
Module 6:
Binary Trees

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Tree
• All the data structures we have seen so far can store only

linear data

• Trees are used to store hierarchical data
– Example: Employees in an organization, file system, network routing

President

VP Academic

Affairs
VP Research VP Finance

Dean of

Business

Dean of

Engineering

Chair of

Marketing

Dean of

Engineering

Chair of

CS & CE

Chair of

CS & CE

Faculty

Tree: Nomenclature
root0

1 2 3

4 5 6 7
8

9 10 11 12

13

Each entity in a tree is called “node or

vertex”

The “root” node is at the top of the tree.

A node could have one or more “child”

nodes that are its immediate descendants.

A node without any child node

is called a “leaf” node. A node with one

or more child nodes is called an

“internal node”.

The “edges or links” are in only direction,

from the “parent” to a “child”.

Each node (except the root node) in the

tree has exactly one parent.

In a tree of ‘N’ nodes, there will be exactly
‘N-1’ links.

Tree: Nomenclature
The “depth” (or equivalently the

“level number”) of a node is the

number of edges on the “path” from

the root node.

The depth of nodes 10 and 13 are 3

and 4 respectively.

The depth of the root is 0.
The “height” of a node is the

number of edges on the longest

path from the node to a leaf node.

The height of the root node is 4 as

the longest path to a leaf node (node

13) is 4 edges long.

The height of a tree is the height of

its root node.

The height of a leaf node is 0.

root0

1 2 3

4 5 6 7
8

9 10 11 12

13

Tree: Recursive Structure
root1

2 3 4

5 6 7 8
9

10 11 12 13

14

root

T2

T2

T3

T4

T3 T4

The sub trees have a similar

Recursive structure

Node 2 is the root of sub tree T2

Nodes 3 and 4 are the roots of

Sub trees T3 and T4.

The height of a node in the tree is one more

than the maximum of the heights of its

immediate child nodes.

Example: Height vs. Depth
Level #

0

1

2

3

4

Node Depth Height

(Level)

0 0 4

1 1 2

2 1 3

3 1 1

4 2 1

5 2 0

6 2 2

7 2 0

8 2 0

9 3 0

10 3 0

11 3 1

12 3 0

13 4 0

0

1 2 3

4 5 6 7
8

9 10 11 12

13 Depth of a node is the # edges on the path from
the root node. The height of a node is the # edges

on the longest path from the node to a leaf node.

Example for Reading a File

Code 6.1

0: 1, 2

1: 3, -1
2: 4, 5

3: -1, 6

4: 7, 8
7: 9, -1

0

1 2

3 4 5

6 7 8

9

Binary Tree Representation as a

Text file (binaryTreeFile_1.txt)

In
te

rn
a
l

N
o

d
e
s

Im
m

e
d

ia
te

D
o

w
n

s
tr

e
a
m

N
o

d
e
s

Format

Internal Node: left child node id, right child node id

If a left (or right) child node is not there, then the id

field is represented as -1.

We show a node and its child nodes in the file only if

the node has at least one child node (i.e., the node is

an internal node)

Reading from a File
(C++: Code 6.1)

// for string tokenizing and c-style string processing

// ifstream is the name of the class to declare

// objects for file reading (input file stream)

// if fileReader is not pointing to a file

// !false

// for doing file Input/Output (File I/O)

// Declare a string tokenizer and

// declare a character pointer to

// the token extracted

// Extract the next token

// until a NULL (end of line) is seen

// Read the next file from the file using the fileReader

Binary Tree
• A binary tree is a tree wherein each node has at most

two child nodes.

Node class (BTNode) for

Binary Tree

C++

int nodeid;

int data;

int levelNum;

BTNode* leftChildPtr;

BTNode* rightChildPtr;

The leftChildPtr has the

address of the left node.

The rightChildPtr has the

address of the right node.

The leftChildPtr or

the rightChildPtr are

set to null if a node does

not have a left child or

right child.

Strategy to Create a Binary Tree
• Input the number of nodes (numNodes or N) in the

binary tree from the user.

• Step 1: Create an array of BTNodes (of size numNodes)
and have a pointer/reference of class BTNode
(arrayOfBTNodes) to point to it.
– Initialize the BTNodes in arrayOfBTNodes

• The id of the BTNode is set to the appropriate value

• The levelNum of the BTNode is set to -1

• The leftChildPtr and rightChildPtr of the BTNode are set to null.

• We do not worry about initializing the data unless an application
needs to make use of this variable.

– Step 2: Read the text file containing the info for the binary tree

– For every internal node read, extract the id of the left child and
right child nodes from the line

• If a child node id is not -1, then call the function to set up the node
as the left child or right child, depending on the case.

• In the setLeftChild(int upstreamnode id, int downstreamnodeid) and
the setRightChild(int upstreamnodeid, int downstreamnodeid)
functions, pass the pointers to the appropriate downstream node
objects and set them as left child or right child, depending on the
case.

Step 1: Create an Array of BTNodes
and Initialize each BTNode

nodeid = 0

level# = -1

data = ….

arrayOfBTNodes

left

Child

Ptr

right

Child

Ptr

nodeid = 1

level# = -1

data = ….
left

Child

Ptr

right

Child

Ptr

nodeid = 2

level# = -1

data = ….
left

Child

Ptr

right

Child

Ptr

nodeid = N-1

level# = -1

data = ….
left

Child

Ptr

right

Child

Ptr

BTNode Objects

Step 2: Read the File and Set up
the Pointers to the Child Nodes

0: 1, 2

1: 3, -1

2: 4, 5

3: -1, 6

4: 7, 8

7: 9, -1

Node 0
LC

Ptr

RC

Ptr

Node 1

LC

Ptr

RC

Ptr

Node 2

LC

Ptr

RC

Ptr

Node 3

LC

Ptr

RC

Ptr

Node 4

LC

Ptr
RC

Ptr

Node 5

LC

Ptr

RC

Ptr

Node 6

LC

Ptr

RC

Ptr

Node 7

LC

Ptr

RC

Ptr

Node 8
LC

Ptr
RC

Ptr

Node 9
LC

Ptr

RC

Ptr

After Step 1; but Before Step 2

Node 0
LC

Ptr

RC

Ptr

Node 1

LC

Ptr

RC

Ptr

Node 2

LC

Ptr

RC

Ptr

Node 3

LC

Ptr

RC

Ptr

Node 4

LC

Ptr
RC

Ptr

Node 5

LC

Ptr

RC

Ptr

Node 6

LC

Ptr

RC

Ptr

Node 7

LC

Ptr

RC

Ptr

Node 8
LC

Ptr
RC

Ptr

Node 9
LC

Ptr

RC

Ptr

0 ���� 1

0
 ����

2

1 ���� 3
2 ���� 4

2
 ����

5

3
 ����

6

4 ���� 7

4
 �� ��

8

7 ���� 9

After Step 2

binaryTreeFile_1.txt

Example
Binary Tree

binaryTreeFile_1.txt

Node 0
LC

Ptr

RC

Ptr

Node 1

LC

Ptr

RC

Ptr

Node 2

LC

Ptr

RC

Ptr

Node 3

LC

Ptr

RC

Ptr

Node 4

LC

Ptr
RC

Ptr

Node 5

LC

Ptr

RC

Ptr

Node 6

LC

Ptr

RC

Ptr

Node 7

LC

Ptr

RC

Ptr

Node 8
LC

Ptr
RC

Ptr

Node 9
LC

Ptr

RC

Ptr

0 ���� 1

0
 ����

2

1 ���� 3
2 ���� 4

2
 ����

5

3
 ����

6

4 ���� 7

4
 �� ��

8

7 ���� 9

0

1 2

3 4 5

6 7 8

9

Binary Tree

Implementation

(C++: Code

6.2): Class

BTNode
Private member variables

Public Member Functions/

Empty Constructor

Binary Tree Implementation (C++ Code 6.2):
Class BinaryTree
Private member variables

Public Constructor

Public Member Functions

to set the Left Link (left child node ptr)

and Right Link (right child node ptr) for a BTNode

Binary Tree Implementation (C++ Code 6.2):
Class BinaryTree

Regarding Leaf Nodes:

A node is a leaf node if both its left and child node ptrs point to null

Height of a Binary Tree
• The height of an

internal node in a
binary tree is one plus
the maximum of the
height of its child
node(s).

• In other words, the
height of a node is
one plus the
maximum of the
heights of its two sub
trees.

• The height of a leaf
node is 0.

• The height of a non-
existing child node
(i.e., a non-existing
sub tree) is -1.

• The height of a binary
tree is calculated in a
recursive manner.

0

1 2

3 4 5

6 7 8

9

0

0 0

0

-1

1

-1

1 2

32

4
Ht(0) = 1 + Max(Ht(1), Ht(2))

Ht(1) = 1 + Max(Ht(3), -1)

Ht(3) = 1 + Max(-1, Ht(6))

Ht(6) = 0

�Ht(3) = 1 + Max(-1, 0) = 1

�Ht(1) = 1 + Max(1, -1) = 2

Ht(2) = 1 + Max(Ht(4), Ht(5))

Ht(4) = 1 + Max(Ht(7), Ht(8))

Ht(5) = 0

Ht(8) = 0

Ht(7) = 1 + Max(Ht(9), -1)

Ht(9) = 0

�Ht(7) = 1 + Max(0, -1) = 1

�Ht(4) = 1 + Max(1, 0) = 2

�Ht(2) = 1 + Max(2, 0) = 3

Ht(0) = 1 + Max(2, 3) = 4

Binary Tree Implementation (C++ Code 6.2):
Class BinaryTree

// The height of a binary tree

// is the height of node 0

// node 0 – the root node

// The height of a non-existing node

(or sub tree) is -1

// The height of a leaf node is 0

C++ Code 6.2: Main Function
// Enter the name of the text file

// that stores the tree info

// Instantiate an object of class BinaryTree

// Instantiate an object of class ifstream

// Get the first line in the file

// We need to know the maximum number of characters

// that would be there per line in the file in order to read

// the line/string as a character array and do string

// tokenization

C
+

+
 C

o
d

e
 6

.2
:

M
a

in
 F

u
n

c
ti
o

n
// Read the first token as the upstreamNodeID

// Loop through to extract the next two tokens

// The second token (i.e., when childIndex = 0) is the left child node id.

// The third token (i.e., when childIndex = 1) is the right child node id.

// Run the loop until the last line is read (i.e., fileReader != null)

Height-Balanced Binary Tree: Ex. 1
• An internal node in a binary tree is said to be height-balanced if the

absolute difference of the heights of its left sub tree and right sub
tree is no greater than 1.

• A binary tree is said to be height-balanced if all its internal nodes are
height-balanced.
– Even if one internal node is not height-balanced, then the binary tree is

not height-balanced.

Node Height of Height of Abs. Height

Left subtree Right subtree Diff. Balanced

0 2 3 1 YES

1 1 -1 2 NO

2 2 0 2 NO

3 -1 0 1 YES

4 1 0 1 YES

7 0 -1 1 YES

Note: The height of a leaf node is 0.
The height of a (non-existing) subtree with no nodes is -1

Since nodes 1 and 2 are not height-balanced, the whole

Binary tree is considered to be not height-balanced.

Height of the sub
trees: Examples

0

1 2

3 4 5

6 7 8

9

Node ‘0’

Sub trees Root Height

Left sub tree 1 2

Right sub tree 2 3

0

1 2

3 4 5

6 7 8

9

Node ‘2’

Sub trees Root Height

Left sub tree 4 2

Right sub tree 5 0

0

1 2

3 4 5

6 7 8

9

Node ‘1’

Sub trees Root Height

Left sub tree 3 1

Right sub tree None -1

Height-Balanced
Binary Tree: Ex. 2

0

1 2

3 4 5

6 7 8

9

Node Height of Height of Abs. Height

Left subtree Right subtree Diff. Balanced
0 2 2 0 YES

1 1 0 1 YES

2 1 0 1 YES

3 -1 0 1 YES

4 0 0 0 YES

Since all the internal nodes are height-balanced, the entire binary tree is
height-balanced.

0 0 0

0 0

1

2

1

2

3

Binary Tree
• Binary Tree: A tree

with at most two child
nodes for each internal
node

• Nodes that have the same
depth are said to be at the
same “level”.

– The root node is at level
0.

– The leaf node(s) with
the largest depth are
said to be at the
bottommost level.

• Maximum number of nodes
at a particular level ‘i’ (i ≥ 0)
for a binary tree is 2i.

• The number of nodes at a
particular level is at most
twice the number of nodes
in the previous level.

Level # Nodes (Max)

0 1 (1)

1 2 (2)

2 3 (4)

3 3 (8)

The “height” of a binary tree (# levels – 1)

corresponds to the “max. depth” for any

node in the tree.

Maximum number of nodes in a

Binary tree of height “h” is

20 + 21 + 22 + …. + 2h = (2h+1) – 1

= (2 #levels) – 1

Examples

• Consider a binary tree of height 4.
Determine the maximum possible number
of nodes in the binary tree.
– Answer: 2h+1 – 1 = 2(4+1) – 1 = 31.

• Consider a binary tree of 30 nodes. What is
the minimum possible height of the binary
tree?
– Min Height (h) = log2(N+1) – 1 = log2(30+1) – 1 = 4

Complete Binary Tree
• A binary tree is called a complete binary tree if each

internal node has exactly two child nodes.
– In other words, all the lef nodes of a complete binary tree are at

depth (level) ‘h’, which is also the height of the tree.

• The number of leaf nodes and internal nodes (incl. root
node) of a complete binary tree of height ‘h’ are 2h and
2h-1 respectively.

Leaf Nodes

= 2h = 23 = 8

Internal Nodes

= 2h-1 = 23-1 = 7

Total # Nodes in a Complete Binary Tree of height ‘h’ = 2h+1-1 = 23+1-1 = 15

Binary Search Tree

• A binary tree is called a binary search tree if for
every internal node: the data at the internal node
is greater than or equal to that of its left child
node and lower than or equal to that of its right
child node.

55

27 81

3

14

27

39

31 42

70

74

93

91 98

Breadth First Search (BFS)
Algorithm

• BFS is a graph traversal algorithm (also applicable for binary trees)
that could be used to determine the shortest paths from a vertex to
the rest of the vertices in the graph

• In the context of binary trees, BFS could be used to determine the
number of edges (level # or the depth) on the shortest paths from
the root to the rest of the vertices in the graph.

• BFS proceeds in iterations. We keep track of the vertices visited in a
queue.

• We start the algorithm by enqueuing the root node to the queue.

• In each iteration, we dequeue the vertex that is currently the first
node (i.e., in the front) of the queue and visit its the child node(s)
(i.e., enqueue them).
– In case of a tie, the child node with the smallest ID is enqueued first.

• The level number of a node is one more than the level number of its
immediate parent node.
– The level number of a child node is set when its parent is dequeued and

the child node and its sibling node, if any, are enqueued.

• The algorithm is run until there is at least one node in the queue.

Breadth First Search (BFS) Algorithm

Queue queue

queue.enqueue(root node id 0)

Level[root node 0] = 0

Begin BFS_BinaryTree

while (!queue.isEmpty()) do

FirstNodeID = queue.dequeue();

if (FirstNode.leftChildNodeID != -1) then

Level[FirstNode.leftChildNodeID] = Level[FirstNode.getNodeID()] + 1

queue.enqueue(FirstNode.leftChildNodeID)

end if

if (FirstNode.rightChildNodeID != -1) then

Level[FirstNode.rightChildNodeID] = Level[FirstNode.getNodeID()] + 1

queue.enqueue(FirstNode.rightChildNodeID)

end if

end while

End BFS_BinaryTree

BFS is a traversal algorithm that returns

the level number of the vertices (i.e., the

number of edges on the path from the

root node to any other vertex).

For a binary tree of V vertices, we need to run
V iterations and enqueue at most two of its
Child nodes in each iteration (traverse E edges).

Hence, the time complexity of BFS is Θ(V+E).

BFS Execution: Example

0

1 2

3 4 5

7 86

0

-1 -1

-1 -1 -1

-1 -1 -1

9

-1

Queue Initialization
{0}

Iteration 1

{1, 2}

Iteration 2

{2, 3}

0

1 2

3 4 5

7 86

0

1 1

-1 -1 -1

-1 -1 -1

9

-1

0

1 2

3 4 5

7 86

0

1 1

2 -1 -1

-1 -1 -1

9

-1

BFS Execution: Example

Iteration 3

{3, 4, 5}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

-1 -1 -1

9

-1

Iteration 4

{4, 5, 6}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 -1 -1

9

-1

Iteration 5

{5, 6, 7, 8}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

-1

BFS Execution: Example

Iteration 6

{6, 7, 8}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

-1

Iteration 7

{7, 8}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

-1

Iteration 8

{8, 9}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

4

BFS Execution: Example

Iteration 9

{9}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

4

Iteration 10

{}

0

1 2

3 4 5

7 86

0

1 1

2 2 2

3 3 3

9

4

D
e
p

th
 o

f
a
 B

in
a
ry

 T
re

e
 (

C
+

+

C
o

d
e

:
6
.3

)
// Instantiate an object of class Queue and enqueue the root

// Set the level number of the root to 0

// Dequeue the first node in the

// queue

// Enqueue the left child node in the queue

// The level number of the left child is one more than that of its

// immediate parent node

// Enqueue the right child node in the queue

// The level number of right child one more than that of its parent

Pre, Post and In Order Traversals
• We will now look at three tree

traversal algorithms that could be
used to print the vertices of the
tree in a certain order.

• Pre Order:

• Root, Left sub tree, Right sub tree
– 0, 1, 3, 6, 2, 4, 7, 9, 8, 5

• In Order:
• Left sub tree, Root, Right sub tree

– 3, 6, 1, 0, 9, 7, 4, 8, 2, 5

• Post Order:

• Left sub tree, Right sub tree, Root
– 6, 3, 1, 9, 7, 8, 4, 5, 2, 0

• To implement each of the three
traversal algorithms, we go
through a recursive approach

0

1 2

3 4 5

6 7 8

9

Pre Order Traversal: Example
• We first print the root of the sub tree, followed by all the nodes of the

left sub tree of the root, and followed by all the nodes of the right sub
tree of the root

• To print the nodes of the left and right sub tree, we follow the above
procedure.

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

1

0

1 2

3 4 5

7 86

9

1

2

0

1 2

3 4 5

7 86

9

1

2

3

0

1 2

3 4 5

7 86

9

1

2

3

4

0

1 2

3 4 5

7 86

9

1

2

3

4

5

Pre Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

4

5

Pre Order Traversal: Example

6

0

1 2

3 4 5

7 86

9

1

2

3

4

5

6

7

0

1 2

3 4 5

7 86

9

1

2

3

4

5

6

7

8

Pre Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

4

5

6

7

8

9

0

1 2

3 4 5

7 86

9

1

2

3

4

5

6

7

8

9

10

0, 1, 3, 6, 2, 4, 7, 9, 8, 5

In Order Traversal: Example
• We first print all the nodes in the left sub tree of the root, followed by

the root, followed by the nodes in the right sub tree of the root, if any.

• To print the nodes of the left and right sub tree, we follow the above
procedure.

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

In Order Traversal: Example

1

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

1

0

1 2

3 4 5

7 86

9

2

In Order Traversal: Example

1

0

1 2

3 4 5

7 86

9

2

3

1

0

1 2

3 4 5

7 86

9

2

3

4

1

0

1 2

3 4 5

7 86

9

2

3

4

In Order Traversal: Example

1

0

1 2

3 4 5

7 86

9

2

3

4

1

0

1 2

3 4 5

7 86

9

2

3

4

1

0

1 2

3 4 5

7 86

9

2

3

4

5

In Order Traversal: Example

1

0

1 2

3 4 5

7 86

9

2

3

4

5

6

1

0

1 2

3 4 5

7 86

9

2

3

4

5

6

7 1

0

1 2

3 4 5

7 86

9

2

3

4

5

6

7

8

In Order Traversal: Example

1

0

1 2

3 4 5

7 86

9

2

3

4

5

6

7

8

9

1

0

1 2

3 4 5

7 86

9

2

3

4

5

6

7

8

9

10

3, 6, 1, 0, 9, 7, 4, 8, 2, 5

Post Order Traversal: Example
• We first print all the nodes in the left sub tree, followed

by all the nodes in the right sub tree and then the root.

• To print the nodes of the left and right sub tree, we follow
the above procedure.

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

Post Order Traversal: Example

0

1 2

3 4 5

7 86

9

0

1 2

3 4 5

7 86

9

1

0

1 2

3 4 5

7 86

9

1

2

Post Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

0

1 2

3 4 5

7 86

9

1

2

3

0

1 2

3 4 5

7 86

9

1

2

3

Post Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

0

1 2

3 4 5

7 86

9

1

2

3

4

0

1 2

3 4 5

7 86

9

1

2

3

4

5

Post Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

4

5 6

0

1 2

3 4 5

7 86

9

1

2

3

4

5 6

7

0

1 2

3 4 5

7 86

9

1

2

3

4

5 6

7 8

Post Order Traversal: Example

0

1 2

3 4 5

7 86

9

1

2

3

4

5 6

7 8

9

0

1 2

3 4 5

7 86

9

1

2

3

4

5 6

7 8

9

10

6, 3, 1, 9, 7, 8, 4, 5, 2, 0

Pre Order Traversal (Code: 6.4)

Constructing a Binary Tree

• Given the in order traversal sequence and the pre or
post order traversal sequence for a binary tree, we can
construct the binary tree.

• If given the pre order traversal, the first node in the
sequence represents the overall root node. The nodes
that appear before (after) the root node in the in order
sequence are the nodes of the left (right) sub tree.

• If given the post order traversal, the last node in the
sequence represents the overall root node. The nodes
that appear before (after) the root node in the in order
sequence are the nodes of the left (right) sub tree.

• We follow the above procedure in a recursive fashion.

Constructing a Binary Tree: Example
Post-order: 6, 3, 1, 9, 7, 8, 4, 5, 2, 0 In-order: 3, 6, 1, 0, 9, 7, 4, 8, 2, 5

0

3, 6, 1 9, 7, 4,

8, 2, 5

0

1

3, 6

2

9, 7,

4, 8

0

1 2

5

5
3

6

4 5

8
9,

7

0

1 2

5
3

6

4 5

8
7

9

Level 1

Level 2

Level 3 Level 4

Final Binary Tree

Constructing a Binary Tree: Example
Pre-order: 0, 1, 3, 6, 2, 4, 7, 9, 8, 5 In-order: 3, 6, 1, 0, 9, 7, 4, 8, 2, 5

0

3, 6, 1 9, 7, 4,

8, 2, 5

0

1

3, 6

2

9, 7,

4, 8

0

1 2

5

5
3

6

4 5

8
9,

7

0

1 2

5
3

6

4 5

8
7

9

Level 1

Level 2

Level 3 Level 4

Final Binary Tree

