\qquad J\#: \qquad

Jackson State University
CSC 323 Algorithm Design and Analysis, Spring 2020
Instructor: Dr. Natarajan Meghanathan
Exam 3 (Take Home Exam)
Due on: April 16th, 11.59 PM (in Canvas)

Maximum Points: 100
Submission Options (choose one of the three): You can either
(a) Print this exam, write the solutions in the space provided, scan and upload as a PDF file or
(b) Use the space provided to type the solutions, save the file to a word or PDF and upload or
(c) Write the solutions for some questions by hand and type the solutions for some other questions. In this case, you should scan the written text to a PDF file, merge it with the PDF file for the typed content and submit everything together as a single PDF file.

Q1-23 pts) Given the following items, their weights and values, compute the maximum value of the items that could be accumulated in a knapsack of weight $\mathrm{W}=6 \mathrm{lb}$ (also listed in the table). Compute your solutions as:
(i) Fractional Knapsack problem
(ii) Integer Knapsack problem (W $=6 \mathrm{lb}$)
(iii) Using the result of (ii), determine the total maximum value and the corresponding items that can be picked if the Knapsack weight is reduced to 5 lb .

Show all the work (including the value and history tables for the Integer Knapsack problem)

Abate, Biruk Item Value(\$)	Weight (lb)	
1	12	2
2	25	3
3	30	4
4	18	3
5	10	1

Akintade, Oluwaseun		
Item	Value (\$)	Weight (lb)
1	20	2
2	13	1
3	25	2
4	39	4
5	27	3

Alharbi, Abdullah		
Item	Value (\$)	Weight (lb)
1	45	3
2	62	4
3	18	1
4	35	2
5	20	1

Alharbi, Abdulmajeed

Item	Value(\$)	Weight (lb)
1	11	1
2	31	4
3	10	2
4	18	3
5	12	2

Dent, Kaitlyn Item Value(\$)		Weight (lb)
1	15	2
2	19	3
3	28	4
4	20	3
5	8	1

Barnett, Isaiah		
Item	Value (\$)	Weight (lb)
1	19	1
2	80	4
3	25	2
4	45	3
5	15	1

Harris, Chawne		
Item	Value (\$)	Weight (lb)
1	24	3
2	35	4
3	19	2
4	13	1
5	11	1

\qquad
\qquad J\#: \qquad

McGee, Bria		
Item	Value(\$)	Weight (lb)
1	10	1
2	19	2
3	25	2
4	40	4
5	32	3

Redmond, Brandon		
Item	Value (\$)	Weight (lb)
1	100	2
2	120	4
3	90	3
4	110	3
5	115	2

Stubbs, Jasmine		
Item	Value(\$)	Weight (lb)
1	23	2
2	33	3
3	40	4
4	21	2
5	11	1

Teshome, Nahom		
Item	Value(\$)	Weight (lb)
1	32	4
2	23	3
3	30	4
4	11	2
5	7	1

Swami, Shaurya		
Item	Value (\$)	Weight (lb)
1	17	2
2	24	3
3	33	4
4	11	1
5	30	3

Triplett, Marzell
$\begin{array}{lll}\text { Item } & \text { Value (\$) } & \text { Weight (lb) } \\ 1 & 7 & 2 \\ 2 & 14 & 3 \\ 3 & 23 & 4 \\ 4 & 11 & 1 \\ 5 & 20 & 3\end{array}$

Roberts, Cambria		
Item	Value (\$)	Weight (lb)
1	14	2
2	20	3
3	15	2
4	10	1
5	30	4

Tchakoua, Landrie

Item	Value (\$)	Weight (b)
1	15	3
2	20	4
3	22	3
4	12	1
5	17	2

Wilkes, Kyla		
Item	Value (\$)	Weight (lb)
1	12	4
2	16	3
3	9	2
4	15	6
5	10	4

Student Name: __ J\#: \qquad

Student Name: \qquad
\qquad J\#: \qquad

Q2-7 points) Using Dynamic Programming, compute the binomial coefficient for the numbers assigned below. Show the table and all the work.

Student \# / Name	n	k
Abate, Biruk	13	8
Akintade, Oluwaseun	10	7
Alharbi, Abdullah	12	9
Alharbi, Abdulmajeed	10	6
Atkins, Nayaa	13	5
Barnett, Isaiah	13	10
Dent, Kaitlyn	12	7
Drake, Keilah	11	7
Harris, Chawne	13	11
McGee, Bria	10	4
Redmond, Brandon	11	9
Roberts, Cambria	12	8
Stubbs, Jasmine	11	5
Swami, Shaurya	10	8
Tchakoua, Landrie	15	7
Teshome, Nahom	14	8
Triplett, Marzell	13	9
Wilkes, Kayla	15	8

Student Name: \qquad J\#: \qquad

Q3-17 points) Given the sequences below, find the longest common sub sequence using the dynamic programming formulation discussed in class. Show the table and all the work. Also, show the final alignment of the two sequences (along with the gaps).

Student Name	Row Sequence	Column Sequence
Abate, Biruk	TCGCCTT	GGGGTAACT
Akintade, Oluwaseun	TAAAATCTAG	CTTGGATC
Alharbi, Abdullah	GTGTGGAAAC	GCTTCTTTCT
Alharbi, Abdulmajeed	AGGACGGTGAA	AATTTTTA
Atkins, Nayaa	CGGCCAGGCGAT	CGAGGTAAGTAG
Barnett, Isaiah	GCTATTAT	ATAGAAATC
Dent, Kaitlyn	TTCTGATGTT	TCGGGAT
Drake, Keilah	CAGATGTATCTG	GAGACAGGAT
Harris, Chawne	CTCAGGT	GTGAGGGGGA
McGee, Bria	GATTGCACTA	GTAGCAGT
Redmond, Brandon	GCTAAGC	AGTGCCG
Roberts, Cambria	ATCACC	GCTCGATCTGCA
Stubbs, Jasmine	TTTTAATCCAGC	TGCAGAGAACTA
Swami, Shaurya	GAGTAAG	GCGACG
Tchakoua, Landrie	CCCCTATAGT	CTGACG
Teshome, Nahom	AGAGGC	CAATCGCAACGC
Triplett, Marzell	TATCAA	TGGACTCCGCAC
Wilkes, Kayla	CCATGCATG	GACTCGAACATG

Student Name: __ J\#: \qquad

Student Name: \qquad J\#: \qquad

Q4-20 pts) Consider the coin denomination array (CD) and the sum of the coin values (S) assigned to you. Use the dynamic programming algorithm discussed in class to determine the minimum number of coins and the actual coin values that one would pick up so that the sum of the coin values is S .

Show the contents of the MNC and LCP arrays for each iteration, as discussed in the slides. Discuss how you would trace the solution to determine the actual coin values that need to be picked up for the given S .

Assume an infinite supply of coins for each value. Break any tie in favor of the coin with a lower index in the CD array.

	Coin Denomination (CD) Array					Sum of the Coin Values (S)
Abate, Biruk	1	4	5	6	20	
Akintade, Oluwaseun	2	3	6	7	18	
Alharbi, Abdullah	2	4	5	7	22	
Alharbi, Abdulmajeed	1	3	6	7	16	
Atkins, Nayaa	1	3	5	6	22	
Barnett, Isaiah	2	5	6	7	23	
Dent, Kaitlyn	2	4	5	8	23	
Drake, Keilah	1	2	5	6	22	
Harris, Chawne	1	2	4	7	19	
McGee, Bria	2	3	6	7	19	
Redmond, Brandon	4	5	6	7	25	
Roberts, Cambria	3	5	7	8	25	
Stubbs, Jasmine	1	2	5	6	21	
Swami, Shaurya	3	5	6	7	25	
Tchakoua, Landrie	1	2	5	7	24	
Teshome, Nahom	1	3	6	7	20	
Triplett, Marzell	2	4	5	6	21	
Wilkes, Kayla	3	5	7	8	25	

Student Name: __ J\#: \qquad
\qquad
\qquad J\#: \qquad

Q5: 18 pts) Run the Dijkstra's shortest path algorithm on the graph assigned to you, starting from Vertex 1, and determine the shortest path tree rooted from Vertex 1 to the rest of the vertices. If any edge does not have weight assigned, assume the weight of that edge to be 5 . Show your work for each iteration in the skeletal graphs (see next page). For each skeletal graph, indicate the vertices and all the edges that are selected as part of the particular iteration as well as carried over from the previous iterations. Show all the steps.

Abate, Biruk

Alharbi, Abdulmajeed

Dent, Kaitlyn

McGee, Bria

Stubbs, Jasmine

Teshome, Nahom

Akintade, Oluwaseun

Atkins, Nayaa

Drake, Keilah

Redmond, Brandon

Swami, Shaurya

Triplett, Marzell

Alharbi, Abdullah

Barnett, Isaiah

Harris, Chawne

Roberts, Cambria

Tchakoua, Landrie

\qquad J\#: \qquad

Skeletal Graphs (Iterations)

Iteration 3

Iteration 5

Iteration 7

Iteration 4

Iteration 6

Shortest Path Tree

Sum of the Weights of the Shortest Path Tree: \qquad
\qquad
\qquad
\qquad

Q6: 15 pts) Run the Kruskal's algorithm for maximum weight spanning tree on the graph assigned to you. If any edge does not have weight assigned, assume the weight of that edge to be 5 . Show your work for each iteration in the skeletal graphs (see next page). For each skeletal graph, indicate the vertices and all the edges that are selected as part of the particular iteration as well as carried over from the previous iterations. Show all the steps.

Abate, Biruk

Alharbi, Abdulmajeed

Dent, Kaitlyn

McGee, Bria

Stubbs, Jasmine

Teshome, Nahom

Akintade, Oluwaseun

Atkins, Nayaa

Drake, Keilah

Redmond, Brandon

Swami, Shaurya

Alharbi, Abdullah

Barnett, Isaiah

Harris, Chawne

Roberts, Cambria

Tchakoua, Landrie

\qquad J\#: \qquad

Skeletal Graphs (Iterations)

Iteration 3

Iteration 5

Iteration 7

Iteration 4

Iteration 6

Maximum Weight Spanning Tree

Sum of the weights of the Maximum Weight Spanning Tree: \qquad

