
CSC 323-01 Algorithm Design and Analysis, Fall 2019

Instructor: Dr. Natarajan Meghanathan

Quiz 5: Greedy Algorithm for Selecting the Longest Sequence of Non-Overlapping

Activities based on their Finish times

Due by: Oct. 24th, 11.59 PM (in Canvas)

In this quiz, you will implement the greedy algorithm to determine the longest sequence of non-

overlapping activities from a given list of activities (their IDs) along with their start times and finish

times.

Greedy Algorithm and Example: Recall, the greedy algorithm we looked in class first sorts the

activities on the basis of their finish times. It then goes through the sorted activity list. The activity with

the smallest finish time is the first activity chosen. Let current finish time be the variable used to keep
track of the finish time of the latest activity chosen in the list. All activities whose start times are less than

or equal to that of the current finish time are ruled out from consideration. The next activity chosen is the

activity (from the sorted list based on finish times) whose start time is greater than the current finish time;
the finish time of this activity is thereafter considered to be the current finish time and we proceed further.

Below, I illustrate the working of the algorithm with an example.

Provided Code: You are given a startup code (ActivitySelection_StudentVersion.cpp) wherein the main

function creates three arrays: the activity IDs, their start times and finish times. You need to just input the

number of activities.

You need to first implement the Selection Sort algorithm (with the arguments passed as indicated) to sort

the activities based on the increasing order of finish times. Note that at the end of the sorting process, the
contents in the arrays representing the activity IDs and the start times should be also rearranged to

correspond to the sorted order of the finish times (as also seen in the example above).

I have provided another cpp file called: SampleSelectionSort.cpp that demonstrates (given two arrays: IDs

and timeValues) how to sort second array (timeValues) and rearrange the contents of the first array (IDs)
based on the sorted order of the second array. You could use this code as a guideline to implement the

selection sort algorithm in the ActivitySelection_StudentVersion.cpp file.

After the contents of the activity IDs, start times and finish times are rearranged according to the

increasing order of finish times, the next step is to implement the greedy algorithm (explained above) to

determine and print the longest sequence of non-overlapping activities. A sample screenshot is given
below.

Submission (in Canvas)

1) Submit the entire ActivitySelection_StudentVersion.cpp file with the Selection Sort algorithm and the

greedy algorithm for activity selection implemented.

2) Submit a screenshot (as a jpeg file) of the output of your code for the number of activities to be 15.

