
CSC 228 Data Structures and Algorithms, Fall 2019

Instructor: Dr. Natarajan Meghanathan

Quiz 3: Insertion and Deletion of Data at an Arbitrary Index in a Queue

Due by: Oct. 22nd, 11.59 PM

In this quiz, you will develop and implement algorithms to insert at an arbitrary index of a queue as well

as delete the data at an arbitrary index of a queue. The index of an element (data node) in the queue is the

position of the element (data node) starting from the front (first data node) of the queue.

For example, consider a queue as shown below:

 Index 0 1 2 3 4 5 6 7 8 9

 Data 34 21 90 45 87 22 43 55 81 98
where 34 is the data at the front of the queue (the data node for 34 is next to the head node) and 98 is the

data at the end of the queue (the data node for 98 is previous to the tail node)

A call to the function to insert a new data (say, 40) at index 4 would result in the contents of the queue

ordered as shown below:

 Index 0 1 2 3 4 5 6 7 8 9 10

 Data 34 21 90 45 40 87 22 43 55 81 98

A call to the function to delete data at index 7 on the above modified queue would result in the contents of

the queue ordered as shown below (node that the data 43 at index 7 above is no longer available):

 Index 0 1 2 3 4 5 6 7 8 9

 Data 34 21 90 45 40 87 22 55 81 98

You are provided the code for the implementation of a Queue ADT using a doubly linked list. The code

also has two auxiliary functions (getQueueLength and Print) to get the length of a queue and print the

contents of the queue (starting from the data node next node the head node).

You are supposed to only use the enqueue and dequeue functions of the Queue class and the auxiliary

function getQueueLength to implement the other two auxiliary functions QueueInsertAtIndex(Queue
queue, int insertIndex, int insertData) and QueueDeleteAtIndex(Queue queue, int deleteIndex) that are

currently blank in the code provided. Note that you could use some temporary variables inside these

functions, but the space complexity should be Θ(1); i.e., the amount of additional space used should not

grow with the queue size.

You need not modify the main function; it already has the code to test run your implementations. To

demonstrate that your functions work as required, test run your code for a queue size of 10 with the range
of values for the integer being (1... 100).

Run for the following test cases:

 (i) Insert at index 4 and delete at index 7
 (ii) Insert at index 0 and delete at index 9

 (iii) Insert at index 9 and delete at index 0

 (iv) Insert at index 0 and delete at index 10

 (v) Insert at index 9 and delete at index 1

Submission:

(1 - 80 pts) Submit a separate .cpp file containing the completed version of the startup code provided,
including the implementations of the QueueInsertAtIndex and QueueDeleteAtIndex functions.

(2 - 20 pts) Test run your code for a queue size of 10 with the range of values for the integer being (1...

100). Submit a PDF file that contains the screenshots of the output of your code for the test cases (i)-(v)

listed above.

