
Module 2:
Divide and Conquer

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Introduction to Divide and Conquer
• Divide and Conquer is an algorithm design strategy of dividing a

problem into sub problems, solving the sub problems and merging
the solutions of the sub problems to get a solution for the larger
problem.

• Let a problem space of size ‘n’ (for example: an n-element array
used for sorting) be divided into sub problems of size ‘n/b’ each,
which could be either overlapping or non-overlapping.

• Let us say we solve ‘a’ of these sub problems of size n/b.

• Let f(n) represent the time complexity of merging the solutions of the
sub problems to get a solution for the larger problem.

• The general format of the recurrence relation can be then written as
follows: where T(n/b) is the time complexity to solve a sub problem
of size n/b and T(n) is the overall time complexity to solve a problem
of size n.

T(n) = a * T(n/b) + f(n)

Recurrence Relations for Divide and Conquer

Non-Overlapping Sub Problems

‘n’

‘n/3’ ‘n/3’ ‘n/3’

T(n)

= 3 * T (n/3)

+ f(n)

Overlapping Sub Problems (a ≠ b)

‘n’

‘n/3’

‘n/3’

‘n/3’

T(n)

= 4 * T (n/3)

+ f(n)

‘n/3’

Master Theorem to Solve Recurrence
Relations: T(n) = a * T(n/b) + f(n)

Note: To apply Master Theorem, the function f(n) should be a polynomial and

should be monotonically increasing

Note: To satisfy the definition

of a polynomial, ‘d’ should be

a non-negative integer.

where d ≥ 0 and an integer

Master Theorem (O - version)

Note: We will try to apply the Θ – version
wherever possible. If the Θ – version

cannot be applied, we will try to apply the

O-version.

Master Theorem (Θ - version)

Merge Sort
• Split array A[0..n-1] in two about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:

• compare the first elements in the remaining
unprocessed portions of the arrays

• copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

Merge Sort

Merge Algorithm

Incase of a tie B[i] = C[j]

Insert the element in the

Left sub array in A.

Example for Merge Sort

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

The order
recursion runs

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

1

9

2

3

4

5

6

7

8

10

11

12

13

14

Analysis of Merge Sort

Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort, bubble sort,
selection sort) we saw in Module 1, Merge sort incurs a
worst-case time-complexity of Θ(nlogn), whereas the
other sorting algorithms we have seen incur a worst-
case time complexity of O(n2).

• The tradeoff is Merge sort requires additional space
proportional to the size of the array being sorted. That is,
the space-complexity of merge sort is Θ(n), whereas the
other sorting algorithms we have seen incur a space-
complexity of Θ(1).
– Algorithms that incur a Θ(1) space complexity are said to be

“in place”

Number of Inversions in an Array

• Given an array A, an inversion
is said to have occurred if i < j
and A[i] > A[j].

• Example 2 8 1 9 3 7
0 1 2 3 4 5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

The number of inversions in an array can be computed as the

Sum of the number of inversions encountered in each of the

Merging steps of the Merge Sort algorithm.

i

0 1 2 3 4 5 6 7

j

Sorted Left Half Sorted Right Half

Mid = 4, the index of the

first element in the right half

If A[i] > A[j], then

everything to the right of

Index in the sorted left

half are also going to be

greater than A[j]. Hence,

the number of inversions

due to A[i] > A[j] is:

Mid – i.

Inversions in the Merge Step (Ex.2)

0 1 2 3 4 5 6 7 8 9

14 17 19 22 25 13 16 18 20 27

Mid = 5

Inversions in the

Merging Step

= 5 + 4 + 3 + 2

= 14

Inversions in the Merge Step (Ex.2)

0 1 2 3 4 5 6 7 8 9

2 3 8 9 10 1 4 5 7 8

Mid = 5

Inversions in the

Merging Step

= 5 + 3 + 3 + 3 + 2

= 16

Total # Inversions (all Merging Steps): Ex. 3

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1 0
0 1 2 3

2

0 1 2 3

4 5 6 7
1 1

4 5 6 7

0 1 2 3 4 5 6 7

(8, 3)

(3, 2)

(8, 2) 2

(7, 4)

(7, 5)

10(2, 1); (3, 1); (8, 1);

(9, 1); (8, 4); (9, 4);

(8, 5); (9, 5); (8, 7); (9, 7)

(7, 1) (5, 4)

Total # Inversions = 1 + 0 + 2 + 1 + 1 + 2 + 10 = 17

Total # Inversions: Ex. 4

2 8 1 9 3 7

2 8 1

2 8 1

2 8 1

1 8

1 2 8

0 1 2 3 4 5

0 1 2

0 1 2

0 1 2

1
1 2

1

0 1 2

(2, 1)

2(8, 3)

(8, 7)
Total # Inversions = 1 + 1 + 2 + 2 = 6

9 3 7

3 4 5

(8, 1)

9 3 7

9 3 7

3 7

3 7 9

3 4 5

3 4 5

4 5

2

3 4 5(9, 3)

(9, 7)

1 2 3 7 8 9

0 1 2 3 4 5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

Finding the Maximum Integer in an
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index

positions of the maximum element

in the sub arrays, We do not need to

create additional space. So, this

algorithm is in-place.

Divide part

Conquer part

Terminating Condition

Getting ready to

divide

Max Integer Index Problem: Time
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2)) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the

time-complexity. The overhead comes with recursion.

FindMaxIndex: Example

FindMaxIndex: Example (contd..)

0 1 5 6

1 2

1

3 4

3

3

5 7 8 9

5 9

5

Binary Search
• Binary search is a Θ(log n), highly efficient search

algorithm, in a sorted array.

• It works by comparing a search key K with the array’s

middle element A[m]. If they match, the algorithm stops;

otherwise, the same operation is repeated recursively for

the first half of the array if K < A[m], and for the second

half if K > A[m].

• Though binary search in based on a recursive idea, it can

be easily implemented as a non-recursive algorithm.

Binary Search
Search Key

K = 70

Example

l=0 r=12 m=6

l=7 r=12 m=9

l=7 r=8 m=7

C(n) = C(n/2) + 1 for n > 1

C(1) = 1

C(n) = C(n/2) + Θ(1) for n > 1

a = 1, b = 2, d = 0
a = bd

C(n) = Θ(n0logn) = Θ(logn)

Unsuccessful Search

Search K = 10

l=0 r=12 m=6

l=0 r=5 m=2

l=0 r=1 m=0

l=1 r=1 m=1

l=1 r=0 STOP!!

Binary Search

Applications of Binary Search (1)
Searching for a Threshold Value for a Function

• Sample Scenario

• Consider a monotonically decreasing function f(n) = 2/n2,
where n is a positive integer (n > 0).

• We need to develop a Θ(logn) algorithm that would
determine the smallest value of n (called the threshold
value) for which f(n) would be less than a target value 't‘
(say, t = 0.01).

n f(n) = 2/n2
n f(n) = 2/n2

1 2 9 0.0247

2 0.5 10 0.02

3 0.222 11 0.0165

4 0.125 12 0.0139

5 0.08 13 0.0118

6 0.0556 14 0.0102

7 0.0408 15 0.0089

8 0.0313 16 0.0078

• Solution Approach

• Invariants (something that will remain true throughout the algorithm):

– We will keep the Left Index as an ‘n’ value for which f(n) is always going

to be greater than or equal to the threshold value

– We will keep the Right Index as an ‘n’ value for which f(n) is always

going to be less than the threshold value.

• We will go through a sequence of iterations of Binary Search until

the difference between the Right Index and Left Index is greater

than ONE (note: we are dealing with integers here).

– In each iteration, the middle index is the average of the Left

Index and Right Index.

• If f(Middle Index) < target, we set: Right Index = Middle Index

• If f(Middle Index) >= target, we set: Left Index = Middle Index

• In each iteration, either the Left Index increases or the Right

Index decreases.

– The moment the difference between the Left Index and Right

Index is equal to 1, we will exit from the loop and say that the

value of the Right Index is the threshold (smallest integer) value

of ‘n’ for which the function value is less than the target.

It # Left Index Right Index Middle Index f(Middle Index)

1 1 100 (1 + 100)/2 = 50 0.0008 < target

2 1 50 (1 + 50)/2 = 25 0.0032 < target

3 1 25 (1 + 25)/2 = 13 0.0118 > target

4 13 25 (13 + 25)/2 = 19 0.0055 < target

5 13 19 (13 + 19)/2 = 16 0.0078 < target

6 13 16 (13 + 16)/2 = 14 0.0102 > target

7 14 16 (14 + 16)/2 = 15 0.0089 < target

8 14 15 STOP!

Function f(n) = 2/n2; for n > 0

Target = 0.01

Left Index = 1; f(Left Index) = 2 > target

Right Index = 100; f(Right Index) = 2/1002 = 0.0002 < target

Threshold = Value of Right Index when we stop the iterations

= 15

Solution:

15 is the smallest integer for which the function f(n) = 2/n2 is less than 0.01

Iterations = log2(the starting Right Index) = log2(100) ~ 7

• A unimodal array is an array that has a sequence
of monotonically increasing integers followed by a
sequence of monotonically decreasing integers.

• All elements in the array are unique

• Examples
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Algorithm: Modified binary search.

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5 6 7 8 9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 2

Using Master Theorem,

C(n) = Θ(logn)

Space complexity: Θ(1)

Two Scenarios

L R

M

A[M] <

A[M+1]

M+1 M M+1

Search Space
L =

M+1

R

Search

Space

Scenario 1

A[M] < A[M+1]

L R

M

A[M] >

A[M+1]

M+1

Search Space
L R

= M
Search
Space

Scenario 2

A[M] > A[M+1]

M

A[M] >

A[M+1]

M+1

• Proof of Correctness
– We always maintain the invariant that the maximum

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to
be either at index m+1 or to the right of index m+1.
Hence, we set L = m+1 and retain R as it is,
maintaining the invariant that the maximum element is
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either
at index m or before index m. Hence, we set R = m
and retain L as it is, maintaining the invariant that the
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop
ends and we return the maximum element.

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1 // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

Applications of Binary Search (2)
Finding the Maximum Element in a Unimodal Array

0 1 2 3 4 5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14

Applications of Binary Search (3)
Local Minimum in an Array

• Problem: Given an array A[0,…, n-1], an element at index i
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i]
< A[i+1]. That is, the element is lower than the element to
the immediate left as well as to the element to the
immediate right.

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum.

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search

on the half corresponding to the smaller of its two neighbors.

Applications of Binary Search (3)
Local Minimum in an Array

8 5 7 2 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0 1 2 3 4 5 6 7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3 Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1 Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)

Applications of Binary Search (3)
Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5 Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8 Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0 1 2 3 4 5 6 7 8 9 10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 3 for n > 3

Basic Condition: T(3) = 2

Using Master Theorem, we have

a = 1, b = 2, d = 0 � a = bd.

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

One comparison for A[M] with A[M+1]

One comparison for A[M] with A[M-1]

One comparison for A[M-1] with A[M+1]

Applications of Binary Search (3)
Local Minimum in an Array

• Constraints:
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an
array, then the array has to have at least one local
minimum.

• Proof: Let us prove by contradiction.
– If the second number is not to be a local minimum, then the third

number in the array has to be less than the second number.

– Continuing like this, if the third number is not to be a local minimum,
then the fourth number has to be less than the third number and so
on.

– Again, continuing like this, if the penultimate number is not to be a
local minimum, then the last number in the array has to be smaller
than the penultimate number. This would mean the second
constraint is violated (and also the array is basically a
monotonically decreasing sequence). A contradiction.

• An element is a local
minimum in a two-dim array if
the element is the minimum
compared to the elements to
its immediate left and right as
well as to the elements to its
immediate top and bottom.
– If an element is in the edge

row or column, it is compared
only to the elements that are
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost

Row

Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array

Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex(A[MidRowIndex][])

/* Finds the col index with the minimum element in the row
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex,
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1,

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array

Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood

Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element

12 in Mid Row is smaller

than its immediate top

(40) and bottom (33)

neighbors
12 at (1, 3) is a local minimum

Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0 1 2 3 4 5

Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0 1 2 3 4 5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0 1 2 3 4 5

Bottom Row Index

The minimum element

15 in Mid Row is smaller

than its immediate top

bottom (35) neighbor

15 at (0, 3) is a local minimum

Applications of Binary Search (4)
Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2)

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n)

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)

