Module 5
Graph Algorithms

Dr. Natarajan Meghanathan
Professor of Computer Science
Jackson State University
Jackson, MS 39217
E-mail: natarajan.meghanathan@jsums.edu

Minimum Spanning Trees

Minimum Spanning Tree Problem

Given a weighted graph, we want to determine a tree that spans all
the vertices in the tree and the sum of the weights of all the edges in
such a spanning tree should be minimum.

Kruskal algorithm: Consider edges in the increasing order of their
weights and include an edge in the tree, if and only if, by including
the edge in the tree, we do not create a cycle!!

— For a graph of E edges, we spend O(E*logE) time to sort the edges and
this is the most time consuming step of the algorithm.

To start with, each vertex is in its own component.

In each iteration, we merge two components using an edge of
minimum weight connecting the vertices across the two
components.

— The merged component does not have a cycle and the sum of all the
edge weights within a component is the minimum possible.

To detect a cycle, the vertices within a component are identified by
a component ID. If the edge considered for merging two
components comprises of end vertices with the same component
ID, then the edge is not considered for the merger.

— An edge is considered for merging two components only if its end
vertices are identified with different component IDs.

Property of any MST Algorlthm

« Given two components of
vertices (that are a tree by
themselves of the smallest
possible weights), any MST
algorithm would choose an
edge of the smallest weight
that could connect the two
components such that the
merger of the two
components is also a tree
and is of the smallest
possible weight.

iy
O

lteration 2

ORONO
0o

Ble
o

Initialization Ilteration 1

S u X
1 1

2
u u X

lteration 3 lteration 4

MST
Iteration 5 Weight

Min. Spanning Tree 1

(7)) (ap

lteration 1

Initialization
B C
Aa, (c)
o 5
A) (e
F(F) (e

lteration 2

Iteration 6: Min. Sp Tree

lteration 5

Proof of Correctness: Kruskal’s Algorithm

Let T be the spanning tree generated by Kruskal's algorithm for a graph
G. Let T’be a minimum spanning tree for G. We need to show that both
T'and T’ have the same weight.

Assume that wt(T°) < wt(T7).

Hence, there should be an edge e in Tthatis notin 7’ and likewise
there should be an edge e’ in T" that is not in T. Because, if every edge
of Tisin T, then T= T and wt(T) = wt(T’).

Remove the edge €’ that is in T'. This would disconnect the T’ to two
components. The edge e that was in T and not in T’ should be one of
the edges (along with €’) that cross the two split components of T'.

Depending on how Kruskal’s algorithm works, wt(e) < wt(e’). Hence, the
two components of T’ could be merged using edge e (instead of €’) and
this would only lower the weight of T' from what it was before (and not
increase it).

That is, wt(modified T') = wt(T" — {e’} U {e}) < wt(T").
We could repeat the above procedure for all edges that are in T and

not in T, and eventually transform T’to T, without increasing the cost of
the spanning tree.

Hence, T is a minimum spanning tree.

Proof of Correctness

Let T be the spanning tree determined using Kruskal's
Let T' be a hypothetical spanning tree that is a MST such that W(T

[0E DL 2%

Wi(e) < Wi(e')

WH(T —{e’} U {e}) <= WH(T’). Hence, by reducing the edge difference and making
T approach T, we are able to only decrease the weight of T’ further, if possible,
making T’ not a MST to start with, a contradiction.

(Ll [0

Candidate edges to merge Modified T’ =T’ - {e’} U {e}
the two components B

Properties of Minimum Spanning Tree

Property 1: If a graph does not have unique edge weights, there could

be more than one minimum spanning tree for the graph.
Proof (by Example)

1 1 1
2 2

Graph One Min. Spanning Tree Another Min. Spanning Tree

Property 2: If all the edges in a weighted graph have unique weights,

then there can be only one minimum spanning tree of the graph.

Proof: Consider a graph G whose edges are of distinct weights.
Assume there are two different spanning trees T and T, both are of
minimum weight; but have at least one edge difference. Let e’ be an
edge in T’ that is not in T. Removing e’ from T’ will split the latter into
two components. There should be an edge e that is not part of T’ but
part of T and should also be a candidate edge to connect the two
components of the split T'.

Propertles of Minimum Spanning Tree

Property 2: If all the edges in a weighted graph have unique weights,
then there can be only one minimum spanning tree of the graph.

* Proof (continued..): If wi(e) < wt(e’), then we could merge the two
components of T" using e and this would lower the weight of T" from
what it was before. Hence, wt(e) = wt(e’).

« However, since the graph has unique edge weights, wt(e) > wt(e’). But,
if this is the case, then we could indeed remove e from T and have e’ to
merge the two components of T resulting from the removal of e. This
would only lower the weight of T from what it was before.

« So, if Tand T have to be two different MSTs = wt(e) = wt(e’).

— This is a contradiction to the given statement that the graph has unique
edge weights.

* Not (wt(e) = wi(e’)) = Not (T and T’ have to be two different MSTs)
« Thatis, wt(e) # wi(e’) = T and T’ have to be the same MST.

* Hence, if a graph has unique edge weights, there can be only one MST
for the graph.

Property 2

Assume that both T and T' are MSTs, but different MSTs to start with.

0L LLL T

W(e) <W(e') =>T isnota MST

W(e) >W(e') => T is not a MST

Hence, for both T and T’ to be two different MSTs = W(e) = W(e').
But the graph has unique edge weights.

W(e) # W(e) = Both T and T’ have to be the same.

L 4

Candidate edges to merge
the two components

Maximum Spanning Tree

« A Maximum Spanning Tree is a spanning tree
such that the sum of its edge weights is the
maximum.

* We can find a Maximum Spanning Tree through
any one of the following ways:

— Straightforward approach: Run Kruskal's algorithm by
selecting edges in the decreasing order of edge
weights (i.e., edge with the largest weight is chosen
first) as Iong as the end vertices of an edge are in two
different components

— Alternate approach (Example for Transform and
Conquer): Given a weighted graph, set all the edge
weights to be negative, run a minimum spanning tree
algorithm on the negative weight graph, then turn all
the edge weights to positive on the minimum
spanning tree to get a maximum spanning tree.

(7)) (ap

lteration 1

Initialization

B (Cc):>

lteration 2

lteration 3
B B 8

D
9
G

15

B
9
G

lteration 5

D

B

11 G A

Al F
Iteration 6: Max. Sp Tree

Practice Proofs

« Similar to the proof of correctness that we
saw for the Minimum Spanning Trees,
write the proof of correctness for the
Kruskal’s algorithm to find Maximum
Spanning Trees.

* Prove the following property: If all the
edges in a weighted graph have unigue
weights, then there can be only one
maximum spanning tree of the graph.

Dijkstra’s Shortest Path Algorithm

Shortest Path (Min. Wt. Path) Problem

Path p of length k from a vertex sto a vertex dis a
sequence (v, vy, Y, ..., V) Of vertices such that v,=s
and v,=dand (v, v) € E fori=1,2,..., k

k

Weight of a path p = (v, V4, Vo, ..., V) iS wp)=D w(v,;.v;)
i=1

The weight of a shortest path from sto dis given by

o(s, d) = min {w(p): s_p.,dif there is a path from s to d}
= otherwise

Dijkstra Algorithm

Assumption: w (u, v) = 0 for each edge (u, v) € E (i.e., the edge
weights are positive)

Objective: Given G = (V, E, w), find the shortest weight path
between a given source s and destination d

Principle: Greedy strategy

Maintain a minimum weight path estimate d [V] from sto each other
vertex v.

At each step, pick the vertex that has the smallest minimum weight
path estimate

Output: After running this algorithm for |V] iterations, we get the
shortest weight path from s to all other vertices in G

Time Complexity: Dijkstra algorithm — ©(|E|*log|V])

Dr. Meg's YouTube Video Explanation:
https://www . voutube.com/watch?v=V8VxK1crox0

Principle of Dijkstra Algorithm

Principle in a nhutshell
Path from s to u During the beginning of each iteration we
will pick a vertex u that has the minimum
weight path to s. We will then explore
the neighbors of u for which we have not
yet found a minimum weight path. We will
try to see if by going through u, we can
reduce the weight of path from s to v,
where vis a neighbor of u.

If Ws-v > Ws.u + W(u, v) then
Wsv = Wsu + W(U, V)
| Predecessor (V) = u
else
Retain the current path from sto v

Relaxation Condition

23

Path from sto u Path from sto u

T e AR

Instead of using the current
route from s to v, we will
go through u to reach v from s

Path from sto u Path from sto u

s /\/ /\/.

We will stay with the current
route we know from s to v.

Iteration 3 Iteration 4 Iteration 5

Dijkstra Algorithm S 3 a X

Example 1
P Shortest Path Tree 4 1 1

) @ (&)
\Y

W
3

lteration 3

Dijkstra Algorithm

Example 2

Dijkstra Algorithm

Begin Algorithm Dijkstra (G, s)

1 Foreachvertexv€ V

2 d[v] < « // an estimate of the min-weight path from sto v

3 End For

4 d[s]<0

5 S« @ // set of nodes for which we know the min-weight path from s
6 Q< V// setof nodes for which we know estimate of min-weight path from s
7 WhileQ#®

8 u «— EXTRACT-MIN(Q)

9 S —SU{u

10 For each vertex v such that (u, v) € E

11 If veE Qandd[v] >d[u] +w (u, v) then

12 d[v] —d[u] +w(u, V)

13 Predecessor (v) = u

13 End If

14 End For

15 End While

27
16 End Dijkstra

Dijkstra Algorithm: Time Complexity

Begin Algorithm Dijkstra (G, s)

1 Foreachvertexv€ V O(V) time

2 d[v] « = // an estimate of the min-weight path from sto v ®(ViogV) time
3 End For to Construct a
4 d[s]<0 Min-hea

5 S« @ // set of nodes for which we know the min-weight path from s

6 Q< V// setof nodes for which we know estimate of min-weight path from s

7 WhileQ# ® done |V| times = O(V) time

8 u < EXTRACT-MIN(Q) «— Each extraction takes O(logV) time

9 S —SU{u

10 For each vertex v such that (u, v) € E + done O(E) times totally

11 Ifve Qandd|[v]>d][u]+w(u,vV) then} It takes O(logV) time when
12 d[v] «d[u] +w(u,v) done once

13 Predecessor (v) = u

13 End If

Overall Complexity: O(V) + ©(VlogV) + ©(ViogV) + ©(ElogV)
14 End F.or Since the |E| 2 |V|-1, the VlogV term is dominated by the
15 End While | ElogV term. Hence, overall complexity = O(|E|*log|V/)

28

16 End Dijkstra

lteration 3

Dijkstra Algorithm
Example 3

g \6) 5 \6
F E D

Shortest Path Tree 29

Theorems on Shortest Paths and
Dijsktra Algorithm

Theorem 1: Sub path of a shortest path is also shortest.
Proof: Lets say there is a shortest path from s to d through the
verticess—a—-b—-c—d.

Then, the shortest path fromatocisalsoa—b—c.

If there is a path of lower weight than the weight of the path from a —
b — ¢, then we could have gone from s to d through this alternate
path from a to ¢ of lower weight than a —b —c.

However, if we do that, then the weight of the paths—a—-b-c—-d
is not the lowest and there exists an alternate path of lower weight.

This contradicts our assumption that s —a — b — ¢ — d is the shortest
(lowest weight) path.

Assume:s—a—b—-c—dis ashortest

path of weight 5 + 3+ 2 + 4 = 14,
1Ko Then, a—b —c is also a shortest path of
weight 3 + 2 = 5. If there exists an a path
Between a and c of weight less than 5, then
s—a—b-c—dis not ashortest path
(a contradiction).

Theorems on Shortest Paths and
Dijsktra Algorithm

Theorem 2: The weights of the vertices that are
optimized are in the non-decreasing (i.e., typically
increasing) order.

Proof: We want to prove that if a vertex u is optimized in an earlier
iteration (say iteration i), then the weight of the vertex v optimized at
a later iteration (say iteration j; i < j) is always greater than or equal
to that of vertex u.

Given that vertex u was picked (for optimization) instead of vertex v
at the beginning of the ith iteration: the weight.(v) = weight,(u).

We need to explore whether vertex v could have been relaxed by
any of its neighbors in a later iteration (say j: i <]) such that
weight(v) could become less than weight,(u).

— Note that if any such neighbor x exists for v, weight;(x) = weight;(u). That
is, vertex x is not optimized until the end of iteration i. Since all edge
welghts are positive, if the neighbors of vertex x are relaxed in a later
iteration (say, iteration j > i), weight(v) = weight,(x) = weight;(u).

Hence, the weights of the vertices that are optimized are in the non-
decreasing (i.e., typically increasing) order.

Proof for Theorem 2 Scenario: Vertex vis NOT a
neighbor of Vertex u, but

Scenario: Vertex vis a a neighbor of some other
neighbor of Vertex u through vertex x through which it is
which it is ‘relaxed’ ‘relaxed’
Path from sto u Path from sto u
VAAAAAAN VAAAAAAN

Weight(u); @ Weight(u);
Weight(u-v) >0

We|ght
Weight(v); Weight(x) ®/®
Iteration i lteration i Weight(v)
Weight(v); 2 Weight(u); Weight(v), = Weight(x), 2 Welght(u)i
Iteration | Iteration |

Weight(v); 2 Weight(u); Weight(v), 2 Weight(x), 2 Weight(u),

Theorems on Shortest Paths and
Dijsktra Algorithm

Theorem 3: When a vertex v is picked for relaxation/optimization,
every intermediate vertex on the s...v shortest path is already
optimized.

Proof: Let there be a path from s to v that includes a vertex x (i.e.,
s...X...Vv) for which we have not yet found the shortest path.

So, if vertex v is picked for optimization (based on a path s...x...v)
and vertex x is not yet optimized, the weight (s...x) must be greater
than weight (s...x...v)

From Theorem 2, vertices are optimized in the non-
decreasing/increasing order of shortest path weights. Hence, if
vertex x is optimized in a later iteration, the weight of the path s ... x
would be still greater than the weight of the path s ... x ... v. This
would violate Theorem 1 that the sub path s ... x of a shortest path
is also a shortest path (i.e., the requirement weight(s...x) <
weight(s...x...v will not be satisfied).

A contradiction.

Theorem 4: When a vertex v is
picked for relaxation, we have
optimized the vertex (i.e., found
the shortest path for the vertex
from the source vertex s).

Hypothetical Path P’ that
We assume:
Weight(s...v)p: < Weight(s...v)p

Hypothetical
Path P’

u

/A
%

Path P found by
Dijkstra algorithm

Proof: Let P: s...v be the path found
by Dijkstra algorithm. Assume there
exists a hypothetical path P’ from s to
v such that Weight(s...v)p. <
Weight(s...v)p.

If all the intermediate vertices on the
path P’ are already optimized, then
such a path P’: s...v would have been
identified during the relaxation steps
of the intermediate vertices.

Since the Dijkstra algorithm did not
identify such an optimal path P’ (and
instead concluded P is the optimal
path), there must be an intermediate
vertex u in the P’:s...u...v path that is
not yet optimized.

From Theorem 2, even if vertex u on
the P’: s...u path is optimized in a
later iteration, the weight of the
P’.s...u path would be greater than
that of the P:s...v path. Since the path
S...u is a sub path of the path P’:
S...Uu...v, the weight of the path P’:
S...v can be only greater than the path
P:s...v, and not otherwise. This is a
contradiction.

Bellman-Ford Algorithm

« The Bellman-Ford algorithm is a single source shortest
path algorithm that can be run for weighted directed
graphs with positive and/or negative edge weights.

— Note that the Dijkstra algorithm will work only for graphs with
positive edge weights, and is typically applied for undirected
graphs.

 The Bellman-Ford algorithm maintains an estimate of the
shortest path distance from the source to every vertex
(including itself) and tries to reduce the estimate as
much as possible by a going through series of iterations.

— In each iteration, we try to reduce the estimate of the shortest
path distance for a node on the basis of the estimate of the

shortest path distance for its INCOMING neighbors (calculated in
the previous iteration).

- The incoming neighbor node that gives the smallest value for the
estimate is chosen/updated as the predecessor.

— We go through a series of V-1 iterations for a graph of V vertices.

— Optimization: If the estimates for the shortest path distances do
not change for any vertex during an iteration, stop the algorithm.

Bellman-Ford Algorithm
Operating Principle

11 + 3 =14 is lower than
12 + 5and 14 + 2. So,
N3 is chosen as the
Predecessor for D

Bellman-Ford Algorithm: Example 1

o |nf inf inf
Bf
4 5\ / 2 5\‘% 1/7
SO Alnf |nf
inf '(":f 'Rf
0S A
9
AL N\ /4
Clnf Dlnf
Initial
Est.| Pred
S 0 -
Al inf
B| inf
C| inf
D| inf

Bellman-Ford Algorithm: Example 1

inf

inf g igf iAnf C iBf
D i
32/ G\AA_/-Z N3 A4
0 inf Bin
- inf inf
OS Xf I(n: IR
7\ g IN /4
Cinf D inf

. | Pred

S

S

Bellman-Ford Algorithm: Example 1

6 ! inf

oO0m>Xrw

Bellman-Ford Algorithm: Example 1

0 4 6 2

oO0m>Xrw

oO0m>Xrw

Bellman-Ford Algorithm: Example 1

S...C->B>A->D

S>C->B->A->D

Note that the property “sub path of a shortest
path is also a shortest path” is still satisfied.

Initial Ilteration 1 | Iteration 2 | Iteration 3 | lteration 4

Est.| Pred | Est. | Pred | Est. | Pred | Est. | Pred | Est. | Pred
S| 0 - 0 - 0 - 0 - 0 -
Alinf| - 6 S 6 S 2 B 2 B
Blinf| - inf - 4 C 4 C 4 C
Clinf| - 7 S 7 S 7 S 7 S
D/ inf| - inf - 2 A 2 A -2 A

Bellman-Ford Algorithm: Example 2

Weight Matrix Note: An entry in the
wl w2 w3 wd WS cell (i, j) indicates the
Alolalalel-a weight of the edge | > |
(i.e., row i, column j).
v o | O e | 1|7
Il 40| The entries in the
14| 2 column j indicate the
¥ e e weights of the incoming
vo oo oo || B | edges to vertex v-j.
vi vl V3 vl vd v2 yv5 vi 2
2l NSNS N\ A
vi v2 v3 v4 v5

Let v1 be the source

Bellman-Ford Algorlthm Example 2

inf inf inf
v4 v1 V3 Vi vd
% §\/£ 8 /5
vio0 v2inf v3 inf
inf inf 0 inf

ISRy IS
=

Bellman-Ford Algorlthm Example 2

Bellman-Ford Algorlthm Example 2

v V3 vl va

2, NS A/
vioO v23 v38
3 4 0 3

Ilteration 2
Est. | Pred

RS
Alra(oo|w
SI&SS|

ISRy IS

vi V3 v v4
WAV
v23 v3 8
3 -4 0 3
v2 v5 vi v2
AW RN
v4o v5 -4
Iteration 3
Est. | Pred
0 -
3 vi
-3 v4
2 vh
-4 vi

.| Pred

Bellman-Ford Algorithm: Example 2

vivb > Vv4 > v3 > v2

vi>vVv5>v4d > v3 > vVv2
-4 6 -5 4

Initial | Iteration 1 | Iteration 2 | Iteration 3 | lteration 4

Est.| Pred | Est. | Pred | Est. | Pred | Est. | Pred | Est. | Pred
vi| 0 - 0 - 0 - 0 - 0 -
V2 |inf| - 3 v1 3 v 3 vi 1 V3
v3|inf| - 8 v1 8 v -3 v4 -3 v4
v |inf| - inf - 2 Vo 2 Vo 2 VD
vo|inf| - 4 v 4 v -4 vi 4 v

Bellman Ford Algorithm: Example 3

inf

o va V3 vi
NJe Ve
v10 V2in v3inf
inf :
v3 V3 Va
N2
V4 inf v5 inf

Est.| Pred

5 RSN|S
3,

Bellman Ford Algorithm: Example 3

inf

o va V3 vi
NJe Ve
v10 V2in v3inf
inf :
v3 V3 Va
N2
V4 inf v5 inf

. | Pred

vi

Bellman Ford Algorithm: Example 3

inf inf

V2 v4

N
i

V4 inf

Pred

5 RSN|S

S|SS|S|

Bellman Ford Algcrlthm Example 3

V

N,]3

v10
Note that the
Estimates did
Not change in
Iterations 2 and 3. 1l
We can STOP!

3 RSR|S

Bellman-Ford Algorithm: Example 3

2

Vi->V3
Vi->V3->V2
Vi->V3-> V4
Vi->V3->V5
Optimization
Possible!!
Initial | Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4
Est.| Pred | Est. | Pred | Est. | Pred | Est. | Pred | Est. | Pred
vi| 0 - 0 - 0 - 0 - Q
V2 |inf| - inf - 10 V3 10 V3 é"&
v3|inf| - 3 v1 3 v 3 v D
vd|inf| - [inf| - | 4| v3 | 4| v3 | &
vol|inf| - inf - 6 v3 6 v3 ﬁg

All Pairs Shortest Paths Problem

Dynamic Programming Algorithm
for All Pairs Shortest Paths

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

idea: construct solution through series of matrices DV, ...,

D ™ using increasing subsets of the vertices allowed
as intermediate

The algorithm we are going to see

was developed by two people

Floyd and Warshall. We will shortly

refer to the algorithm as the FW algorithm

Example:

FW Algorithm: Operating Principle

« Operating Principle: The vertices are numbered from 1 to n. There are ‘n’
iterations. In the kth iteration, the candidate set of vertices available to
choose from as intermediate vertices are {1, 2, 3, ..., k}.

- Initialization: No vertex is a candidate intermediate vertex. There is a path
between two vertices only if there is a direct edge between them (i.e., i 2 j);
otherwise, not.

« [teration 1: Candidate intermediate vertex {1}. Hence, the candidate paths
to choose from are (depending on the graph, the following two may be true):

i=>] (onNi=>1->]

- lteration 2: Candidate intermediate vertices {1, 2}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):

i—>j (onNi=2>1=2>jnNi=>2>2>joni=2>1>2->j00Ni>22>1->]

« [teration 3: Candidate intermediate vertices {1, 2, 3}. Hence, the candidate
paths to choose from are (depending on the graph; the following in an
exhaustive list for a complete graph in case of a brute force approach):

| —> | (or)i91ej(or)i929j(or)|9391(or)|91929](or)|929 >

joni>1>3>j(r)i=>3>1>joni>2-> (or)|93929 (r)i
9192939130093929191()|9193 22>jni>3->1
2>2=2j0nNi=22232>212>j0ni=>2>12>3>|

the minimum weight path from i to k FW Algorlthm

involving zero or more intermediate

vertices from the set {1, 2, ..., k-1} Operatlng PrInCIple
DEk] o _-@==7(p

e o

he minimum weight

/ .
the minimum weight /@ path from k 0 |
path from i to | . involving zero or more
! . intermediate vertices
involving zero or more " In
intermediate vertices O _ / % from the set {1, 2, ..., k-1}
from the set {1, 2, ..., k-1} ﬁ -)@ (k1) D(k-l)[k’j]
(k-Dy; - T
D™ Tiyg] 17 (k1)
ij
e e DWj] = min |
D [I, J] = W*Ij if i >] € E D(k'l)[ij],
D, jl=0 ifi—>jeE D*V[i,k] + D*D[k,j]}

1) =i ifi>jek

10=N/A itiojek

__

FW Algorithm: Working Principle

« In iteration k, we highlight the We update a cell (i, j) if
::%Vrvreaggo%?ilil:\rgrt‘o vertex k, and the value in the cell is
check whether the values for greater than the sum of the i
each of the other cells could Values of the cells (i, k) and (k, j)
be reduced from what they
were prior to that iteration. We If we update cell (|, l)! we also
?hoencoet"ghi?‘ntgrj‘ee trré?,vvaarl‘lées for update the predecessor for (i, j)
column corresponding to to be the value corresponding to
vertex k. the predecessor for (k, j) in row k.
cell), , Cellbk Cell (i, j) .

N | \ |

o g k=

k Itl k

v Distance \ Predecessor

Cell (k, j) Matrix Cell (k, j) Matrix

FW Algorithm: Example 1 (1)

Ilteration 1

p(® "[ﬂl

vl v2|v3 | v4 vl | v2 | v3 | V4
vi| 0| o | 3 | o | |vl|N/A| N/A| vl |[N/A
v2| 21 0| o | o |v2] v2 | N/JA |N/A|N/A
v3|l o | 71 0| 1 |]|v3|N/A|l v3 |[N/A| v3
vl 6 | o | o | O ||vd] vd4 | N/JA |IN/A|N/A
p(Y "[11

vi|vZz| v | v4 vl v2 vi | v4
vif 0| o] 3 [o|[va]Na] NA N/A]
v2| 2 v2 | v2
v3| v3|N/A
vd| 6 vd| v4

FW Algorithm: Example 1 (1)

Ilteration 1

p(® "[ﬂl

vl v2|v3 | v4 vl | v2 | v3 | V4
vi| 0| o | 3 | o | |vl|N/A| N/A| vl |[N/A
v2| 21 0| o | o |v2] v2 | N/JA |N/A|N/A
v3|l o | 71 0| 1 |]|v3|N/A|l v3 |[N/A| v3
vl 6 | o | o | O ||vd] vd4 | N/JA |IN/A|N/A
p't

vl | v2 | v3
vil 0| o | 3
v2| 21 0| S
v3l o | 71 0
vi| 6| o| 9

FW Algorithm: Example 1 (2)

lteration 2

p'Y n[ll

vi|iv2Z|v3d | w4 vl v2 vi | w4
vil 0 || 3 | o || VvI|N/A|N/A| vl |[N/A
v21 21 0| S| ||v2] v2 | N/A| vl |[N/A
V3l o | 71 0| 1]|Vv3|N/A| v3 [N/A| v3
il 6| x| 9| 0] |vE| v4 | N/A| vl |N/A
p'? n[z:

vi | v2 | v3 | w4 vl v2 vi | v4
vl o0 vl N/A
vi2lo]|l5]x||wv N/A
v3 7 v3 v3
v oo v N/A

FW Algorithm: Example 1 (2)

lteration 2

p't n[ll

vi | v2 | v3d | vd vl v2 v | w4
vi| 0| oo | 3 | oo || VvI|N/A| N/A| vl [N/A
V21 210 5| x||v2] v2 | NA| vl |[N/A
v3lo| 71 0| 1 V3| N/A| v3 |[N/A| v3
vd| 6| x| 9| 0] |vd] v4 | N/A| vl |[N/A
p'2

vi|(vZz|v3 | vg
vi| 0 o] 3 |
v2 I 21 0| 5|
v3| 9| 71 0 1
vdl 6 |loc] 9|0

FW Algorithm: Example 1 (3)

lteration 3

p' 2

vi|v2 | v3 | v4 vi | v2 | v3 | v4
vi| 0| | 3 | o||VI|N/A| N/A| vl |IN/A
v2| 21 0| 5| xc]||v2|] v2 | NA]| vl IN/A
v3| 9| Tl 0] 1 |v3] v2 | v3 |N/A| v3
vl 6|l 91 0]|v4| vd4 | N/A| vl |IN/A
D[gl '"'[31

vi|(v2 | v3 | v4 vi | v2 | v3 | v4
vl 3 vl vi
v2 5 v2 vi
o[7]o]| 1|[w v2] v3 [n/A] v3]
v4 9 v vi

FW Algorithm: Example 1 (3)

p'? “{11
vi| v2 | v3 | v4 vi | v2 | v3 | W
vi| 0| o| 3 | || VvVlI|IN/A|N/A| vl |[N/A
v2| 21 0| 5| xc]||v2|] v2 | NA]| vl IN/A
v3| 9| Tl 0] 1 |v3] v2 | v3 |N/A| v3
vdl 6| x| 9| 0f||wvd]| v4 | NJA| vl [N/A
p'3
vi| v2 | v3 | v4
vi| 0|10 3 | 4
] v2| 2| 0| 5| 6
Ilteration 3 alol 7ol 1
vil 6|16 92| O

FW Algorithm: Example 1 (4)

Iteration 4

p'3 "[3:

vi|v2 | v3 | v4 vl v2 vi | 4
vi] 0|10 3 | 4 || Vvl|N/A| v3 | vl | v3
v2| 21 0O S| 6]|v2| v2 [N/A| vl | v3
v3l 9| 7 0| 1||v3|] v2 | v3 [N/A| v3
val 6 [16] 9| O ||vd| v4 | v3 | vl |IN/A
p'¥ n[ﬂl

vi|v2|v3 |4 vi | v2 | v3 | v
vl 4 vl v3
v2 6 v2 v3
v3 1 v3 v3
v4| 6[16/ 9] 0] | v

FW Algorithm: Example 1 (4)

Iteration 4

p'3 "[3:

vi|(vZ|v3| v vl v2 vi | 4
vi| O |10 3 | 4 || vl|N/A| v3 | vl | v3
v2| 21 0O S| 6]|v2| v2 [N/A| vl | v3
v3l 9| 7 0| 1||v3|] v2 | v3 [N/A| v3
val 6 [16] 9| O ||vd| v4 | v3 | vl |IN/A
p'¥ "[41

vi|v2 | v3 | w4 vl v2 v3
vi| 0|10 3| 4 ||VvI|IN/A|] v3 | vl
v2| 210 5|6 ||v2] v2 | NA| V]
v3| 71 71 0] 1]||v3] vd | v3 |N/
val 616/ o] 0]|w

FW Algorithm: Example 1 (5)

DHJ -"-HJ

vi | v2 | v | w4 vl v2 vi | v4
vi| 0|10 3 | 4 || vi|N/A] v3 | vl [v3
v2| 21 0| 5|1 6||v2] v2 | N/A[vl | v3
v3| 7 71 0 1|]|vd] v4 | v3 [N/A| v3
vi 6|16 9| 0| |vd| v4 | v3 | vl [N/A

Path from v2 to v4

m (V2 ... v4)

=1m(v2...v3) > Vv3 > Vv4

=1 (v2...v1l) > vl 2> Vv3-> V4
=v2->vli>v3->Vv4

Path from v4 to v2
m(vd ... v2)
=1 (v4 ... v3) 2> v3 > v2
=1 (v4d...vl) > vl 5> v3->v2
=v4 > vl > v3 > v2

FW Algorithm
(pseudocode and analysis)

ALGORITHM Floyd(W|l..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
/[Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D <« W //is not necessary if W can be overwritten
fork < 1ton do
fori < 1tondo
for j < 1tondo
Dli, j] < min{D[i, j], D[i, k] + D[k, j]}
return D

Time efficiency: O(n°)

Space efficiency: O(n?)

FW Algorithm: Example 2(1)

0)

v
W
W3
il

Welght hlatrix

vl v owid wd o
Ol 3|8 |c|-4
co | 0 |lea| 1|7
co | 4| 0| oofco
2l -5 0|
co |eo|loo| B | O

p'® n[

vi|vZ|v3 |vd| V5 vli| v2 | v3 | vd| v5
vi| 0| 3| 8 | x| -4]||vl|IN/Al vl | vl |[N/A| vl
v2| | 0l oo | 1| 7 ||v2IN/Al N/JAIN/A| v2 | v2
v3|l | 4] 0 || o] |Vv3|IN/Al v3 |N/A|IN/A|N/A
vad| 2 | o | -5 0| o||vd| v4 [N/A| vd |N/A|N/A
Vol || o] 6] 0| |VvE[N/A| N/A|N/A| v5 |N/A
p nlll

vli|v2 | v3 |v4| V5 | vl | v2 | v3 |v4]| VD
vi[03] 8o 4| |viNAl vi | vl |N/Al v1
v2| ®© v2|N/A
v3| «© v3|N/A
vd| 2 vd|v4
v5| o v5|N/A

Ilteration 1

v
W
W3
il

Welght hlatrix

vl v owid wd o
Ol 3|8 |c|-4
co | 0 |lea| 1|7
co | 4| 0| oofco
2l -5 0|
co |eo|loo| B | O

orithm- Fxamnle 2(1)

p'® n[m

viivZz|v3 | vd|vs vi| vZ2 | v3 | vd]| v5
vi| O | 3| 8 || -4 |Vv1l|IN/A] vl | vl |[N/A] vl
V2| | O | o | 1| 7 || Vv2|N/A] N/A|N/A| v2 | v2
v3|l | 4] 0 || o] |Vv3|IN/Al v3 |N/A|IN/A|N/A
vad| 2 | o | -5] 0| o] |vd| v4 | N/A| v4 [N/A|N/A
Vol wloolaw | 6] 0]|vE|IN/Al N/A|IN/A| v§ |N/A
p(¥

vi|iv2|v3 |vd| v5
vii 0| 3| 8| x| -4
v2| | 0| o | 1| 7
V3l | 4| 0| x| x
val 2| S| 51012
Vs| ||| 6] 0

Ilteration 1

FW Algorithm: Example 2(2)

Dlll “{11
vi|v2 | v3 |vd|v5 vli| v2 | v3 | vd | v5
vl O | 3| 8 | oo -4 | |vl|N/A| vl | vl |[N/A| vl
v2l o | 0| oo | 1] 7 ||v2|N/A] N/A IN/A| v2 | v2
v3|l o | 4| 0| o] oo | |v3|N/A|l v3 |N/A|N/A|N/A
vad| 2 | S| -S| 0|-2]||vda|v4]| vl | v4 |[N/A| vl
vS| w|oo| x| 6] 0] |v5|N/A| N/A IN/A| v5 |N/A
| | Dlll -"lll
Welght hlatrix
w3 w3 d | S vi|v2|v3 (vd]| V5 vi| v2 | v3 [vd]| v5
vl 3 vi| vy | | |
Al d Lo s el e o] w | 1] 7] [va|val va|val vz | v2
v2jea| oo 117 v3 4 v3 v3
vioo |40 jeo|]| |yg 5 v v1
vl | 2 e |5 00| |vs 00 V5 N/A
WSl leo || B O

lteration 2

FW Algorithm: Example 2(2)

Dlll “{11
vi|v2 | v3 |vd|v5 vi| v2 | v3 |v4 | v5
vil 0| 3| 8 || -4 |vl|N/A] vl | vl |[N/A| vl
V2l oo | 0] oo | 1| 7 ||v2|N/A| N/A [N/A| v2 | v2
v3| | 4| 0| o] o] |Vv3|N/A|] v3 |N/A|N/A|N/A
vl 2 | S| -5 0]-2((v4] v4| vl | v4 [N/A| vl
vS|l o || oo | 6] 0]|v5|IN/A| N/A |[N/A| v5 |N/A
o2
Welght hWatrx vilvz2l vd lvalvs
v wd wD vl s vilol 3l sl 2l =
vi|O| 3|8 o] -4 v ololol 1] 7
i2Joa |0 jea]| 117) [v3le|laflo]s]11
vileo| 4 [0 jeofwm]| |val2]5]|5]|0]-2
vl | 2 || -5l 0 || [WBlxw| x| o] 6] 0
WSl leo || B O

lteration 2

FW Algorithm: Example 2(3)

Dlll -"lll
vi|iv2| v3 |vd| v vi| v2 | v3 |vd | vb
vil 0| 3| 8| 4|-4]||v1|IN/Al vl | vl |Vv2]| Vvl
v2| o | 0| o | 1| 7 ||v2|N/A|] N/A [N/A| v2 | v2
v3l o | 4| O | S|11||v3|N/A|] v3 |N/A| v2 | V2
vad| 2 | 5| -5|10]-2||va|vd]| vl | vd4 [N/A| vl
vl o || o] 6] 0 ||VvS|N/A| N/A |N/A| v5 |N/A
INE
Welght hlatrix vilvz!iv3|valvs
vl v w3 vl v Iy1l ol 3l 8l 4] -4
Wl |0 3|8 |4 |[v2lc]lo] o] 1] 7
v (o | O fea| T |7 | |v3lw]| 4] 0] 5]11
w3 leo | 4| 0| co|eo| (VA 2-1]-5]0]|-2
wd | 2 |eo| B0 | M2l X]10[®©]6]0
WSl leo || B O

lteration 3

FW Algorithm: Example 2(4)

pt “[31
vli | v2|v3 |vd| V5 vi| v2 | v3 |v4d | v
vi| 0| 3| 8| 4| -4]||VvI|N/A|] vl | vl |[v2]| vl
v2l o | 0| o | 1| 7 ||v2|N/A| N/A [N/A| v2 | v2
v3|l o | 41 O | S|11||Vv3|N/A]l v3 IN/A| V2| V2
vdl 2 |-1| 51 0| -2||vd| vd]| v3 | v4 [N/A| vl
vsl o | x| o] 6| 0 ||Vv5|N/A| N/A |N/A| v5 |N/A
o4
Welght hlatrix
vl 2 3 vl |8 vijv2 v3 va|vs
W |0]3]5]w]|-4 ";231‘1“1‘
v - -
vl Dl 17 Ra 74l o0]|5]3
wilew 41 0]wloi o] a]s]e]2
wh| e |-5) 0] |vs| 85| 1]6]0 v4
WSl leo || B O

Iteration 4

FW Algorithm: Example 2(5)

v
W
W3
il

pi &
vi|iv2 v3 | v4d| V5 vi| v2 [v3 (v4d | v5
vi| 0| 3| -1 4| -4||Vv1[N/A] vl | v4 | V2| vl
v2| 3| 0| 4| 1]|-1||v2|v4|[N/A|v4 | V2| Vvl
v3| 71 41 0S| 3]||v3|vd]| v3 |[N/A|v2 | vl
vad| 2 | -1 -5 0|-2]|v4|vd]| v3 | v4 IN/A| vl
vs| 8| S| 16| 0||vs|vd] v3 | v4 | V5 |N/A
| | ot '
Welght hlatrix
W2 3 viiv2| v3 | vd| v vi| vZ2 | v3
vil O 1| -3(2]|-4]||vl(N/Al v3 | v4
O3 |8 [eof-4
v2| 31 0| -4 1|-1]||v2|{vd | N/A| v4
o 0jl 1171 [va[7]4]0s]3]|[v3]va] v3 [va
co|dj0eafea| [va|2]-1]-5]0]-2]|va
dlwm|-5|0)m| [v5)| 8] 5| 1]6] 0]]|vs
ca|lco|lca| B |0

Iteration 5

FW Algorithm: Example 2(6)

e
v2| v3 (vd| vh vi| v2 | v3 | v4d | vh
1| 3] 2)|-4||vlINAl v3 | vd | v5| vl
0| -4|1|-1]||v2]vd|N/A| vd4|Vv2]| vl
41 0| 5|3]||v3|vd4| v3 INA| V2| vl
1{-510]-2(|va|lva]| v3 | v4 [N/A] v1
S| 1|6|0]||vs|vd]| v3 | v4 | vS|N/A
Path from v3 to vi Path from v1 to v3
m(v3 ... vl) m (vl ... v3)
=1 (v3 ... v4) 2> v4 - vi =1 (vl ...v4) > v4 > v3
=mm(v3...v2)>Vv2>Vvi>vl| |=m(vl..VvE)>V5>Vv4 > V3
=v3>vVv2 > vl > vl =vi—->v5->v4->vVv3

Comparison of the Shortest Path

Algorithms

Dijkstra Bellman-Ford | Floyd-Warshali
Type Single source |Single source |All pairs shortest

shortest path |shortest path | path
Typical Undirected Directed Undirected and
Graphs Directed
Edge Positive only | Positive and/ or | Positive and/ or
Weights Negative Negative
Time O(E*logV) O(E*V) O(V3)

Complexity

Floyd Warshall or Dijkstra for
All Pairs Shortest Paths

 If we run Dijkstra algorithm once for each vertex (as the
source vertex), we will be finding the shortest path trees
rooted at each vertex, thereby finding the all pairs shortest
paths.
— Time complexity of Dijkstra algorithm for all pairs shortest paths is:
©(ElogV*V) = ©(EVlogV)
« Sparse Graphs
— # Edges, E = O(V)
— Dijkstra algorithm’s time complexity = ©(V2logV), which is less than
that of Floyd-Warshall algorithm’s ©(V3).
* Dense Graphs
— # Edges, E = O(V?)
— Dijkstra algorithm’s time complexity = ©@(V3logV), which will be
larger than that of Floyd-Warshall algorithm’s O(V3).

