
Module 9:
Graphs

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Graph
• Graph is a data structure that is a collection of nodes

(vertices) and links (edges).

• A graph could be an undirected or directed.
• A graph could be used to model complex real-world

networks
– E.g., a network of cities, a network of airports, social networks,

communication networks (like Internet), etc.

1

2

3

4

5

6

0

1

2

3

4

5

6

0

Vertex

e
d

g
e

Directed

edge

Undirected Graph Directed Graph

Adjacency List and Adjacency Matrix
• Information about the nodes and edges could be stored in the form

of an adjacency list or an adjacency matrix

• Undirected Graphs

• Adjacency List: is an array of lists (like Linked List) that store the
neighbors (edges incident) for each vertex

• Adjacency Matrix:

A[i, j] = 1 if there is an edge between i and j

0; otherwise

1

2

3

4

5

6

0

Adjacency List

0: 1, 2

1: 0, 2, 3

2: 0, 1, 4

3: 1, 4, 5

4: 2, 3, 5, 6

5: 3, 4, 6

6: 4, 5

Adjacency Matrix

0

1

2

3

4

5
6

0 1 2 3 4 5 6

0 1 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 0 0

0 1 0 0 1 1 0

0 0 1 1 0 1 1

0 0 0 1 1 0 1

0 0 0 0 1 1 0Undirected Graph

Note that Adjacency matrix for undirected graphs is a symmetric matrix

i.e., A[i, j] = A[j, i]

Degree of a vertex is its

number of neighbors

E.g., Degree (1) = 3

Adjacency List and Adjacency Matrix
• Information about the nodes and edges could be stored

in the form of an adjacency list or an adjacency matrix

• Directed Graphs
• Adjacency List: is an array of lists (like Linked List) that

store the outgoing edges (outgoing neighbors) for each
vertex

• Adjacency Matrix:

A[i, j] = 1 if there is an edge from i to j
0; otherwise

Adjacency List

0: 1

1: 2, 3, 4

2: 0

3:

4: 2, 3, 6

5: 3, 6

6:
Directed Graph

1

2

3

4

5

6

0

Adjacency Matrix

0

1

2

3

4

5
6

0 1 2 3 4 5 6

0 1 0 0 0 0 0

0 0 1 1 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 1 0 0 1

0 0 0 1 0 0 1

0 0 0 0 0 0 0

Relation between Degree and # Edges

• Undirected Graphs
Edges = (Sum of Node Degrees)/2

Average Degree = Sum of Node Degrees / # Nodes

Sum of Node Degrees = 2 * # Edges

Average Degree * # Nodes = 2 * # Edges

Average Degree = 2 * # Edges / # Nodes

1

2

3

4

5

6

0

2

3 3 3

3 4 2

Sum of Node Degrees

= 2 + 3 + 3 + 3 + 4 + 3 + 2 = 20

Edges = 20 / 2 = 10

Consider an undirected graph of
7 vertices and 10 edges

Average Degree = 2 * 10 / 7 = 2.86

Some Common Types of Graphs
• Complete graph: Every vertex is connected to every other vertex.

– In a complete graph of ‘n’ vertices, the degree of each vertex is n-1, and
there are a total of n(n-1)/2 edges.

• Regular graph: Each vertex has the same degree.

– In a k-regular graph, every vertex has degree ‘k’ and there a total of N*k/2
edges.

• Star graph: The only edges in the graph are those that connect each vertex to a
central vertex called the hub.

– In a star graph of ‘n’ vertices, the hub has degree ‘n-1’ and every other
vertex has degree of 1.

• Tree: A graph in which there is no cycle. A tree of ‘n’ vertices has exactly ‘n-1’
edges.

– A cycle is a subset of the edges such that we can start with one vertex and
go around the edges in the cycle and come back to the starting vertex.
There is more than one path between any two vertices in a cycle.

– There is only one path between any two vertices in a tree.

Complete Graph 2-Regular Graph Star Graph Graph with Cycles Tree Graph

Breadth First Search (BFS)
BFS(G, s)

Queue queue

queue.enqueue(s) // ‘s’ is the starting vertex

Level[s] = 0

Level[v] = ∞; for all vertices v other than ‘s’

// The level # is also the estimated number of edges

// on the minimum edge path (shortest path) from ‘s’

Visited[v] = false; for all vertices v other than ‘s’

while (!queue.isEmpty()) do

u = queue.dequeue();

for every vertex v that is a neighbor of u

if (Visited[v] = false) then

Level[v] = Level[u] + 1

Visited[v] = true

Queue.enqueue(v)

Edge u-v is a tree edge

end if

else

Edge u-v is a cross edge

end for

end while

End BFS

Time Complexity:

If there are ‘V’ vertices and ‘E’

edges, we traverse each edge

exactly once as well as enqueue

and dequeue each vertex exactly

once. Hence, the time

complexity of BFS is Θ(V+E)

when implemented using an

Adjacency list and Θ(V2) when

implemented using an

Adjacency matrix.

BFS: Example 1

1

2

3

4

5

6

7

Initialization: Queue = {1}

0 ∞ ∞

∞∞∞

∞
1

2

3

4

5

6

7

Iteration 1: Queue = {2, 3, 7}

0 1 ∞

∞∞1

1

1

2

3

4

5

6

7

Iteration 2: Queue = {3, 7, 4}

0 1 ∞

∞21

1 1

2

3

4

5

6

7

Iteration 3: Queue = {7, 4, 5}

0 1 2

∞21

1

BFS: Example 1

1

2

3

4

5

6

7

Iteration 4: Queue = {4, 5}

0 1 2

∞21

1 1

2

3

4

5

6

7

Iteration 5: Queue = {5, 6}

0 1 2

321

1

1

2

3

4

5

6

7

Iteration 6: Queue = {6}

0 1 2

321

1 1

2

3

4

5

6

7

Iteration 7: Queue = {}

0 1 2

321

1

Bipartite Graph
• A graph in which the vertices could be

partitioned to two disjoint sets such that
all the edges in the graph are between
the vertices in the two sets and there are
no edges between vertices in the same
set.

• An undirected graph is bipartite if there
are no cross edges between vertices at
the same level while doing BFS.
– Note there could be cross edges between

vertices at different levels. This is fine.

• A bipartite graph is also said to be “2-
colorable”.
– There are only two colors to color the vertices

– For each edge u – v, the end vertices should
be of different color.

1
4

5
8

2
3

6
7

BFS: Example 2

1

2

3

4

5

6

7

Initialization: Queue = {1}

0 ∞ ∞

∞∞∞

∞

Iteration 1: Queue = {2, 3, 7}

8

∞

1

2

3

4

5

6

7

0 1 ∞

∞∞1

1

8

∞

Iteration 2: Queue = {3, 7, 4, 8}

1

2

3

4

5

6

7

0 1 ∞

∞21

1

8

2

Iteration 3: Queue = {7, 4, 8, 5}

1

2

3

4

5

6

7

0 1 2

∞21

1

8

2

BFS: Example 2

Iteration 4: Queue = {4, 8, 5}

1

2

3

4

5

6

7

0 1 2

∞21

1

8

2

Iteration 5: Queue = {8, 5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 6: Queue = {5, 6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Iteration 7: Queue = {6}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

BFS: Example 2

Iteration 8: Queue = {}

1

2

3

4

5

6

7

0 1 2

321

1

8

2

1
4

5
8

2
3

6
7The vertices in the odd level are in one color

and the vertices in the even level are in the

other color

BFS: Example 1 1

2

3

4

5

6

7

0 1 2

321

1

The graph is not bipartite as there are

edges 2 – 7 and 2 – 4 that are cross edges
between vertices at the same level. The presence
of even one such edge rules out the graph from

being bipartite.

Connected Undirected Graph
• An undirected graph is said to

be “connected” if we could start
BFS from any arbitrary vertex in
the graph and be able to visit
the rest of the vertices in the
graph.
– All the vertices in a connected

undirected graph are said to be
in “one component”.

• If even on vertex is not
reachable from the starting
vertex of BFS, the graph is
considered to be “not
connected” and will be
composed of two or more
components.
– A component is the largest

subset of the vertices in the
graph such that all the vertices
within the subset (component)
are reachable from each other.

1

2

3

4

5

6

7

0 1 2

321

0

8

1
The graph above comprises of

“two” components; the graph

below has only “one” component

1

2

3

4

5

6

7

0 1 2

321

1

8

2

Depth First Search (DFS)
• With DFS, we start with a vertex (root) and visit one of its

neighbors and go further deep until we reach a dead
end, and then back track.

• We use a Stack to keep track of the vertices that are
visited for the first time (pushed to the stack) and back
track after we reach a dead end (popped from the stack).

• In the case of an undirected graph, the edge that leads
to a vertex to be pushed to the stack is called a tree
edge, and the edge that leads to a vertex that has been
already pushed to the stack is called a back edge.

• If a back edge is encountered during a DFS, the graph is
said to have a cycle.

• Time complexity of DFS is the same as that of BFS.
Each vertex and edge is visited exactly once.
– Adjacency List: Θ(V+E) Adjacency Matrix: Θ(V2)

DFS: Example 1

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1, 1,

2,

1

2

3

4

5

6

7

1,

2, 3,

1

2

3

4

5

6

7

1,

2, 3,

4,

Initialization: Stack = {1}

Stack = {2, 1}

Stack = {4, 2, 1} Stack = {3, 4, 2, 1}

Root

DFS: Example 1

1

2

3

4

5

6

7

1,

2, 3,

4, 5,

1

2

3

4

5

6

7

1,

2, 3,

4, 5,

6,

1

2

3

4

5

6

7

1,

2, 3,

4, 5,

6, 1

1

2

3

4

5

6

7

1,

2, 3, 4

4, 3 5, 2

6, 1

Stack = {5, 3, 4, 2, 1} Stack = {6, 5, 3, 4, 2, 1}

Stack = {5, 3, 4, 2, 1} Stack = {2, 1}

DFS: Example 1

1

2

3

4

5

6

7

1,

2, 3, 4

4, 3 5, 2

6, 1

Stack = {7, 2, 1}

1

2

3

4

5

6

7

1,

2, 3, 4

4, 3 5, 2

6, 1

Stack = {2, 1}

7, 7, 5

1

2

3

4

5

6

7

1, 7

2, 6 3, 4

4, 3 5, 2

6, 1

Stack = {}

7, 5
Tree Edge

Back Edge

DFS: Example 2
1

2

3

4 5

6 7

8

9 10

11

1

2

3

4 5

6

7

8

9

10

11

1, 11

2, 6

3, 5

4, 1

5, 4

6, 3

7, 2

8, 10

9, 9

10, 8

11, 7

Root

Internal

Node

Leaf

Node

4: 4, 1

3: 3,
2: 2,

1: 1,

Remove

6, 5 3, 2
from the

Stack

7: 7, 2

6: 6,

5: 5,

3: 3,
2: 2,

1: 1,

10: 11, 7

11: 10,

9: 9,

8: 8,

1: 1,

Remove

11, 9, 8, 1
from the

Stack

Articulation Point (AP)
• A vertex is called an articulation point (AP) if its removal

would disconnect a graph into two or more components.

• We could use the results of DFS to identify the APs of a
graph.

• Criteria for deciding whether a node is an AP or not

• The root of a DFS tree is an articulation point if it has
more than one child connected through a tree edge. (In
the above DFS tree, the root node ‘a’ is an articulation
point)

• The leaf nodes of a DFS tree are not articulation points.

• Any other internal vertex v in the DFS tree, if it has one
or more sub trees rooted at a child (at least one child
node) of v that does NOT have an edge which climbs
’higher ’ than v (through a back edge), then v is an
articulation point.

Deciding whether an Internal Node
is an Articulation Point or not

• An internal node is NOT an articulation point if there exist one or
more back edges from each of the sub trees of the node to one or
more ancestral nodes in the DFS tree (like the left side example)
– In other words, an internal node is an articulation point if there exists at

least one sub tree from which there is no back edge that goes above the
node in the DFS tree (like the right side example).

u

Ancestral

Nodes above

Node ‘u’ in the

DFS tree

Vertex ‘u’ is

not an AP!

u

Ancestral

Nodes above

Node ‘u’ in the

DFS tree

Vertex ‘u’

is an AP!

This back edge,

even if present,

is only up to u

and not beyond u

Articulation Points: Ex. 11

2

3

4 5

6

7

8

9

10

11

1, 11

2, 6

3, 5

4, 1

5, 4

6, 3

7, 2

8, 10

9, 9

10, 8

11, 7

Root

Internal

Node

Leaf

Node

Deciding Whether

Vertex 2 is an AP

Vertex 2 is not an AP: There is one sub tree and

the back edge from the sub tree goes above Vertex 2.

1

2

3

4 5

6

7

8

9

10

11

1, 11

2, 6

3, 5

4, 1

5, 4

6, 3

7, 2

8, 10

9, 9

10, 8

11, 7

Root

Vertex 3 is an AP!!: There are two sub trees for Vertex 3. The sub

tree rooted at vertex 4 has a back edge that goes above vertex 3.
However, the sub tree rooted at vertex ‘5’ has a back edge that
goes only up to vertex 3. Hence, vertex 3 is an AP. If it is
removed from the graph, the sub tree rooted at vertex 5 will

disconnect from the rest of the graph.

Vertex 5 is not an AP: There is one
Sub tree rooted at vertex 6 and it has

a back edge that goes above vertex 5.

Vertex 6 is not an AP: There is one

Sub tree rooted at vertex 7 and it has

two back edges that go above vertex 6.

Vertex 8 is not an AP: There is one

Sub tree rooted at vertex 9 and it has
a back edge that goes above vertex 8.

Vertex 9 is not an AP: It has one sub tree

rooted at vertex 11 and that goes above

Vertex 9.

Vertex 11 is not an AP: It has one sub

tree rooted at vertex 10 and that goes

above Vertex 9.

Articulation
Points

Vertices 1, 3
1

2

3

4 5

6

7

8

9

10

11

1, 11

2, 6

3, 5

4, 1

5, 4

6, 3

7, 2

8, 10

9, 9

10, 8

11, 7

Root

Articulation
Points: Example 2

1

2

3

4

5

6

7

1, 7

2, 6 3, 4

4, 3 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

4

3

5

6

7

Vertex 2 has two sub trees. But both

the sub trees have a back edge that go

above vertex 2.

Vertex 4 has a sub tree. Though two of
the three back edges do not go above
Vertex 4, there is a back edge from

Vertex 3 to 1 that goes above vertex 4.

The root node is not

an AP, as it has only

One child node.

There are no APs

for this graph

Biconnected Graph
• An undirected graph is biconnected if there are at least

two vertex disjoint paths between any two vertices.

• An undirected graph is biconnected if the following two
conditions are met:
– The graph is connected

– There are no articulation points in the graph

• Both of the above could be decided by running DFS
starting from any arbitrary vertex.
– A graph is connected if we are able to visit all the vertices in the

graph as part of DFS initiated from an arbitrary vertex.

1

2

3

4

5

6

7

The graph is connected and has no APs

Examples of vertex disjoint paths

1, 2: 1 – 2; 1 – 7 – 2
1, 3: 1 – 3; 1 – 2 – 4 – 3

1, 4: 1 – 2 – 4; 1 – 3 – 4

1, 5: 1 – 3 – 5; 1 – 2 – 4 – 6 – 5

1, 6: 1 – 2 – 4 – 6; 1 – 3 – 5 – 6

2, 3: 2 – 1 – 3; 2 – 4 – 3

2, 4: 2 – 4; 2 – 1 – 3 – 4

2, 5: 2 – 1 – 3 – 5; 2 – 4 – 6 – 5

Articulation Points:
Example-3

1
2

3

4 5

6 7

1, 7
2, 6

3, 5

4, 4

5, 3

6, 2 7, 1

1

2

3

5

4

6

7

No vertex is an AP.

The graph is connected.

Hence, it is a biconnected graph

Bridge Edges in a Graph
• An edge is a “bridge” edge in a connected graph if its removal

would disconnect the vertices in the graph.

• We can identify the bridge edges of a graph using DFS
– The “back” edges are not bridge edges

– A tree edge u – v is a bridge if there do not exist any back edge to
reach u or an ancestor of u in the sub tree rooted at v.

• An undirected graph with no bridge edges is said to be “2-edge connected”
(i.e., the graph remains connected if any edge is removed).

u

v

Vertex ‘u’ or

an ancestor of

Vertex ‘u’

Vertex ‘v’ or

a sub tree

rooted at

Vertex ‘v’

b
a
c

k
 e

d
g

e

Edge u-v is

not a bridge

edge

u

v

Vertex ‘u’ or

an ancestor of

Vertex ‘u’

Vertex ‘v’ or

a sub tree

rooted at

Vertex ‘v’

Edge u-v is a bridge edge

T
h

e
re

 i
s
 n

o
 b

a
c

k
 e

d
g

e
 f

ro
m

v
e

rt
e

x
 ‘

v
’

o
r

a
 s

u
b

 t
re

e
 r

o
o

te
d

a
t

v
e

rt
e

x
 ‘

v
’

to
 v

e
rt

e
x

 ‘
u

’
o

r
a

n

a
n

c
e

s
to

r
o

f
v
e

rt
e

x
 ‘
u

’

Bridge Edges in a
Graph: Example 1

1

2

3

4

0

1

2

3

4

0

1, 5 2, 2

3, 1

4, 4

5, 3
0

1 3

2 4

Edge 0 – 1 is not a bridge edge as there is a

back edge from the sub tree rooted at vertex 1

to vertex 0

Edge 1 – 2 is not a bridge edge as there is a

back edge from the sub tree rooted at vertex 2

to an ancestor of vertex 1

Edge 0 – 2 is not a bridge edge as it is a back

edge

Edge 0 – 3 is a bridge edge as there is no back

edge from the sub tree rooted at vertex 3 to

either vertex 0 or an ancestor of vertex 0.

Edge 3 – 4 is a bridge edge as there is no back

edge from the sub tree rooted at vertex 4 to
either vertex 3 or an ancestor of vertex 3.

Bridge Edges in a
Graph: Example 2

1

2

3

4

5

6

7

1, 7

2, 6 3, 4

4, 3 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

4

3

5

6

7

There are no bridge

edges in this graph

Candidate Back Edge(s) making it

Edge not a bridge edge

1 – 2 3 – 1, 1 – 7

2 – 4 3 – 1

4 – 3 6 – 4, 5 – 4, 3 – 1

3 – 5 6 – 4, 5 – 4

5 – 6 6 – 4

2 – 7 7 – 1

DFS: Edge Terminology for directed

graphs
a b

c

d

e

a b

c

d

e

Tree edge

Back edge

Forward edge

Cross edge

Tree edge – an edge from a parent node to a child node in the tree

Back edge – an edge from a vertex to its ancestor node in the tree

Forward edge – an edge from an ancestor node to its descendant node in the tree.

The two nodes do not have a parent-child relationship. The back and forward

edges are in a single component (the DFS tree).
Cross edge – an edge between two different components of the DFS Forest.
So, basically an edge other than a tree edge, back edge and forward edge

1, 3 2, 2

3, 1

4, 5

5, 4

DFS Edge Terminologies

v3 v4

v1 v2

Instance 1 of DFS

We start from v1 and visit v2 and v3.

We could not visit v4.

The edge v1 – v3 is a forward edge

because v3 has been pushed and

Popped out of the stack and is visited

in the same instance as of v1.

Instance 2 of DFS
We start with v4. Vertices v2 and v3 were

visited in an early instance of DFS.

v3 v4

v1 v2

1, 3 2, 2

3, 1

tree

tree

fo
rw

a
rd

4, 4
cross

c
ro

s
s

• Tree Edge

– An edge to a vertex that has
not been visited yet.

• Back Edge

– An edge to a vertex that has
been already visited in the
current instance of DFS,
and it is still in the Stack
(i.e., not yet popped out)

• Forward Edge

– An edge to a vertex that has
been already visited in the
current instance of DFS,
and it has been already
popped out of the Stack

• Cross Edge

– An edge to a vertex that has
been already visited in an
earlier instance of DFS

b
a

c
k

Directed Acyclic Graphs (DAG)
• A directed graph is a graph with directed edges between

its vertices (e.g., u � v).

• A DAG is a directed graph (digraph) without cycles.

– A DAG is encountered for many applications that

involve pre-requisite restricted tasks (e.g., course

scheduling)

a b

c d

a b

c d

a a

DAGDAG

not a not a

DAGDAG

To test whether a directed graph is a DAG, run DFS on the directed graph. If a

back edge is not encountered, then the directed graph is a DAG.

DFS on a DAG: Example 1

a b

e f

c d

g h

a b

e f

c d

g h

Forward edge
Topological Sort

c d a e b g h f

f h g b e a d c

Order in which the

Vertices are popped

of from the stack

Reverse the order

Cross edge

Topological Sort of a DAG
• Topological sort of a DAG is a listing of the vertices

(each vertex appears exactly once) in such a way that
for any edge u � v, u appears somewhere before v
(u …. v) in the topological sort.

• A topological sort can be written for a directed graph if
only if it is a DAG.
– Directed graph is a DAG � Topological sort exists

1

2

3

4

5

6

7

1, 5

t.e.

2, 1

t.e.

3, 2

t.e.

4, 4

t.e.

f.e.

f.e.

5, 3

c.e.

c.e.

6, 6

c.e.

c.e.

7, 7

Topological Sort: 7, 5, 1, 4, 6, 3, 2

1

2

3

4

5

6

7

1, 6

t.e.

2, 2

t.e.

4, 3

t.e.

5, 5

t.e.

f.e.

f.e.

6, 4

c.e.

c.e.

7, 7

b. e.

t.e.

3, 1

Topological Sort does not exists!

Assigning Directions to
Edges in an Undirected
Graph (Directed Acyclic

Graph)

• Solution:

• Run DFS on the given
undirected graph.

• Write down the vertices in the
reverse order they are popped
out. This order will be the
topological sort of the vertices
if the undirected graph were to
be a directed acyclic graph.

• For every edge u – v in the
undirected graph, assign the
direction u -> v if u appears
before v in the above reverse
order of popped vertices or v -
> u if v appears before u.

1

2

3

4

5

6

7

1, 7

2, 6 3, 4

4, 3 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Given
Undirected

Graph

Assigning

Directions (DAG)

Example: Reverse Pop Order

1 2 7 4 3 5 6

Ex-2

1
2

3

4 5

6 7

1
2

3

4 5

6 7

1, 7
2, 6

3, 5

4, 4

5, 3

6, 2 7, 1

Assigning directions to

the edges so that the

Directed graph is a DAG

Reverse Pop Order

1 2 3 5 4 6 7

1
2

3

4 5

6 7

Strongly and Weakly Connected
Components of a Directed Graph

• Recall, a component is the largest subset of the vertices
that satisfy a particular property and if we add any other
vertex to that component, the property will no longer be
satisfied.

• A strongly connected component of a directed graph is
the subset of the vertices that are reachable from each
other, either directly or through a multi-hop path.
– Note that if a directed graph is a DAG, there are

no strongly connected components of size more
than 1.

• A weakly connected component of a directed graph is
the subset of the vertices that are reachable from each
other in the undirected version of the graph.

Strongly Connected Components
(SCC) of a Directed Graph

• We maintain two stacks: Regular-Stack and SCC-Stack

• We conduct DFS on the given directed graph (G) and
use the Regular-Stack to push and pop vertices as part
of the DFS.
– Whenever a vertex is popped out of the Regular-Stack, push it to

the SCC-Stack.

– Run DFS until all vertices are visited.

• Reverse the directions of the edges in the directed graph
(call it G’).

• Pop the topmost vertex from SCC-Stack and run DFS on
G’ starting from that vertex. All the vertices visited as
part of this DFS are said to form a strongly connected
component.
– Remove all the vertices visited from G’ and the SCC-Stack

– Run DFS on the remaining version of G’ starting from the
topmost vertex in the SCC-Stack.

– Continue DFS until are vertices in G’ are visited.

Strongly Connected Components
for a Directed Graph: Example 1

1

2

3

4

5

6

7

1, 6

2, 2

4, 3

5, 5 6, 4

7, 7

3, 1

Regular Stack

7
2

1
3

1

6

4

1 5

SCC Stack

Original

Graph, G

1

2

3

4

5

6

7

Reversed
Graph, G’

B
e

fo
re

 I
te

ra
ti

o
n

 1

o
n

 G
’

1

4

6

3

2

7

Iteration 1

B
e

fo
re

 I
te

ra
ti

o
n

 2

o
n

 G
’

{5}

5

1

4

6

3

2

7

1, 1

1

2

3

4 6

7

Reversed
Graph, G’

Iteration 2 {1, 7, 2, 4}

2, 5

3, 4

4, 3 5, 2

Strongly Connected Components
for a Directed Graph: Example 1

1

2

3

4

5

6

7

1, 6

2, 2

4, 3

5, 5 6, 4

7, 7

3, 1

Regular Stack

7
2

1
3

1

6

4

1 5

SCC Stack

Original

Graph, G

3

6Reversed
Graph, G’

Iteration 3

6, 6

Reversed
Graph, G’

Iteration 4

7, 7

1

2

3

4

5

6

7

{3}
{6}

B
e

fo
re

 I
te

ra
ti

o
n

 3

o
n

 G
’

6

3B
e

fo
re

 I
te

ra
ti

o
n

 4

o
n

 G
’

4

6

3

2

7

3

Strongly Connected Components
of a Directed Graph: Example 2

1

2

3

4

5

6

7

8

1, 4

2, 3

Regular

Stack

4

3

2

1

3, 2

4, 1

5, 7

6, 6 7, 5

8, 8

SCC Stack

7

5

6

8

1

2

3

4
Original

Graph, G

1

2

3

4

5

6

7

8
Reversed
Graph, G’

5,

7, 6

8, 5 6,

4, 2

2, 4

3, 3

1, 1

8

6

5 7

It # 1

1

2

3

4

5

6 8

Reversed Graph, G’’4, 2

2, 4

3, 3

It # 2

{5, 6, 8}

{7}

B
e

fo
re

 I
t

#
 1

B
e

fo
re

 I
t

#
 2

5

6

8

1

2

3

4

Strongly Connected Components
of a Directed Graph: Example 2

1

2

3

4

5

6

7

8

1, 4

2, 3

Regular

Stack

4

3

2

1

3, 2

4, 1

5, 7

6, 6 7, 5

8, 8

SCC Stack

Original

Graph, G

1

2

3

4

Reversed
Graph, G’’’

5, 8

7, 6

8, 5 6, 7

8

6

5 7

It # 3

{1, 2, 3, 4} 1

2

3

4

5

6

7

8
Original

Graph, G

Strongly Connected Components

B
e

fo
re

 I
t

#
 3

1

2

3

4

Weakly Connected Components of
a Directed Graph: Examples

1

2

3

4

5

6

7

Original

Graph, G

1

2

3

4

5

6

7

Undirected

version

All the vertices are reachable from

each other in the undirected version.

Hence, all the seven vertices are said

to form a weakly connected

component for the directed graph.

1

2

3

4

Original

Graph, G
5

6

7

8

1

2

3

4

5

6

7

8

Undirected

version

Vertex sets {1, 2, 3, 4} and {5, 6, 7, 8} are

the two weakly connected components

Strongly Connected Components
of a Directed Graph: Example 3

1

2

3

4

5

6

7

8

1, 8

2, 7

Regular

Stack

8

6

5

4

3

2

1

7

5

4

3

2

1

3, 6

4, 5

5, 4

6, 2 7, 1

8, 3

SCC Stack

1

2

3

4

5

7

6

8
Original

Graph, G B
e

fo
re

 I
te

ra
ti

o
n

 1

o
n

 G
’

1

2

3

4

5

6

7

8
Reversed
Graph, G’

1, 8

2, 2

3, 1 4, 7

5, 6

6, 5

7, 4

8, 3

{1, 3, 2,
4, 6, 5,

8, 7}

1

2

3

4

5

6

7

8

Strongly Connected Components
of a Directed Graph: Example 4

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

1

2

3

4

5

6

7

Reversed

Graph, G’

1, 1

Iteration 1 {7}

1

2

3

4

5

6
Reversed

Graph, G’
Iteration 2 {5}

2, 2

Strongly Connected Components
of a Directed Graph: Example 4

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

1

2

3

4 6
Reversed

Graph, G’
Iteration 3 {1}

3, 3

2

3

4 6
Reversed

Graph, G’
Iteration 4 {4}

4, 4

Strongly Connected Components
of a Directed Graph: Example 4

Regular

Stack

2

1

SCC Stack

7

5

1

4
6

3

2

1

2

3

4

5

6

7

1, 5

2, 1

3, 2

4, 4 5, 3

6, 6

7, 7

Original

Graph, G

3

1

6

4

1 5 7

2

3

6
Reversed

Graph, G’

Iterations 5, 6, 7

{6}, {3}, {2}

5, 5
6, 6

7, 7

1

2

3

4

5

6

7

Original

Graph, G

Assigning Directions to Edges in an
Undirected Graph (Strongly
Connected Directed Graph)

• We are given an undirected graph that is connected and
has no bridges (i.e., the graph is 2-edge connected).

• We want to assign directions to the edges of this graph
so that the resulting directed graph has all the vertices in
a single strongly connected component (i.e., the
resulting directed graph is strongly connected).

• Solution:

• Run DFS on the given undirected graph and make sure
it is connected and has no bridges (use the structure of
the DFS tree)

• If the undirected graph is “2-edge connected” use the
structure of the DFS tree and orient all the tree edges to
be away from the root and all the back edges to be
towards the root.

1

2

3

4

5

6

7

1, 7

2, 6 3, 3

4, 4 5, 2

6, 1

7, 5

At the

end of

DFS

1

2

4

3

5

6

7

There are no bridge

edges in this graph

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Example 1
Given
Undirected

Graph

Assigning

Directions

Tree edges away from
the root and back edges

towards the root

root

Ex-2

1
2

3

4 5

6 7

1
2

3

4 5

6 7

1, 7
2, 6

3, 5

4, 4

5, 3

6, 2 7, 1

1

2

3

5

4

6

7

There are no

Bridge edges

1
2

3

4 5

6 7

root

Assigning directions to

the edges so that the

Directed graph is a

Strongly connected

Component of all its vertices

