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Binary Search
• Binary search is a Θ(log n), highly efficient search 

algorithm, in a sorted array. 

• It works by comparing a search key K with the array’s 

middle element A[m]. If they match, the algorithm stops; 

otherwise, the same operation is repeated recursively for 

the first half of the array if K < A[m], and for the second 

half if K > A[m].

• The number of comparisons to search for a key in an array 

of size n is C(n) = C(n/2) + 1, for n > 1. C(n) = 1 for n = 1.



Binary Search
Search Key
K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7

The algorithm is run until the left index
is less than or equal to the right index
The search key should be found by then.

The moment the left index becomes 
greater than the right index, we stop and
declare the search key is not there.

Note that the “search space”
reduces by half in each 

iteration.

Hence, the # iterations is
proportional to log(n), 

where ‘n’ is the # elements



Binary Search Tree (BST)
• A binary search tree is a binary tree in which the value for an 

internal node is greater than or equal to the values of the nodes in 
its left sub tree and is lower than or equal to the values of the nodes 
in its right sub tree
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• Both hash tables and BSTs are data structures to implement a 
Dictionary ADT

• A hash table is an unordered collection of data items as a hash table 
could be constructed for any arbitrary array and the search could be 
conducted on a specific linked list to which the search element 
indexes (hash index) into.

• A BST is an ordered collection of data items (satisfying the property 
mentioned above). The number of comparisons it takes for a 
successful search or an unsuccessful search is bounded by the height 
of the binary search tree, which is proportional to log(# nodes).



Algorithm to Construct a BST
Begin BST Construction(Array A, numNodes)

int leftIndex = 0

int rightIndex = numNodes – 1

int middleIndex = (leftIndex + rightIndex) / 2

rootNodeID = middleIndex

BSTree[middleIndex].setData(A[middleIndex])

ChainNodes(A, middleIndex, leftIndex, rightIndex)

End BST Construction

middle
Indexleft

Index
(0)

right
Index
(numNodes – 1)

rootNodeID



middle
Index

left
Index

right
Index

rootID
LeftSubtree
= (leftIndex + 

middleIndex – 1)/2

middle

Index – 1

middle

Index + 1

rootID
RightSubtree
= (middleIndex + 1  
rightIndex)/2

BTNodes[middleIndex]

BTNodes
[rootIDLeftSubtree]

BTNodes
[rootIDRightSubtree]

Logic behind the ChainNodes Function



ChainNodes(A, middleIndex, leftIndex, rightIndex)

if (leftIndex < middleIndex) then  // a left sub tree exists for the node

// at middleIndex

rootIDLeftSubtree = (leftIndex + middleIndex – 1) / 2

BTNodes[rootIDLeftSubtree].setData(A[rootIDLeftSubtree])

setLeftLink(middleIndex, rootIDLeftSubtree)

ChainNodes(A, rootIDLeftSubtree, leftIndex, middleIndex – 1)

end if

if (rightIndex > middleIndex) then // a right sub tree exists for the node

// at middleIndex

rootIDRightSubtree = (middleIndex + 1 + rightIndex) / 2

BTNodes[rootIDRightSubtree].setData(A[rootIDRightSubtree])

setRightLink(middleIndex, rootIDRightSubtree)

ChainNodes(A, rootIDRightSubtree, middleIndex + 1, rightIndex)

end if

Pseudo Code: ChainNodes Function



Example 1: Construction of BST
left
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Index
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Index
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Example 1: Construction of BST
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Example 1: Construction of BST
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Example 1: Construction of BST
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Example 2: Construction of BST
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Example 2: Construction of BST
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Example 2: Construction of BST
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Binary Search Tree (BST) 
Construction

• We will create a class called BinarySearchTree
that will be similar to the BinaryTree class 
created in the other module as much as 
possible.

• Differences
– There will be a member variable called root node id 

(the root node id of a BST need not be 0)

– We will add two member functions called 
constructBSTree( ) that will get the input array of 
sorted integers from the user, determines the root 
node and calls the ChainNodes(…) function, which is 
implemented in a recursive fashion.

• The ChainNodes(…) function will link a node to its left child 
node and right child node, if any exists, and will call itself to 
do the same on its left sub tree and right sub tree.



BST Implementation (C++: Code 7.1)
BTNode
int nodeid
int data
int levelNum
BTNode* leftChildPtr
BTNode* rightChildPtr

BinarySearchTree
int numNodes
BTNode* arrayOfBTNodes
int rootNodeID



constructBSTree Function (Code 7.1)
C

+
+

Assumes the array
is already sorted



ChainNodes Function (C++ Code 7.1)



constructBSTree Function 
(called without the data array)



ChainNodes Function 
(called without the data array)



Selection Sort: Example

Given Array: 12         5         1         4        18        9 7        15

Data: 12         5         1         4        18        9       7        15

Index: 0          1         2         3        4          5     6        7

Iteration 0 1 5         12        4        18        9        7        15 

Iteration 1 1 4 12        5        18        9        7        15 

Iteration 2 1 4 5 12        18        9        7       15 

Iteration 3 1 4 5 7 18        9       12      15 

Iteration 4 1 4 5 7 9 18       12      15 

Iteration 5 1 4 5 7 9 12 18      15 

Iteration 6 1 4 5 7 9 12 15 18 



Code 7.2 Selection Sort (C++)



Main Function for BST 

Implementation

based on a Randomly 

Generated and Sorted Array

(Code 7.3: C++)



getIndex(int searchKey) Method
C++ Code: 7.4



Avg. # Comparisons: Successful 
Search and Unsuccessful Search

• A leaf node is a node with no child nodes

• Let us refer to a node as a “pure internal node” if it has 
both a left child as well as a right child.

• A “semi-internal node” is a node that is not a leaf node 
as well as not a pure internal node and is considered to 
have exactly one child node. 

Pure Internal node

28
4

19

1

37

7

12 22

0 2
30

5
40

8

25
3 34

6
43

9

Leaf node

Semi-internal node



• A successful search is a search for a data that corresponds to 
one of the nodes in the BST.

• An unsuccessful search is a search for a missing data that if at 
all present could be in either the left or right sub tree of a leaf node 
or in the missing sub tree of a semi-internal node.

– Each such missing sub trees would constitute a range in which 
the data for an unsuccessful search could be located.
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Avg. # Comparisons based only on 
the Structure of the BST
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Successful Search
# Comparisons for 
a node is 
1 + the level number 
for the node

Level #
0

1

2

3

# Comp      # Nodes
1 1
2 2

3 4
4 3

Average # Comparisons for a successful search

(1 comp * 1 node) + (2 comp * 2 nodes) * (3 comp * 4 nodes) + (4 comp * 3 nodes)

Total number of nodes (10)
= 2.90

Level 0 Level 1 Level 2 Level 3



Avg # Comparisons: Unsuccessful Search

based only on the Structure of the BST
4
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0 2 5 8

3 6 9
> 12
&&
< 19

> 19
&&
< 22

Level #
0

1

2

3

# Comparisons for a missing 
Sub tree is ONE PLUS the 
number of comparisons for 

the immediate upstream
node (a leaf node or a semi-
internal node).

Leaf nodes

Node    # Comps
0 3
3 4

6 4
9 4

Semi-Internal nodes

Node    # Comps

2 3
5 3
8 3

Avg # comparisons for an unsuccessful search

= (2* Sum of #comps for each leaf node) + 

(1* Sum of # comps for each semi-internal node)

------------------------------------------------------------------------------------

2 * Number of leaf nodes + 1 * Number of semi-internal nodes
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Leaf nodes

Node    # Comps
0 3
3 4

6 4
9 4

Semi-Internal nodes

Node    # Comps

2 3
5 3
8 3

Avg # comparisons for an unsuccessful search

(2* Sum of #comps for each leaf node) + 

(1* Sum of # comps for each semi-internal node)

=  -------------------------------------------------------------------

2 * # leaf nodes + 1 * # semi-internal nodes

= ------------------------------------------------
2 * (3 + 4 + 4 + 4) + 1 * (3 + 3 + 3)

( 2*4 + 1*3)
= 3.55

Unsuccessful 

Search

(structure only)



Avg # Comparisons (structure only): Ex. 2
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Avg # Comparisons for
Successful Search

= --------------------------------------- = 3.15
(1*1) + (2*2) + (3*4) + (4*6)

13

Avg # Comparisons for
Unsuccessful Search

= ---------------------------------------------------- = 3.86
2 * (4 + 4 + 4 + 4 + 4 + 4) + 1 * (3 + 3)

2 * 6 + 1 * 2

L-0 L-1 L-2 L-3



Considering both structure and data: Ex. 1
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a Successful Search = ---------------------------------------------------- = 2.50
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Considering both structure and data: Ex. 1
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Range               # Comp

< 12 3
> 12 && < 19      3
> 19 && < 22      3

> 22 && < 25      4
> 25 && < 25      0
> 25 && < 27      3
> 27 && < 27      0
> 27 && < 30      4
> 30 && < 33      3
> 33 && < 37      4
> 37                    4 

Avg. # Comparisons for 
an Unsuccessful Search

= ---------------------------------------------------- = 3.44
(3 + 3 + 3 + 4 + 3 + 4 + 3 + 4 + 4)
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(Considering only the ranges for which the # comparisons is > 0)



Considering both structure and data: Ex. 2
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Level #s
0

1

2

3

Index          0      1      2       3      4      5       6    7     8      9     10     11    12
Data           3      14    27    31     39    42     55   70   74    81    91     93    98 
# Comps   3       4      2       4      3      4       1     3  4      2      4       3      4

Avg. # Comparisons for 
a Successful Search = ----------------------------------------------- = 3.15(3+4+2+4+3+4+1+3+4+2+4+3+4)
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Avg. # Comparisons for 
An Unsuccessful Search= --------------------------------------------------- = 3.86(3+4+4+4+4+4+4+3+4+4+4+4+4+4)
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Range <3 >3      >14      >27    >31   >39    >42   >55 >70   >74    >81     >91    >93    >98
&&       &&      &&    &&    &&     &&    && &&    &&     &&     &&     &&
<14    <27      <31    <39    <42   <55   <70 <74    <81    <91    <93    <98

# Comps 3 4        4          4         4       4       4       3  4        4        4        4         4        4      

Ex. 2 (contd..)



inorder Traversal of a BST 
(see Code 7.3)

• inorder traversal of a BST will list the keys of the BST in a sorted 
order.

• Proof: Let K1 < K2 be the two keys in a BST. We want to prove that 
K1 will appear before K2 in an inorder traversal of the BST.

• There are three scenarios:
– K2 is in the right sub tree of K1

– K1 is in the left sub tree of K2

– K1 and K2 have a common ancestor (say K3) such that K1 < K3 < K2.

• For each of the three scenarios, if we were to do an inorder
traversal, K1 will appear before K2.
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…
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…
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inorder Traversal of a BST
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{Left sub tree} {root} {Right sub tree}

Left sub tree
0     1     2    3
12  19   22  25

Right sub tree
5     6     7    8     9
27  27 30  33   37

Root
4  
25



Converting a Binary Tree to a 
Binary Search Tree 
(preserving the structure)

• Do an inorder traversal of 
the given binary tree and 
get an array of data  
corresponding to the nodes 
of the tree in the order they 
are visited (i.e., the index 
entries of the nodes)

• Sort the data using a sorting 
algorithm

• Do an inorder traversal of 
the binary tree again. For 
each node that is about to 
be listed (as per the index 
entries), replace their data 
with the data in the sorted 
array. 
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Converting a Binary Tree to a BST: 
Example 234
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inorder Traversal
3      6     1     0     9      7     4      8      2      5
78    9   23   34   23    81     21   21 12     23

Sorted Order of the inorder Traversed Data
3      6     1     0     9      7     4      8      2      5
9      12   21   21 23    23 23 34    78     81
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23 3412
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Inserting an Element in a BST (1)
• Let K be the data to be inserted. Traverse the BST as if we 

are searching for the data element K. When we come to a 
leaf node or a semi-internal node, we insert to its left or 
right depending on the case. If there is a tie, we insert a 
node as the left child.
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Inserting an Element in a BST (2)
• Let K be the data to be inserted. Traverse the BST as if we 

are searching for the data element K. When we come to a 
leaf node or a semi-internal node, we insert to its left or 
right depending on the case. If there is a tie, we insert a 
node as the left child.
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Inserting an Element in a BST (3)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching 
for the data in the sub tree. Follow the rules for insertion 
as mentioned before.
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Inserting an Element in a BST (4)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching 
for the data in the sub tree. Follow the rules for insertion 
as mentioned before.
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9 23 81

23 3412
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Inserting an Element in a BST (5)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching 
for the data in the sub tree. Follow the rules for insertion 
as mentioned before.
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Deleting a Node from a BST
• Three scenarios arise

– Scenario 1: The node to be deleted is a leaf node: 
• Just delete the node from the BST

– Scenario 2: The node to be deleted has only one child 
node (i.e., is a semi-internal node)

• Replace the node to be deleted with the child node and its 
sub tree, if any exists

– Scenario 3: The node to be deleted has two child 
nodes: Find the inorder successor of the node to be 
deleted

• Scenario 3.1: If the inorder successor is a leaf node, simply 
copy its value to the node to be deleted and delete the 
inorder successor.

• Scenario 3.2: If the inorder successor is an internal node 
(other than the root), then copy its value to the node to be 
deleted and link the sub tree rooted at the inorder successor 
to be the left sub tree of the parent node of the inorder
successor.



Deleting a Node from a BST: Ex-1
(Scenario 1: Deleting a leaf node)
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Deleting 
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Data 34
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21 78
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Rule: Just delete the node from the BST



Deleting a Node from a BST: Ex-2
(Scenario 2: Deleting a semi-internal node: an internal node 

with one child node)
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Rule: Replace the node to be deleted with the child node and 
its sub tree, if any exists
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Deleting a Node from a BST: Ex-3
(Scenario 3: Deleting a “pure” internal node with two child nodes)
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Deleting 
Node with 
Data 21

(the root)
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21 78

23 81

23 34

Scenario 3.1: The inorder successor is a leaf node

9

12

The inorder successor for the 

Root node (21) is the leaf node (23)

Rule: Simply copy the value of the inorder successor to the node to be deleted
and delete the inorder successor.



Deleting a Node from a BST: Ex-4
(Scenario 3: Deleting a “pure” internal node with two child nodes)
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Deleting 
Node with 
Data 78

Scenario 3.1: The inorder successor is a leaf node

The inorder successor for the 

Node (78) is the leaf node (81)

Rule: Simply copy the value of the inorder successor to the node to be deleted
and delete the inorder successor.
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Deleting a Node from a BST: Ex-5
(Scenario 3: Deleting a “pure” internal node with two child nodes)
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Node ’31’@ level 4
is the Inorder successor and its 
parent node is Node ’34’ @ level 3.
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Rule: If the inorder successor 
is an internal node 
(other than the root), 

then copy its 
value to the node to 
be deleted and link 
the sub tree rooted 
at the 
inorder successor to 
be the left sub tree 
of the parent node 
of the
inorder successor.
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Deleting a Node from a BST
Ex. 6
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Deleting a Node from a BST
Ex. 7
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Deleting Node 21 (the root)
(an internal node 
with two

child nodes)

If the inorder
successor is an 
internal node, then 
copy its value to the 
node to be deleted 
and link the sub tree 
rooted at the inorder
successor to be the 
left sub tree of the 
parent node of the 
inorder successor.27
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