
Module 2:
List ADT

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

List ADT
• A collection of entities of the same data type
• List ADT (static)

– Functionalities (logical view)
• Store a given number of elements of a given data type

• Write/modify an element at a particular position

• Read an element at a particular position

• Implementation:
– Arrays: A contiguous block of memory of a certain

size, allocated at the time of creation/initialization
• Time complexity to read and write/modify are Θ(1) each

10 23 13 17

0 1 2 3 ……. N-1

Memory
address 2

0
0

2
0

4

2
0

8

2
1

2

Array index

A[0]

Array, A

A[2]

21…….

2
x

x

Code 1(C++): Static List
Implementation using Arrays

#include <iostream>

using namespace std;

Dynamic List ADT
• Limitations with Static List

– The list size is fixed (during initialization); cannot be increased or
decreased.

– A new element cannot be inserted (if the list is already full) or an
existing element cannot be deleted.

• Key Features of a Dynamic List
– Be able to resize (increase or decrease) the list at run time. The list

size need not be decided at the time of initialization. We could start
with a list of size one and populate it as elements are to be added.

– Be able to insert or delete an element at a particular index at any time.

• Performance Bottleneck
– When we increase the size of the list (i.e., increase the size of the

array that stores the elements), the contents of the array need to be
copied to a new memory block, element by element. � O(n) time.

– Hence, even though, we could increase the array size by one element
at a time, the ‘copy’ operation is a performance bottleneck and the
standard procedure is to double the size of the array (list) whenever
the list gets full.

– A delete operation also takes O(n) time as elements are to be shifted
one cell to the left.

Code 2: Code for Dynamic List
ADT Implementation using Arrays

Variables and Constructor (C++)

isEmpty (C++)

Function to free the memory (C++)

Code 2: Insert Function (C++)

Will take O(n) time each, where

n = maxSize + 1

Code 2: Resize Function (C++)

Have another pointer (a temporary ptr)

to refer to the starting address of

the memory represented by the original

array

Allocating a new set of memory blocks to the ‘array’ variable

Copying back the contents pointed to by the

temporary array pointer to the original array

If the array size is reduced from maxSize to s, only

the first ‘s’ elements are copied. Otherwise, all

the maxElements are copied

new value of maxSize

Note: Include <algorithm> header

file if the min function is not
automatically loaded to your
computing environment.

Temp

array
Original

array

Original

array

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

2
7

Insert Operation
(incl. Relocation and Doubling the Size of the Array)

Time complexity analysis for ‘Insert’:
Dynamic List ADT as an Array

Insert operation
(i) Worst case: If the element is to be inserted as the first element in the array,

then elements from index endOfArray(eoA) to index ‘0’ have to be shifted

one position to the right. If eoA = n-1, then ‘n’ (indexes 0 to n-1) such

shifting need to be done.

10 23 13 17

0 1 2 3 ……. eoA eoA+1

2
0

0

2
0

4

2
0

8

2
1

2

21…….

2
x

x

23 13 17

0 1 2 3 …. i i+1 i+2 ….eoA eoA+1

2
0

0

2
0

4

2
0

8

2
1

2

34…….

2
y
y

(ii) Best case: If the element is to be inserted at the end of the array, no shifting

is needed.

(iii) In general, if the element is to be inserted at index i, then the elements from

index endOfArray(eoA) to index ‘i’ need to be shifted one cell to the right.

No change

Time complexity for insert operation: O(n)

Code 2: Other Auxiliary Functions
(C++)

Time complexity analysis for ‘Delete’:
Dynamic List ADT as an Array

Delete operation
(i) Worst case: If the element to be deleted is the first element (at index 0) in

the array, then the subsequent elements have to be shifted one position

to the left, starting from index 1 to endOfArray (eoA) . If eoA = n-1, then

n-1 such shifting need to be done.

10 23 13 17

0 1 2 3 ……. eoA

2
0

0

2
0

4

2
0

8

2
1

2

21…….

2
x

x

23 13 17

0 1 2 3 …. i i+1 i+2 ….. eoA

2
0

0

2
0

4

2
0

8

2
1

2

34…….

2
y
y

(ii) Best case: If the element to be deleted is at the end of the array, no shifting

is needed.

(iii) In general, if the element to be deleted is at index i, then the elements from

index i+1 to endOfArray need to be shifted one cell to the left.

No change

Time complexity for delete operation: O(n)

Code 2: C++ main function

We will set the maximum size of the list to 1

and double it as and when needed

Pros and Cons of Implementing
Dynamic List using Array

• Pros: Θ(1) time to read or modify an element at a particular index

• Cons: O(n) time to insert or delete an element (at any arbitrary
position)

• Note: Array is a contiguous block of memory

• When we double the array size (to handle the need for more space),
the memory management system of the OS needs to search for
contiguous blocks of memory that is double the previous array size.

– Sometimes, it becomes difficult to allocate a contiguous block of
memory, if the requested array size is larger.

• After we double the size (say from 50,000 to 100,000 to insert just
one more element), the rest of the array remains unused. However,
increasing the size of the array one element at a time is time
consuming too. [Space-time tradeoff]

– The copy operation involved during resizing the array is also
time consuming

Code 6: Run Time

Complexity Analysis

Linked List
• A Linked List stores the elements of the ‘List’ in separate memory

locations and we keep track of the memory locations as part of the
information stored with an element (called a node).
– A ‘node’ in a Linked List contains the data value as well as the address

of the next node.

• Singly Linked List: Each node contains the address of the node with
the subsequent value in the list. There is also a head node that
points to the first node in the list.

Data

nextNodePtr

• Doubly Linked List: Each node contains the address of the node with
the subsequent value as well as the address of the node with the
preceding value. There is also a head node pointing to the first node
in the list and a tail node pointing to the last node in the list.

prevNodePtr

Data

nextNodePtr

• Note: Memory address can be represented in 4 bytes. Hence, each
pointer or reference to a memory will take 4 bytes of space.

With singly linked list – we can traverse only in one direction

With doubly linked list – we can traverse in both directions

Singly Linked List

20

1
3

6 45 12 17

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

6

1
7

6

(N
U

L
L

)0

1
2

0

Head

Node Node Node Node Node

Memory Address

Doubly Linked List

20

1
3

2 45

1
1

6 12

1
5

2 17

1
7

2

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

2

1
7

2

0

(N

U
L
L
)

(N
U

L
L
)0

1
3

2

1
1

6

Head

Node Node Node Node Node

Memory Address

Tail

Node

Singly Linked List Implementation (Code 3)

Class Node

C++

Singly Linked List: Class List
Class List (C++) Initialization of List Object

Data
NextNodePtr

= 0

Head Node

Address: 100

(indicated as @ 100)

/* Note that the data for the
Head node is not set */

100

headPtr

Convention used to represent a Linked List.

Let the List be 10 5 7 9

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

// 0 – indicates NULL
// i.e., the ptr is not

// pointing to

// any address

Head node

10 5 7 9

The numbers 100, 200, 70, 500, 700 below the nodes represent
the address at which these nodes are stored, indicated with an @ symbol

Class List (C++)

If the nextNodePtr for

the headPtr points to null (0),

then the list is empty. Otherwise,

the list has at least one node.

Move the currentNode ptr from first node

in the list to end of the list. When we come

out of the ‘while’ loop, the prevNode ptr

is the last node in the list and

currentNode ptr points to null (0).

prevNodePtr and currentNodePtr
• As we traverse through the list, node by node, we will maintain two

pointers: the prevNodePtr and currentNodePtr.
– The currentNodePtr has the address for the node that is currently being

visited/ processed.

– The prevNodePtr has the address for the node that was just visited
before the current node.

• We have reached the end of the list when currentNodePtr is 0 (i.e.,
does not point to any node).

500

@ 300

700

@ 500

D
a
ta

Elements to the left

of this node

………………….. D
a
ta

Elements to the right

of this node

…………………..

prevNodePtr

300

currentNodePtr

500

Let the List be 10 5 7 9 and now we want to insert element ’30’ at the end.

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

Initialization of prevNodePtr and

currentNodePtr (before the while

loop)

200

headPtr

100

70 500 700 0

Head node

10 5 7 9

Example: Insertion at the End of the List (1)

prevNodePtr

100

currentNodePtr

200

@ 100 @ 200 @ 70 @ 500 @ 700

Inside the while loop Example continued (2)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

200

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

200

currentNodePtr

70

Inside the while loop Example continued (3)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

70

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

500

Inside the while loop Example continued (4)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

500

currentNodePtr

500

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

500

currentNodePtr

700

Inside the while loop Example continued (5)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

700
currentNodePtr

700

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

700

currentNodePtr

0

After the while loop Example continued (6)

Let ’30’ be the data to be

inserted at the end of the

Linked List

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700
Head node

10 5 7 9

prevNodePtr

700

currentNodePtr

0

030

@ 900

New Node

newNodePtr

900

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

900

@ 700
Head node

10 5 7 9

prevNodePtr

700

currentNodePtr

0

030

@ 900

New Node

newNodePtr

900

Class List (C++)

During the beginning and end of the while loop,

the value for ‘index’ corresponds to the

Position of the currentNode ptr and prevNode ptr

corresponds to index-1.

If index equals insertIndex, we break from

the while loop and insert the new node

at the index in between prevNode and

currentNode.

index refers to the node pointed
by currentNodePtr at any time

Let the List be 10 5 7 9 and let us say we want to insert element ’30’ at insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

Initialization of prevNodePtr and

currentNodePtr (before the while

loop)

200

headPtr

100

70 500 700 0

Head node

10 5 7 9

Example: Insertion at insertIndex = 2 (1)

prevNodePtr

100

currentNodePtr

200

@ 100 @ 200 @ 70 @ 500 @ 700

An array version
0 1 2 3

10 5 7 9

index = 0

Inside the while loop Example continued (2)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

200

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

200

currentNodePtr

70

insertIndex = 2

index = 1

Inside the while loop Example continued (3)

insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

70

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

500 index = 2

At the time of breaking from the while loop Example continued (3)

insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

500

index = 2

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr

70

currentNodePtr

500

50030

@ 900

New Node

newNodePtr
900

After breaking from

the while loop

Linking of the

newNode

Class List (C++)

The ‘index’ value corresponds to the

Position of the currentNode ptr and

index-1 corresponds to prevNode ptr

Class List (C++)

Delete (deleteIndex) Function

First

Node
headNode

headPtr

prevNodePtr

currentNodePtrInitialization

At the beginning of
an iteration inside
the ‘while’ loop

getnextNodePtr()

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr

Node at

‘index’

Node at

‘index - 1’
Node at

‘index+1’

prevNodePtr currentNodePtr

At the end of
an iteration inside
the ‘while’ loop

index = 0

nextNodePtr

When index != deleteIndex

Delete (deleteIndex) Function
When index == deleteIndex

Inside the ‘while’ loop

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr nextNodePtr

Outside the ‘while’ loop

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr
nextNodePtr

currentNode at index = deleteIndex

is disconnected from the Linked List

Class List (C++)

The next node for ‘prevNode’ ptr

is now ‘next node’ and not

‘current node’

Let the List be 10 5 30 7 9 and now we want to delete ’30’ at deleteIndex = 2

Initialization of the pointers

Example: Deletion at deleteIndex = 2

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

next

NodePtr

100

prevNodePtr

100

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 0

Example: Deletion at deleteIndex = 2

next

NodePtr

100

prevNodePtr

100

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 2

Before Getting into the

if block

nextNodePtr

500prevNodePtr

100

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 2

Inside the if block

Example: Deletion at deleteIndex = 2

nextNodePtr

500prevNodePtr

100

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 2

After exiting from the

‘while’ loop

Delinking of Node at index = 2 (element ’30’ from the Linked List)

Linked List vs. Arrays: Memory Usage
Data size Next Node Ptr Prev Node Ptr Node Size

Singly Linked List 4 (int) 4 N/A 8 bytes

Singly Linked List 32 4 N/A 36 bytes

Doubly Linked List 4 (int) 4 4 12 bytes

Doubly Linked List 32 4 4 40 bytes

An array is usually considered to take space that is twice the
number of elements in it. Still, it looks like the Linked Lists will
take a larger memory compared to an array. But, it is not
always the case.

Consider a scenario wherein 64,000 objects (each of size 32 bytes)
are to be stored in a List.

If we were to stored the objects in an array, there would need to be
space for 128,000 objects. Hence, a dynamic array-based
implementation will now hold up 128,000 * 32 bytes = 40,96,000
bytes in memory.

A singly linked list based implementation will hold (64,000 + 1
head node) * 36 bytes = 23,04,036 bytes in memory.

A doubly linked list based implementation will hold (64,000 + 1
head node + 1 tail node)* 40 bytes = 25,60,080 bytes in memory.

Linked List vs. Arrays: Memory Usage

On the other hand, Consider a scenario

wherein 4,000 integers (each integer is 4
bytes) are to be stored in a List.

An array-based implementation will now hold
8,000 * 4 = 32,000 bytes in memory.

A singly linked list-based implementation will
now hold (4,000 + 1 head node) * 8 = 32,008
bytes in memory.

A doubly linked list-based implementation will
now hold (4,000 + 1 head node + 1 tail node) *
12 = 48,024 bytes in memory.

Linked List vs. Arrays: Time Complexity
Array Singly Linked Doubly Linked

List List

Read/Modify Θ(1) O(n) O(n)

Insert O(n) O(n) O(n)

Delete O(n) O(n) O(n)

isEmpty Θ(1) Θ(1) Θ(1)

Count Θ(1) O(n) O(n)

We typically use arrays if there are more frequent read/modify
operations compared to Insert/Delete

We typically use Linked Lists if there are more frequent insert/delete
operations compared to read/modify (remember: arrays come with
the overhead of creating a new block of memory, if needed, and
copying the elements to the new block)

Note: With arrays, Insert operations are more time consuming if need to be
done at the smaller indices. With singly linked lists, insert operations are
more time consuming if done towards the end of the list. A doubly linked
list could be traversed either from the head or the tail, and hence if a priori
information is know about the sequence of elements in the list, traversal
could be initiated from the head or tail, and the traversal time could be
lower than a singly linked list. Still O(n) time though!

Sorting Algorithm: Selection Sort
• Given an array A[0…n-1], we proceed for a total of n-1 iterations)

• In iteration i (0 ≤ i < n-1), we assume A[i] is the minimum element and
seek to find whether there exists an element at index i+1…n-1 so that
we can swap that element with A[i], if such an element exists.

5

0

6

1

5

2

4

3

3

4

10

5

9

6

1

7

7

8

8

9

Given Array

5

0

6

1

5

2

4

3

3

4

10

5

9

6

1

7

7

8

8

9
Iteration 0

1

0

6

1

5

2

4

3

3

4

10

5

9

6

5

7

7

8

8

9
Iteration 0

(After)

Iteration 1
1

0

6

1

5

2

4

3

3

4

10

5

9

6

5

7

7

8

8

9

Iteration 1

(After) 1

0

3

1

5

2

4

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 2

Iteration 2

(After)

1

0

3

1

5

2

4

3

6

4

10

5

9

6

5

7

7

8

8

9

1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 3
1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 3

(After)
1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 4
1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 4

(After)
1

0

3

1

4

2

5

3

5

4

10

5

9

6

6

7

7

8

8

9

Iteration 5
1

0

3

1

4

2

5

3

5

4

10

5

9

6

6

7

7

8

8

9

Iteration 5

(After)
1

0

3

1

4

2

5

3

5

4

6

5

9

6

10

7

7

8

8

9

Iteration 6 1

0

3

1

4

2

5

3

5

4

6

5

9

6

10

7

7

8

8

9

Iteration 6

(After)
1

0

3

1

4

2

5

3

5

4

6

5

7

6

10

7

9

8

8

9

Iteration 7 1

0

3

1

4

2

5

3

5

4

6

5

7

6

10

7

9

8

8

9

Iteration 7
(After)

1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Iteration 8 1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Iteration 8

(After)
1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Final Sorted Array
1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Comparisons

(n-1) + (n-2) + …. + 1 = n(n-1)/2 = Θ(n2)

There is no best or worst case. In the ith

Iteration, we have to find if there exists
any element that is less than the

element at index i.

Selection Sort

Find the

address of the
node with the

minimum data
/* Assigns the address

of the first data node

as the initial value of

minDataNodePtr */// return ‘0’ (null) if the list is empty

/* Inside this loop, minDataNodePtr will be

set to the address of the node (if any exists)

whose data is less than the data of the node

whose address is stored in minDataNodePtr */

Code 7

Code 7: Another version of findMinimumDataNodeAddress

Function: finds address of the node with the minimum data
starting from the node currently pointed by currentNodePtr

Note: The function assumes that currentNodePtr is NOT NULL to begin with.

Iterative
Print

Class List (C++)

Recursion
• Recursion: A function calling itself.

• Recursions are represented using a
recurrence relation (incl. a base or
terminating condition)

• Example 1

• Factorial (n) = n * Factorial(n-1) for n > 0

• Factorial (n) = 1 for n = 0

Factorial(n)

if (n == 0)

return 1;

else
return n * Factorial(n-1)

Factorial(0) = 1

Factorial(1) = 1 * Factorial(0)

Factorial(2) = 2 * Factorial(1)

Factorial(3) = 3 * Factorial(2)

Factorial(4) = 4 * Factorial(3)

Factorial(5) = 5 * Factorial(4)

Factorial (5)
= 5 * Factorial (4)

Factorial (4)

= 4 * Factorial (3)

Factorial (3)

= 3 * Factorial (2)

Factorial (2)

= 2 * Factorial (1)

Factorial (1)

= 1 * Factorial (0)

Factorial (0) = 1

M
e

m
o

ry
 S

ta
c

k

Example (Code 4)
to Illustrate

Recursion and
Random Number

Generation
Initialize the random number

generator with a seed that

corresponds to the current system time

The random numbers are generated

from 1 to maxValue

C++

Headers to be included

Code 4: C++

Printing in the forward order

Printing in the reverse order

Recursion

cout << arrayPtr[0] << “ “; // printIndex = 0; size = 4

RecursivePrint(arrayPtr, size = 4, printIndex + 1)

cout << arrayPtr[0] << “ “; // printIndex = 0

@main

RecursivePrint(array, arraySize = 4, printIndex = 0)

cout << arrayPtr[1] << “ “; // printIndex = 1; size = 4

RecursivePrint(arrayPtr, size = 4, printIndex + 1)

cout << arrayPtr[1] << “ “; // printIndex = 1

cout << arrayPtr[2] << “ “; // printIndex = 2 ; size = 4

RecursivePrint(arrayPtr, size = 4, printIndex + 1)

cout << arrayPtr[2] << “ “; // printIndex = 2

cout << arrayPtr[3] << “ “; // printIndex = 3 ; size = 4

RecursivePrint(arrayPtr, size = 4, printIndex + 1)

cout << arrayPtr[3] << “ “; // printIndex = 3

if (printIndex == size){

cout << endl;

return;

}

0 1 2 3

array 14 21 33 45

14 21 33 45

45 33 21 14

Seq

1

2

3

15

4

5

14

6

7

13

8

9

12

10

11

// printIndex = 4; size = 4

// 4 == 4

Seq 2 4 6 8

Seq 12 13 14 15

Singly vs. Doubly Linked List

• A doubly linked list has two additional nodes: a head node and tail node
(a head ptr points to the head node whose next node is the first node in
the list, and a tail ptr points to the tail node whose prev node is the last
node in the list).
– Note the next node for the last node in the list is null (so that the end of the

list could be traced) as well as the prev node for the first node in the list is
null (so that the beginning of the list could be traced).

• A doubly linked list could be traversed in either direction (from head to
tail or from tail to head).

– NextNodePtr values at the nodes are used to access in the forward
direction (from head node to the last node)

– PrevNodePtr values at the nodes are used to access in the reverse
direction (from the tail node to the first node)

12 45 33 22 30 null

headPtr

12 45 33 22 30 null

headPtr
tailPtr

null

Head

Node

Head

Node
Tail

Node

Singly

Linked List
Doubly

Linked List

Data

Next

Node

Ptr

Data
Prev
Node

Ptr

Next
Node

Ptr

Class

Node

C++

Doubly

Linked List
Singly

Linked List

