2/n2 is less than 0.01

# Iterations = log2(the starting Right Index) = log2(100) ~ 7



• A unimodal array is an array that has a sequence 
of monotonically increasing integers followed by a 
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search. 

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5       6         7 8        9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 2

Using Master Theorem,

C(n) = Θ(logn) 

Space complexity: Θ(1)



Two Scenarios

L R

M

A[M] < 

A[M+1]

M+1 M M+1

Search Space
L = 

M+1

R

Search 

Space

Scenario 1

A[M] < A[M+1]

L R

M

A[M] >

A[M+1]

M+1

Search Space
L R 

= M
Search 
Space

Scenario 2

A[M] > A[M+1]

M

A[M] >

A[M+1]

M+1



• Proof of Correctness
– We always maintain the invariant that the maximum 

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to 
be either at index m+1 or to the right of index m+1. 
Hence, we set L = m+1 and retain R as it is, 
maintaining the invariant that the maximum element is 
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either 
at index m or before index m. Hence, we set R = m 
and retain L as it is, maintaining the invariant that the 
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop 
ends and we return the maximum  element.

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

0        1        2        3       4        5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14



Applications of Binary Search (3)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i 
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i] 
< A[i+1]. That is, the element is lower than the element to 
the immediate left as well as to the element to the 
immediate right.

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum. 

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we 
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search 

on the half corresponding to the smaller of its two neighbors.



Applications of Binary Search (3)
Local Minimum in an Array

8 5 7 2 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1   Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)



Applications of Binary Search (3)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5   Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8   Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0        1        2        3       4        5       6         7 8        9       10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 3 for n > 3

Basic Condition: T(3) = 2

Using Master Theorem, we have

a = 1, b = 2, d = 0 � a = bd. 

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

One comparison for A[M] with A[M+1]

One comparison for A[M] with A[M-1]

One comparison for A[M-1] with A[M+1]



Applications of Binary Search (3)
Local Minimum in an Array

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an 
array, then the array has to have at least one local 
minimum.

• Proof: Let us prove by contradiction. 
– If the second number is not to be a local minimum, then the third 

number in the array has to be less than the second number. 

– Continuing like this, if the third number is not to be a local minimum, 
then the fourth number has to be less than the third number and so 
on. 

– Again, continuing like this, if the penultimate number is not to be a 
local minimum, then the last number in the array has to be smaller 
than the penultimate number. This would mean the second 
constraint is violated (and also the array is basically a 
monotonically decreasing sequence). A contradiction.



• An element is a local 
minimum in a two-dim array if 
the element is the minimum 
compared to the elements to 
its immediate left and right as 
well as to the elements to its 
immediate top and bottom. 
– If an element is in the edge 

row or column, it is compared 
only to the elements that are 
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost 

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost 

Row

Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array



Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex( A[MidRowIndex][ ] )

/* Finds the col index with the minimum element in the row 
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex, 
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1, 

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array



Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0           1         2           3          4          5       6

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the 

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood



Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element 

12 in Mid Row is smaller 

than its immediate top 

(40) and bottom (33) 

neighbors
12 at (1, 3) is a local minimum



Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0           1         2           3          4          5



Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0           1         2           3          4          5

Bottom Row Index

The minimum element 

15 in Mid Row is smaller 

than its immediate top 

bottom (35) neighbor

15 at (0, 3) is a local minimum



Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2) 

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n) 

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)


