
Module 7:
Binary Search

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Binary Search
• Binary search is a Θ(log n), highly efficient search

algorithm, in a sorted array.

• It works by comparing a search key K with the array’s

middle element A[m]. If they match, the algorithm stops;

otherwise, the same operation is repeated recursively for

the first half of the array if K < A[m], and for the second

half if K > A[m].

• The number of comparisons to search for a key in an array

of size n is C(n) = C(n/2) + 1, for n > 1. C(n) = 1 for n = 1.

Binary Search
Search Key
K = 70

Example

l=0 r=12 m=6

l=7 r=12 m=9

l=7 r=8 m=7

The algorithm is run until the left index
is less than or equal to the right index
The search key should be found by then.

The moment the left index becomes
greater than the right index, we stop and
declare the search key is not there.

Note that the “search space”
reduces by half in each

iteration.

Hence, the # iterations is
proportional to log(n),

where ‘n’ is the # elements

Binary Search Tree (BST)
• A binary search tree is a binary tree in which the value for an

internal node is greater than or equal to the values of the nodes in
its left sub tree and is lower than or equal to the values of the nodes
in its right sub tree

55

27 81

3

14

27

39

31 42

70

74

93

91 98

• Both hash tables and BSTs are data structures to implement a
Dictionary ADT

• A hash table is an unordered collection of data items as a hash table
could be constructed for any arbitrary array and the search could be
conducted on a specific linked list to which the search element
indexes (hash index) into.

• A BST is an ordered collection of data items (satisfying the property
mentioned above). The number of comparisons it takes for a
successful search or an unsuccessful search is bounded by the height
of the binary search tree, which is proportional to log(# nodes).

Algorithm to Construct a BST
Begin BST Construction(Array A, numNodes)

int leftIndex = 0

int rightIndex = numNodes – 1

int middleIndex = (leftIndex + rightIndex) / 2

rootNodeID = middleIndex

BSTree[middleIndex].setData(A[middleIndex])

ChainNodes(A, middleIndex, leftIndex, rightIndex)

End BST Construction

middle
Indexleft

Index
(0)

right
Index
(numNodes – 1)

rootNodeID

middle
Index

left
Index

right
Index

rootID
LeftSubtree
= (leftIndex +

middleIndex – 1)/2

middle

Index – 1

middle

Index + 1

rootID
RightSubtree
= (middleIndex + 1
rightIndex)/2

BTNodes[middleIndex]

BTNodes
[rootIDLeftSubtree]

BTNodes
[rootIDRightSubtree]

Logic behind the ChainNodes Function

ChainNodes(A, middleIndex, leftIndex, rightIndex)

if (leftIndex < middleIndex) then // a left sub tree exists for the node

// at middleIndex

rootIDLeftSubtree = (leftIndex + middleIndex – 1) / 2

BTNodes[rootIDLeftSubtree].setData(A[rootIDLeftSubtree])

setLeftLink(middleIndex, rootIDLeftSubtree)

ChainNodes(A, rootIDLeftSubtree, leftIndex, middleIndex – 1)

end if

if (rightIndex > middleIndex) then // a right sub tree exists for the node

// at middleIndex

rootIDRightSubtree = (middleIndex + 1 + rightIndex) / 2

BTNodes[rootIDRightSubtree].setData(A[rootIDRightSubtree])

setRightLink(middleIndex, rootIDRightSubtree)

ChainNodes(A, rootIDRightSubtree, middleIndex + 1, rightIndex)

end if

Pseudo Code: ChainNodes Function

Example 1: Construction of BST
left
Index

right
Index

middle
Index

55

Left Sub
Tree
leftIndex

to
middleIndex - 1

3 14 27 31 39 42

Right Sub
Tree

middleIndex + 1
to rightIndex

70 74 81 91 93 98

6

0 to 5 7 to 12

81

Example 1: Construction of BST
left
Index

right
Index

middle
Index

55

27 8127

Left Sub
tree
Index 0

to 1

6

2 9

Right Sub
tree
Index 3

to 5

Left Sub
tree
Index 7

to 8

Right Sub
tree
Index 10

to 12

Example 1: Construction of BST

55

27 8127

6

2 9

3

0

Left
Sub tree
0 to -1

Right
Sub tree
Index

1 to 1

39

4

Left
Sub tree
Index

3 to 3

Right
Sub tree
Index

5 to 5

70

7

Right
Sub tree
Index

8 to 8

93

11

Left
Sub tree
Index

10 to 10

Right
Sub tree
Index

12 to 12

Left
Sub tree
7 to 6

Example 1: Construction of BST

55

27 8127

6

2 9

3

0

39

4

70

7

93

11

14

1
31

3

42

5

74

8
91

10

98

12

Example 2: Construction of BST

12

0

19

1

22

2

25

3

25

4

27

5

27

6

30

7

33

8

37

9

25
4

Index
0 to 3

Index
5 to 9

25
4

19

1

30

7

Index
0 to 0

Index
2 to 3

Index
5 to 6

Index
8 to 9

Example 2: Construction of BST

12

0

19

1

22

2

25

3

25

4

27

5

27

6

30

7

33

8

37

9

25
4

19

1

30

7

12 22

0 2

Index
3 to 3

27
5

Index
6 to 6

33
8

Index
9 to 9

Example 2: Construction of BST

12

0

19

1

22

2

25

3

25

4

27

5

27

6

30

7

33

8

37

9

25
4

19

1

30

7

12 22

0 2
27

5
33

8

25
3 27

6
37

9

Binary Search Tree (BST)
Construction

• We will create a class called BinarySearchTree
that will be similar to the BinaryTree class
created in the other module as much as
possible.

• Differences
– There will be a member variable called root node id

(the root node id of a BST need not be 0)

– We will add two member functions called
constructBSTree() that will get the input array of
sorted integers from the user, determines the root
node and calls the ChainNodes(…) function, which is
implemented in a recursive fashion.

• The ChainNodes(…) function will link a node to its left child
node and right child node, if any exists, and will call itself to
do the same on its left sub tree and right sub tree.

BST Implementation (C++: Code 7.1)
BTNode
int nodeid
int data
int levelNum
BTNode* leftChildPtr
BTNode* rightChildPtr

BinarySearchTree
int numNodes
BTNode* arrayOfBTNodes
int rootNodeID

constructBSTree Function (Code 7.1)
C

+
+

Assumes the array
is already sorted

ChainNodes Function (C++ Code 7.1)

constructBSTree Function
(called without the data array)

ChainNodes Function
(called without the data array)

Selection Sort: Example

Given Array: 12 5 1 4 18 9 7 15

Data: 12 5 1 4 18 9 7 15

Index: 0 1 2 3 4 5 6 7

Iteration 0 1 5 12 4 18 9 7 15

Iteration 1 1 4 12 5 18 9 7 15

Iteration 2 1 4 5 12 18 9 7 15

Iteration 3 1 4 5 7 18 9 12 15

Iteration 4 1 4 5 7 9 18 12 15

Iteration 5 1 4 5 7 9 12 18 15

Iteration 6 1 4 5 7 9 12 15 18

Code 7.2 Selection Sort (C++)

Main Function for BST

Implementation

based on a Randomly

Generated and Sorted Array

(Code 7.3: C++)

getIndex(int searchKey) Method
C++ Code: 7.4

Avg. # Comparisons: Successful
Search and Unsuccessful Search

• A leaf node is a node with no child nodes

• Let us refer to a node as a “pure internal node” if it has
both a left child as well as a right child.

• A “semi-internal node” is a node that is not a leaf node
as well as not a pure internal node and is considered to
have exactly one child node.

Pure Internal node

28
4

19

1

37

7

12 22

0 2
30

5
40

8

25
3 34

6
43

9

Leaf node

Semi-internal node

• A successful search is a search for a data that corresponds to
one of the nodes in the BST.

• An unsuccessful search is a search for a missing data that if at
all present could be in either the left or right sub tree of a leaf node
or in the missing sub tree of a semi-internal node.

– Each such missing sub trees would constitute a range in which
the data for an unsuccessful search could be located.

28
4

19

1

37

7

12 22

0 2
30

5
40

8

25

3
34

6
43

9

< 12

> 12
&&
< 19

> 19
&&
< 22

< 12 > 12
&&
< 19

> 19
&&
< 22

> 22
&&
< 25

> 25
&&
< 28

> 28
&&
< 30

> 30
&&
< 34

> 34
&&
< 37

> 37
&&
< 40

> 40
&&
< 43

> 43

Avg. # Comparisons based only on
the Structure of the BST

4

1 7

0 2 5 8

3
6 9

Successful Search
Comparisons for
a node is
1 + the level number
for the node

Level #
0

1

2

3

Comp # Nodes
1 1
2 2

3 4
4 3

Average # Comparisons for a successful search

(1 comp * 1 node) + (2 comp * 2 nodes) * (3 comp * 4 nodes) + (4 comp * 3 nodes)

Total number of nodes (10)
= 2.90

Level 0 Level 1 Level 2 Level 3

Avg # Comparisons: Unsuccessful Search

based only on the Structure of the BST
4

1 7

0 2 5 8

3 6 9
> 12
&&
< 19

> 19
&&
< 22

Level #
0

1

2

3

Comparisons for a missing
Sub tree is ONE PLUS the
number of comparisons for

the immediate upstream
node (a leaf node or a semi-
internal node).

Leaf nodes

Node # Comps
0 3
3 4

6 4
9 4

Semi-Internal nodes

Node # Comps

2 3
5 3
8 3

Avg # comparisons for an unsuccessful search

= (2* Sum of #comps for each leaf node) +

(1* Sum of # comps for each semi-internal node)

--

2 * Number of leaf nodes + 1 * Number of semi-internal nodes

4

1 7

0 2 5 8

3 6 9
> 12
&&
< 19

> 19
&&
< 22

Level #
0

1

2

3

Leaf nodes

Node # Comps
0 3
3 4

6 4
9 4

Semi-Internal nodes

Node # Comps

2 3
5 3
8 3

Avg # comparisons for an unsuccessful search

(2* Sum of #comps for each leaf node) +

(1* Sum of # comps for each semi-internal node)

= ---

2 * # leaf nodes + 1 * # semi-internal nodes

= --
2 * (3 + 4 + 4 + 4) + 1 * (3 + 3 + 3)

(2*4 + 1*3)
= 3.55

Unsuccessful

Search

(structure only)

Avg # Comparisons (structure only): Ex. 2

6

2 9

0 4 7 11

1 3 5 8 10 12

Level #s

0

1

2

3

Avg # Comparisons for
Successful Search

= --------------------------------------- = 3.15
(1*1) + (2*2) + (3*4) + (4*6)

13

Avg # Comparisons for
Unsuccessful Search

= -- = 3.86
2 * (4 + 4 + 4 + 4 + 4 + 4) + 1 * (3 + 3)

2 * 6 + 1 * 2

L-0 L-1 L-2 L-3

Considering both structure and data: Ex. 1

12

0

19

1

22

2

25

3

25

4

27

5

27

6

30

7

33

8

37

9

25
4

19

1

30

7

12 22

0 2
27

5
33

8

253 27
6

37
9

Level #s

0

1

2

3

Index Data # Comp

0 12 3
1 19 2
2 22 3

3 25 1
4 25 1
5 27 3
6 27 3
7 30 2
8 33 3
9 37 4

Avg. # Comparisons for
a Successful Search = -- = 2.50

(3 + 2 + 3 + 1 + 1 + 3 + 3 + 2 + 3 + 4)

10

Considering both structure and data: Ex. 1

12

0

19

1

22

2

25

3

25

4

27

5

27

6

30

7

33

8

37

9

25
4

19

1

30

7

12 22

0 2
27

5
33

8

253 27
6

37
9

Level #s

0

1

2

3

Range # Comp

< 12 3
> 12 && < 19 3
> 19 && < 22 3

> 22 && < 25 4
> 25 && < 25 0
> 25 && < 27 3
> 27 && < 27 0
> 27 && < 30 4
> 30 && < 33 3
> 33 && < 37 4
> 37 4

Avg. # Comparisons for
an Unsuccessful Search

= -- = 3.44
(3 + 3 + 3 + 4 + 3 + 4 + 3 + 4 + 4)

9

(Considering only the ranges for which the # comparisons is > 0)

Considering both structure and data: Ex. 2

55

27 8127

6

2 9

3

0

39

4

70

7

93

11

14

1
31

3

42

5

74

8
91

10

98

12

Level #s
0

1

2

3

Index 0 1 2 3 4 5 6 7 8 9 10 11 12
Data 3 14 27 31 39 42 55 70 74 81 91 93 98
Comps 3 4 2 4 3 4 1 3 4 2 4 3 4

Avg. # Comparisons for
a Successful Search = --- = 3.15(3+4+2+4+3+4+1+3+4+2+4+3+4)

13

Avg. # Comparisons for
An Unsuccessful Search= --- = 3.86(3+4+4+4+4+4+4+3+4+4+4+4+4+4)

14

55

27 8127

6

2 9

3

0

39

4

70

7

93

11

14

1
31

3

42

5

74

8
91

10

98

12

Level #s
0

1

2

3

Range <3 >3 >14 >27 >31 >39 >42 >55 >70 >74 >81 >91 >93 >98
&& && && && && && && && && && && &&
<14 <27 <31 <39 <42 <55 <70 <74 <81 <91 <93 <98

Comps 3 4 4 4 4 4 4 3 4 4 4 4 4 4

Ex. 2 (contd..)

inorder Traversal of a BST
(see Code 7.3)

• inorder traversal of a BST will list the keys of the BST in a sorted
order.

• Proof: Let K1 < K2 be the two keys in a BST. We want to prove that
K1 will appear before K2 in an inorder traversal of the BST.

• There are three scenarios:
– K2 is in the right sub tree of K1

– K1 is in the left sub tree of K2

– K1 and K2 have a common ancestor (say K3) such that K1 < K3 < K2.

• For each of the three scenarios, if we were to do an inorder
traversal, K1 will appear before K2.

K2

…

…

K1

K1

…

…

K2

K3

…

…

K1

…

…

K2

inorder Traversal of a BST
25

4

19

1

30

7

12 22

0 2
27

5
33

8

253 27
6

37
9

{Left sub tree} {root} {Right sub tree}

Left sub tree
0 1 2 3
12 19 22 25

Right sub tree
5 6 7 8 9
27 27 30 33 37

Root
4
25

Converting a Binary Tree to a
Binary Search Tree
(preserving the structure)

• Do an inorder traversal of
the given binary tree and
get an array of data
corresponding to the nodes
of the tree in the order they
are visited (i.e., the index
entries of the nodes)

• Sort the data using a sorting
algorithm

• Do an inorder traversal of
the binary tree again. For
each node that is about to
be listed (as per the index
entries), replace their data
with the data in the sorted
array.

19

27 14

22 13

18

inorder Traversal
3 1 4 5 0 2
22 27 13 18 19 14

0

1
2

3 4

5

Sorted Order
3 1 4 5 0 2
13 14 18 19 22 27

22

14 27

13 18

19

0

1
2

3 4

5

Converting a Binary Tree to a BST:
Example 234

23 12

78 21 23

81 219

0

1 2

3 4 5

6 7 8

23

9

inorder Traversal
3 6 1 0 9 7 4 8 2 5
78 9 23 34 23 81 21 21 12 23

Sorted Order of the inorder Traversed Data
3 6 1 0 9 7 4 8 2 5
9 12 21 21 23 23 23 34 78 81

21

21 78

9 23 81

23 3412

0

1 2

3 4 5

6 7 8

23

9

Inserting an Element in a BST (1)
• Let K be the data to be inserted. Traverse the BST as if we

are searching for the data element K. When we come to a
leaf node or a semi-internal node, we insert to its left or
right depending on the case. If there is a tie, we insert a
node as the left child.

21

21 78

9 23 81

23 3412

23

Let K = 24 21

21 78

9 23 81

23 3412

23 24

Inserting an Element in a BST (2)
• Let K be the data to be inserted. Traverse the BST as if we

are searching for the data element K. When we come to a
leaf node or a semi-internal node, we insert to its left or
right depending on the case. If there is a tie, we insert a
node as the left child.

21

21 78

9 23 81

23 3412

23

Let K = 8 21

21 78

9 23 81

23 3412

23

8

Inserting an Element in a BST (3)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching
for the data in the sub tree. Follow the rules for insertion
as mentioned before.

21

21 78

9 23 81

23 3412

23

Let K = 21

21

21 78

9 23 81

23 3412

2321

Inserting an Element in a BST (4)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching
for the data in the sub tree. Follow the rules for insertion
as mentioned before.

21

21 78

9 23 81

23 3412

23

Let K = 78 21

21 78

9 23 81

23 3412

23 78

Inserting an Element in a BST (5)
• If the data to insert is already there, then proceed to its left

sub tree. Traverse the left sub tree as if you are searching
for the data in the sub tree. Follow the rules for insertion
as mentioned before.

21

21 78

9 23 81

23 3412

23

Let K = 34 21

21 78

9 23 81

23 3412

23 34

Deleting a Node from a BST
• Three scenarios arise

– Scenario 1: The node to be deleted is a leaf node:
• Just delete the node from the BST

– Scenario 2: The node to be deleted has only one child
node (i.e., is a semi-internal node)

• Replace the node to be deleted with the child node and its
sub tree, if any exists

– Scenario 3: The node to be deleted has two child
nodes: Find the inorder successor of the node to be
deleted

• Scenario 3.1: If the inorder successor is a leaf node, simply
copy its value to the node to be deleted and delete the
inorder successor.

• Scenario 3.2: If the inorder successor is an internal node
(other than the root), then copy its value to the node to be
deleted and link the sub tree rooted at the inorder successor
to be the left sub tree of the parent node of the inorder
successor.

Deleting a Node from a BST: Ex-1
(Scenario 1: Deleting a leaf node)

21

21 78

9 23 81

23 3412

23

Deleting
Node with
Data 34

21

21 78

9 23 81

2312

23

Rule: Just delete the node from the BST

Deleting a Node from a BST: Ex-2
(Scenario 2: Deleting a semi-internal node: an internal node

with one child node)

21

21 78

9 23 81

23 3412

23

Deleting
Node with
Data 9

21

21 78

23 81

23 34

23

Rule: Replace the node to be deleted with the child node and
its sub tree, if any exists

1311

12

1311

Deleting a Node from a BST: Ex-3
(Scenario 3: Deleting a “pure” internal node with two child nodes)

21

21 78

9 23 81

23 3412

23

Deleting
Node with
Data 21

(the root)

23

21 78

23 81

23 34

Scenario 3.1: The inorder successor is a leaf node

9

12

The inorder successor for the

Root node (21) is the leaf node (23)

Rule: Simply copy the value of the inorder successor to the node to be deleted
and delete the inorder successor.

Deleting a Node from a BST: Ex-4
(Scenario 3: Deleting a “pure” internal node with two child nodes)

21

21 78

9 23 81

23 3412

23

Deleting
Node with
Data 78

Scenario 3.1: The inorder successor is a leaf node

The inorder successor for the

Node (78) is the leaf node (81)

Rule: Simply copy the value of the inorder successor to the node to be deleted
and delete the inorder successor.

21

21 81

9 23

23 3412

23

Deleting a Node from a BST: Ex-5
(Scenario 3: Deleting a “pure” internal node with two child nodes)

21

21 78

9 23 81

23 3412

23

Deleting
Node with
Data 23

(@ level 2)

3731

32

Scenario 3.2: The inorder successor is not a leaf node

Node ’31’@ level 4
is the Inorder successor and its
parent node is Node ’34’ @ level 3.

21

21 78

9 31 81

23 3412

23 3732

Rule: If the inorder successor
is an internal node
(other than the root),

then copy its
value to the node to
be deleted and link
the sub tree rooted
at the
inorder successor to
be the left sub tree
of the parent node
of the
inorder successor.

33

33

Deleting a Node from a BST
Ex. 6

21

21 78

9 23 81

23 3412

23

Deleting Node 21 @
Level 1 (a semi-internal
node with one

child node)

21

9 78

23 81

23 34

12

23

Replace the
node to be
deleted with
the child node
and its sub
tree, if any
exists

Deleting a Node from a BST
Ex. 7

21

21 78

9 29 81

24 3412

25

Deleting Node 21 (the root)
(an internal node
with two

child nodes)

If the inorder
successor is an
internal node, then
copy its value to the
node to be deleted
and link the sub tree
rooted at the inorder
successor to be the
left sub tree of the
parent node of the
inorder successor.27

24

21 78

9 29 81

25 3412

27

