CSC 323 Algorithm Design and Analysis, Fall 2019
 Instructor: Dr. Natarajan Meghanathan
 Project 5: Dynamic Programming Algorithm for Optimum Coin Collection in a TwoDimensional Grid

Due: Oct. 22nd, 11.59 PM (Submission through Canvas)

In this project, you will extend the dynamic programming algorithm that we discussed in class for the Coin Collection problem in a two-dimensional grid and implement the same.

The conditions for the robot movement are as follows: at any time, the robot can move one cell down or one cell to the right

One cell to the right

Each of you are assigned a grid of dimensions n (rows) $\mathrm{x} m$ (columns) as specified in the next page. You are required to randomly distribute P number of coins (where $P<n * m$) across the cells of the grid (at most one coin per cell). The value for a coin assigned to a cell is randomly chosen from the range $1 \ldots \mathrm{~V}$. The P and V values are also assigned specifically for each student.

Your tasks are as follows:

(1) Implement the dynamic programming algorithm to calculate the optimum (maximum) value of the coins that a robot could collect as it traverses from cell $(0,0)$ to any cell in the grid such that at any time, a robot can have one of the two movements mentioned above.
(2) Extend the dynamic programming algorithm to also keep track of the path traced by the robot to reach any target cell in the grid starting from cell $(0,0)$.
(3) As output, your code should print the following:
(i) The optimum value of the coins that a robot could collect to reach any target cell in the grid starting from cell $(0,0)$, as shown in the table sample output (see next page).
(ii) The sequence of cells that the robot should visit to collect the optimum value of the coins starting from cell $(0,0)$ to cell $(\mathrm{n}-1, \mathrm{~m}-1)$.

Submission (in Canvas):

1) The entire code as a .cpp file.
2) Include a screenshot (as shown in a sample output displayed in the next page) of the output for the input values assigned to you.

Assignment of Input Values

Student Name	\# rows (n)	\# columns (m)	\# coins (P)	Max value per coin (V)
Perry Butler	10	12	40	25
Latamla Culley-Triggs	10	12	35	35
Justin Epps	10	12	30	25
Kalil-Dan Ford	10	12	25	35
Chawne Harris	9	10	40	30
Ashly Horner	9	10	35	20
Martice Jackson	9	10	30	30
Jorian Lenard	9	10	25	20
Damian Patterson	8	10	30	40
Brandon Redmond	8	10	25	50
Daren Washington	8	10	40	35
Alicia Wells	8	10	35	30
Marcus Wynn	12	10	40	22
	12	10	35	28
	12	10	30	30
	12	10	25	32
	10	9	37	24

A sample screenshot of the execution of the program expected from you is shown below.

Dynamic	Programming	Table				
25	41	$\mathbf{4 5}$	51	51	69	69
51	51	51	58	58	72	72
51	51	51	84	86	97	118
56	56	56	84	103	103	118
56	60	60	98	193	103	135
56	80	107	107	119	120	161
56	106	136	158	164	164	164
56	119	150	166	166	189	189
56	139	150	166	190	215	227
69	139	162	193	193	243	270

Path Traversed: [0 0, 1 0, 2 0, 3 0, 3 1, $41,51,52,62,63,73,74,84$. 85, 95, 9 6]

