
Module 6

NP-Complete Problems 

and 

Heuristics

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu



Optimization vs. Decision Problems

• A problem is an optimization problem if we want 
to maximize or minimize the solution.

– Example: Minimum Spanning tree problem: Given a 

graph, we want to determine a spanning tree whose 

sum of the edge weights is the minimum.

• A problem is a decision problem if we want to 
get an Yes or NO answer as the solution.

– Example: 2-Colorable (Bipartite) problem: Given a 

graph and two colors (say Black and White), we want 
to determine whether we can color the end vertices of 

each edge with the two different colors. 



Hamiltonian Circuit (HC) Problem

• Tour: A sequence of vertices such that the starting and 
ending vertex is the same, and the rest of the vertices 
appear exactly once in the sequence.

• Given a graph (no edge weights), the Hamiltonian Circuit 
(HC) problem is to determine whether or not the graph 
has a tour.  

• The HC problem is a decision problem.

A

B C

F

D E

Tour: A – B – C – D – E – D – A

A

B C

F

D E

There is NO tour for this graph



Traveling Salesman Problem (TSP)

• Given a graph with edge weights, the TSP problem is to 
determine a minimum weight tour (if a tour exists) for the 
graph. 

Tours Weight
A – B – C – D – A 10

A – B – D – C – A 8

A – C – B – D – A 14

A – C – D – B – A 8
A – D – C – B – A 10

A – D – B – C – A 14

B C

D A

1

6 3
3

1

2

Decision version: Is there a tour of weight W?

Optimization version: Find a tour of the minimum possible weight?



P, NP Problems
• A problem is said to belong to the class NP (non-deterministic 

polynomial) if:
– Step 1: We can determine (or at least guess) a solution for the 

optimization or decision version of a problem in polynomial time

– Step 2: Check the correctness of the solution of Step 1 in polynomial 
time

• A problem in the class NP is said to also belong to the class P if 
(Step 1 is deterministic) the optimal/decision solution can be 
determined in polynomial time for all the input instances. 

• That is, all problems of class P are also said to belong to the class 
NP, but not vice-versa (at least for now!!).
– i.e., There exists several problems for which Step 1 is not deterministic. 

We cannot come up with an algorithm for such a problem that is 
guaranteed to give the optimal solution or decision solution for all the 
input instances.

• Example of problems in class P: Sorting, Shortest Path problem, 
Minimum Spanning tree problem, etc.

• Example of problems in class NP that do not belong to class P: 
Hamiltonian circuit problem, Traveling salesman problem (decision 
version), Maximum clique problem, etc.



Decision Version of TSP is in NP

• The decision version of the TSP problem is in 
NP and not in P, because:
– There is no polynomial-time algorithm for the decision 

version of the TSP problem that is guaranteed to say 
that a graph has a tour of a target weight (or a weight 
less than or equal to a target weight) even if the graph 
has such a tour. 

– Depending on how the algorithm is designed, it may 
give an YES answer for a graph and at least one such 
tour really exist in the graph; but for some other graph 
may give a NO answer even if such a tour exists in 
the graph.

– Hence, we say all algorithms that currently exist for 
the decision version of the TSP problem are non-
deterministic in nature (i.e., in class NP).



Polynomial-Time Reduction: HC ≤P TSP

• HC Problem: Given a graph G = (V, E) with no edge weights, 
determine whether there exists a HC in G.

• Assumption: Let there be a deterministic polynomial-time algorithm for 
the decision version of the TSP problem.

• Reduction Step: Transform G = (V, E) to a weighted graph G* = (V, 
E*), where E* = V(V-1)/2, as follows:
– For every pair (u, v) for which there exists an edge in G, 

create an edge (u, v) of weight 1 in G*

– For every pair (u, v) for which there is NO edge in G,

create an edge (u, v) of weight 2 in G*

• If G has a HC, then we should be able to find a minimum weight tour 
of total weight equal to the number of vertices (V) in G*. 
– The weight of each edge in the minimum weight tour will be 1. 

• If G has no HC, then the minimum weight tour in G* would be of 
weight greater than V.
– There should be at least an edge of weight 2 in the tour.

• Thus, we could find a polynomial-time solution for the HC problem if 
there exists a polynomial-time algorithm for the decision version of the 
TSP problem.

V(V-1)/2
= Θ(V2)

Time 
Complexity



HC ≤P TSP: Example

Graph G Graph G*

B C

D A

B C

D A

1

1 2
2

1

1

A – C – B – D – A 
The weight of each edge in the 
above minimum weight tour is 1, 

leading to a total
weight of 4, the number of vertices.
All edges (of weight 1) in this 
minimum weight tour also exist in G.
Hence, G has a HC. 

Graph G Graph G*

B C

D A

B C

D A

2

1 2
2

1

1

A – C – B – D – A 
Any minimum weight tour of G* has
to include at least one edge weight
of 2, as we cannot find a tour that 
only involves all edges of weight 1.
This implies the original graph

G does not have a HC.



NP-hard Problems
• A problem is said to be NP-hard if every problem in the 

class NP is polynomial-time reducible to it.

• The TSP problem is a NP-hard problem because every 
problem in the class NP (like the HC problem) is 
polynomial-time reducible to it.

• To prove a problem T (like the TSP problem) is NP-hard, 
we simply take a known NP-hard problem H (like the HC 
problem that is already proven to be NP-hard) and prove 
H ≤P T.

All NP-Problems 

except T
≤P

H T

Proof of 
NP-hard
≤P



NP-Complete (NPC) Problems
• A problem X is said to be NP-Complete if:

– X is in NP

– X is NP-hard

• If there exists a polynomial time algorithm for any 
optimization or decision problem (say Y) in the class NP-
complete, then every problem X in the class NP can be 
polynomial-time reducible to Y and solved in polynomial-
time. In such a case, P = NP.

• As of now, we do not have a polynomial-time algorithm 
for any NP-complete problem. But, we are not able to 
prove that there will never be a polynomial-time 
algorithm for any NP-complete problem. Hence, it is not 
clear whether or not P = NP.

• For several NP-complete problems, there exists 
heuristics (algorithms) that given an approximation 
solution (not guaranteed to be an optimal solution) in 
polynomial-time.



P, NP, NP-hard, NPC

NP

P NP-hard

As of now (and most likely forever!)
P ≠ NP

As we can see, there are problems that are NP-hard but not in NP.

One such problem is the halting problem

Halting Problem: Given a program and its input, will it run for ever?

This is a decision problem to which every NP-problem can be reduced in 

Polynomial-time, but there is no way to even guess a solution for this problem.

NPC



P, NP-hard, NPC: Sample Problems

NP

P NP-hard

NPC

Halting Problem

Optimization version of TSP

Decision version of TSP

Hamiltonian circuit problem

Maximum clique problem

Optimization problems
Sorting problem

Minimum spanning tree problem

Shortest path problem

Decision problems
2-colorability, Is a directed graph a DAG?

Decision version of the

Minimum spanning tree problem



The P = NP Dilemma
?

NP

P
NP-hard

NPC

NP

NP-hard
P = NP = NPC



Heuristic 1: Nearest Neighbor (NN) 
Heuristic for the TSP Problem

• Start the tour with a particular 

vertex, and include it to the tour.

• For every iteration, a vertex (from 

the set of vertices that are not yet 

part of the tour) that is closest to the 

last added vertex to the tour is 

selected, and included to the tour.

• The above procedure is repeated 

until all vertices are part of the tour.

• Time Complexity: It takes O(V) 

times to choose a vertex among the 

candidate vertices for inclusion as 

the next vertex on the tour. This 

procedure is repeated for V-1 times. 

Hence, the time complexity of the 

heuristic is O(V2).



NN Heuristic Example (contd..)



NN Heuristic Example (contd..)
v1 v3 v2

v6v4v5

3 5

2

59

6

Improvement to the NN Heuristic using 2-Change Heuristic
Pick two non-overlapping edges (with no common end vertices) and see if we can

swap for them using edges that connect the end vertices so that the connectivity of the 

tour is maintained and the tour cost can be further reduced. 

Strategy: Pick the costliest edge and a non-overlapping edge (i.e., no common end 

vertices) that is the next costliest

In the above example, we can pick v5 – v4 (edge wt: 9) and the next costliest non-

overlapping edge v3 – v2 (edge wt: 5) and replace them with edges v5 – v2 (wt: 3) and 

v4 – v3 (wt: 5). The revised tour is v1 – v3 – v4 – v6 – v2 – v5 – v1; tour weight: 24

v1 v3 v2

v6v4v5

3

2

5

6 3 5



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

• Step 1: Construct a Minimum Spanning 

Tree of the graph corresponding to a 

given instance of the TSP problem

• Step 2: Starting at an arbitrary vertex, 

perform a walk around the minimum 

spanning tree recording all the vertices 

passed by. This can be done by a DFS 

traversal.

• Step 3: Scan the vertex list obtained in 

Step 2 and eliminate from it all repeated 

occurrences of the same vertex except 

the starting one at the end of the list. 

The vertices remaining on the list will 

form a Hamiltonian Circuit, which is the 

output of the algorithm.

v1 v2 v3

v4v5v6

Step 1: MST of the Graph

Note: We will use the principle of Triangle 

Inequality for Euclidean plane:

The sum of the two sides of a triangle is 

greater than the third side of the triangle 



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

v1 v2v3

v4v5v6

Step 2: DFS Traversal of the MST

MST (vertices rearranged) from Step 1

v1 – v3 – v1 – v6 – v2 – v4 – v2 –

v5 – v2 – v6 – v1 

v1 v2v3

v4v5v6

Step 3: Optimizing the DFS Walk

Tour from Step 2:
v1 – v3 – v1 – v6 – v2 – v4 – v2 – v5 – v2 – v6 – v1 

Optimized Tour:
v1 – v3    v1    v6 – v2 – v4    v2    v5    v2   v6    v1 

v1 – v3 – v6 – v2 – v4 – v5 – v1

Tour Weight: 31

v1 v2v3

v4v5v6



Heuristic # 2 for the TSP Problem
Twice-around-the Tree Algorithm

TSP Tour of Twice-around-the-Tree Algorithm
v1 – v3 – v6 – v2 – v4 – v5 – v1
Tour Weight: 31

v1 v3 v6

v2v4v5

3 7

2

49

6

Improved Tour Weight: 26 Improvement  using 2-Change

v1 v3 v6

v2v4v5

3

5 2

4
6

6

v1 v3 v4

v2v6v5

3 5

4

26

6



Proof for the Approximation 
Ratio for Twice-around-the-Tree
• Let w(MST) be the weight of the MST generated from Step 1.

• The weight of the DFS walk generated from Step 2 could be at most 

2*w(MST), as seen in the example.

• In Step 3, we are trying to optimize the DFS walk and extract a 

Hamiltonian Circuit of lower weight. Even if no optimization is 

possible, the weight of the tour generated by the Twice-around-the-

Tree algorithm is at most twice the weight of the minimum spanning 

tree of the graph instance of the TSP problem.

• Note that w(MST) of the graph has to be less than the weight of an 

optimal tour, w(Optimal Tour). Otherwise, if w(Optimal Tour) ≤

w(MST), then the so-called MST with V-1 edges is not a MST. 

• W(Twice-around-the-Tree tour) ≤ 2*W(MST) < 2*w(Optimal Tour).

• W(Twice-around-the-Tree tour) / W(Optimal Tour) < 2.

• Hence, the approximation ratio of the Twice-around-the-Tree 

algorithm is less than 2.



Independent Set, Vertex Cover, Clique
• An independent set of a graph G is a subset IS of vertices such that 

there is no edge in G between any two vertices in IS.

• Optimization Problem: Find a maximal independent set of a graph

• Decision Problem: Given a graph G, is there an independent set of G of 
size k? 

– The objective is to find a subset of k vertices from the set of vertices 
in G, such that any two vertices among the k vertices do not have an 
edge in G.

• A Vertex Cover for a graph G is a subset of vertices VC such that every 
edge in G has at least one end vertex in VC. 

• The optimization problem is to find the vertex cover with the minimal set 
of vertices.

• Note that VC = V – IS, where V is the set of vertices and IS is the 
Independent Set. 

• A Clique of a graph G is a subset C of vertices such that there is an 
edge in G between any two vertices in C.

• Similar to the Independent set problem, one can have optimization and 
decision versions of the Clique problem. The objective will be to find a 
maximum clique of k vertices or more.



Independent Set, Vertex Cover, Clique

v1 v2 v3

v4 v5 v6

In the above graph,

the set of vertices

- {v2, v4, v6} form an Independent Set

- Thus, {v1, v3, v5} form the Vertex Cover

- {v1, v2, v5} form a Clique
Polynomial Reduction:

Given a graph G, find a Complement graph G* containing the same set of 

vertices, such that there exists an edge between any two vertices in G* if and 

only if there is no edge between them in G.

An Independent Set in G* is a Clique in G and vice-versa: the only reason there is 

no edge between two vertices in G* is because there is an edge between 

them in G.

Approach to find the Independent Set, Vertex Cover and Clique for a Graph G

1. Find the Independent Set, IS, of graph G using the Minimum Neighbors 

Heuristic

2. The Vertex Cover of G is V – IS, where V is the set of vertices in G

3. Find the Complement Graph G* of G and run the Minimum Neighbors 

Heuristic on it. The Independent Set of G* is the Clique of G.



Proof for the Polynomial Reductions
• Clique ≤P Independent Set
• Let G* be the complement graph of G. There exists an edge in G* if 

and only if there is no edge in G. 

• Determine a Maximal Independent Set C* of G*. There exists no edge 
between any two vertices in C* of G*. ==> There exists an edge 
between the two vertices of C* in G. For any two vertices in C*, there 
is an edge in G. Hence, C* is a Maximal Clique of G.

• Independent Set ≤P Clique
• By the same argument as above, we can determine a maximal clique

in G*; there is an edge between any two vertices in the maximal 
clique of G* �there are no edges between any two of these vertices 
in G. These vertices form the maximal independent set in G.

• Vertex Cover ≤P Independent Set
• Let IS be an independent set of graph G.

• Let the vertex cover of G be V – IS, where V is the set of all vertices 
in the graph.

• For every edge in G, the two end vertices are not in IS. Hence, at 
least one of the two end vertices must be in V – IS. Thus, V – IS 
should be a vertex cover for G.



Example 1 to Find Independent Set 
using the Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

3 3 3

2 25

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6

0

Idea: Give preference to vertices with minimal number

of (uncovered) neighbors to be part of the Independent

Set. A vertex is said to be covered if itself or any of its

neighbors in the Independent Set.

Independent Set for the above graph = {v2, v4, v6}

This is also the Maximal Independent Set (i.e.,

there exists no Independent Set of size 4 or more

for the above graph). However, the heuristic is

not guaranteed in general to give a maximal 

Independent set.

Vertex Cover = {v1, v3, v5}

v1 v2 v3

v4 v5 v6



v1 v2 v3

v4 v5 v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

2

2

2

0

3

3

v1

v2

v3

v4

v5

v6

1

1

v1

v2

v3

v4

v5

v6

{v1, v2, v5}

is an Independent

Set in G* and it is 

a clique in G.

Given G ------->

Find G*, complement of G

Example 1 to Determine a Clique

Using the Minimum Neighbors

Heuristic to Approximate an 

Independent Set



Example 2 to Find Independent Set 
using the Minimum Neighbors Heuristic

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

2 3 2

232

v1 v2 v3

v4 v5 v6

1 2

1

v1 v2 v3

v4 v5 v6
0

v1 v2 v3

v4 v5 v6

Independent Set = {v1, v2, v6}

Vertex Cover = {v3, v4, v5}



Given G ------->

Find G*, complement of G

v1 v2 v3

v4 v5 v6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

3 3

2

3 3

2

v1

v2

v3

v4

v5

v6

2

2

2

v1

v2

v3

v4

v5

v6

Independent Set of G* = {v2, v3}

Clique of G = {v2, v3}

Note that Clique of G* = {v1, v2, v6} is an Independent

Set of G, leading to a Vertex Cover of {v3, v4, v5} of G.



Minimum Connected Dominating Set
• Given a connected undirected graph G = (V, E) where V is the set of 

vertices and E is the set of edges, a connected dominating set (CDS) 
is a sub-graph of G such that all nodes in the graph are included in the 
CDS or directly attached to a node in the CDS.

• A minimum connected dominating set (MCDS) is the smallest CDS (in 
terms of the number of nodes in the CDS) for the entire graph.

• For broadcast communication, it is sufficient if the data goes through all 
the nodes in the MCDS. Each node in the MCDS can in turn forward
the data to its neighbors.

• Determining the MCDS in an undirected graph is NP-complete. 

• Degree of a vertex is the number of neighbors of the vertex

1 2

3 4

5 6 MCDS = [3, 4]

The size of a MCDS clearly depends on 

the degree of the nodes. Hence, we will

study a degree-based heuristic to approximate

the MCDS



29

Heuristic to Approximate a MCDS
Input: Graph G = (V, E), where V is the vertex set and E is the edge set.

Source – vertex, s V.

Auxiliary Variables and Functions:
CDS-list, Covered-list, Neighbors(v) for every v in V.  

Output: CDS-list

Initialization: Covered-list = {s}, CDS-list = Φ

Begin d-MCDS

while ( |Covered-list| < |V| ) do
Select a vertex r Covered-list and r CDS-list such that r has the 

maximum neighbors that are not in Covered-list.

CDS-list = CDS-list U {r}

For all u    Neighbors(r) and u Covered-list,                                   

Covered-list = Covered-list U {u}

end while
return CDS-list

End d-MCDS

∈

∈ ∉

∉



30

Example for d-MCDS Heuristic
A B C D

E F G H

I J K L

M N O P

2 5 4 2

4
3

6 4

3 6
3 5

3 3 5 2

A B C D

E F G H

I J K L

M N O P

1 3 1
0

3
1

0 1

2 5
1 2

2 2 2 1

A B C D

E F G H

I J K L

M N O P

1 2 1
0

1
1

0 1

1 0
0 1

0 0 1 0

A B C D

E F G H

I J K L

M N O P

0 0 1
0

0
0

0 1

0 0
0 1

0 0 1 0



31

Example for d-MCDS Heuristic
A B C D

E F G H

I J K L

M N O P

0 0 0
0

0
0

0 0

0 0
0 1

0 0 1 0

A B C D

E F G H

I J K L

M N O P

0 0 0
0

0
0

0 0

0 0
0 0

0 0 0 0

MCDS Nodes = [G, J, B, C, L]A B C D

E F G H

I J K L

M N O P


