
Module 7

Transport Layer

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University, Jackson, MS 39232

E-mail: natarajan.meghanathan@jsums.edu

Module 7 Topics

• 7.1 UDP vs. TCP

• 7.2 UDP Header

• 7.3 TCP Header and Connection

Establishment

• 7.4 TCP Flow Control and Congestion

Control

Need for End-to-End Transport
Protocols

• Though IP can transfer datagrams from a source computer to a
destination computer across one or more networks, it cannot
distinguish between packets of different application programs
running on the two computers.

• In computers where multiple application programs can run
concurrently, how to identify the actual end points, the two
application programs, which want to communicate by exchanging
packets over the internet?

• Transport layer protocols operate above the network layer protocols
and allow individual application programs to be identified as the end-
points of communication.

• The TCP/IP protocol suite provides two transport protocols: User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP).

Ports
• Ports are used for a process running in one host to identify a process

running in the destination host.

• Why not process ids for ports? Ports can be assigned the process ids
only when the whole internet is a “closed” distributed system in which a
single OS runs all the hosts and assigns each process a unique id.

• This is not possible in an internet where the participating computers
may be run with different OS. For a given application process (say time
server), the id of the process assigned in one system may not match
with another.

• With ports, we want to provide an internet-wide unique abstraction for
the application processes. For example, the time server process is
referred using port number 13 irrespective of the computer and the OS
in which the process is run.

• A port is merely an abstraction. It may be implemented as a Buffer
(storing bytes) by TCP or as a message queue by UDP.

• Port numbers below 1024 are designated as well-known ports and are
assigned to a fixed application program. For example, port number 21
for FTP, 22 for SSH, 23 for telnet, 24 for SMTP, 53 for DNS, 80 for
HTTP, etc.

• For user-defined application programs, we need to use define port
numbers greater than or equal to 1024.

Ports
A port is merely an abstraction. It may be implemented as a Buffer (storing
bytes) by TCP or as a message queue by UDP.

TCP header +
data

TCP

Process
1

Process
2

Process
3

UDP

UDP header +
data

Process
1

Ports

Process
2

Process
3

U
n

u
s

e
d

U
n

u
s

e
d

U
n

u
s

e
d

LBRead

LBRead

LBRcvd

LBRead

LBRcvd

LBRcvd

d
a

ta

data
data

Ports

data

data

dat
a

7.1 TCP vs. UDP

Differences between UDP and TCP
• UDP is connectionless; TCP is connection-oriented

– Connectionless: the source and destination processes do not

communicate to know each other before starting to exchange

data packets

– Connection-oriented: the source and destination processes

communicate to learn about the resources available at each side

and set up initial values for the parameters for reliable, in-order

communication.

• TCP – session-based and full-duplex; UDP –
unidirectional

– TCP connections are typically run as part of a session between a

source and destination machine. A TCP connection can permit

packets to be sent in both the directions simultaneously.

– Each process/machine can communicate to any other

process/machine whenever it wants to. So, there is no such

concept of simultaneous communication or session.

Differences between UDP and TCP

• UDP is message-based and TCP is byte-stream based

– UDP just packages whatever the higher-layer application wants

to send as a segment and sends down to the IP layer.

• Message boundaries are preserved. The receiving application sees

reads as messages from the lower transport layer.

– TCP: The data received from the higher-layer application is

buffered at the transport layer (at the byte-level) and the bytes

are packaged into segments, depending on the MTU of the

underlying network.

• Message boundaries are not preserved. Receiving application may

not read the same number of bytes in one read operation that were

sent as one segment.

Differences between UDP and TCP

• UDP is best-effort service based and TCP provides
reliable, in-order delivery.

– UDP does not bother about keeping track of whether the

message sent from one end host (source) has reached the other

end host (destination).

• UDP runs on the top of IP that also provides only best-effort service.

• If reliability and in-order delivery are needed, the higher-layer

application has to take care of that.

– The source-side TCP buffers the segments sent until it receives

an ACK from the destination. Segments are retransmitted, if not

acknowledged. The destination-side TCP buffers the segments

received out-of-order and delivers only the bytes in-order to the

higher-layer application.

Differences between UDP and TCP
• UDP is preferred for real-time applications; TCP is preferred for

delay-tolerant applications.

– Real-time applications (like video streaming) are delay-sensitive and

they need the packets to be delivered within a certain time; the loss of

one or fewer packets may be OK and could be handled with redundant

info present in adjacent packets.

– TCP is preferred for delay-tolerant applications for which every byte

needs to be received in the same order they were sent from the

application at the source side.

• UDP is used for short-duration communication; TCP is preferred for

lengthy and critical communications where reliability is important.

– For short communication (like DHCP) that involves only one or few

message exchanges, it would be too much of an overhead to go

through a connection-establishment process before sending any actual

data packets.

– For lengthy and critical communications (like file download, e-transfer),
it would be just a one-time delay to go through a connection
establishment process for reliable communication.

Differences between UDP and TCP
• UDP is used for unicast, multicast and broadcast; TCP for

unicast only

– The semantics of TCP is such that it cannot be used for multicast

and broadcast communications.

• Difficult to make sure that every message sent from the source has

reached all the intended destinations.

– Multicast and broadcast communication are typically done using

UDP as the transport layer protocol.

• UDP: Datagram fragmentation is possible in the source network itself;

TCP – no datagram fragmentation possible.

– Since the higher-layer application decides the message size, if the

underlying network cannot handle the message, the IP protocol would

have to fragment the data before sending.

– The Internet layer protocol (IP) at the destination has to keep track of the

fragments and reassemble them. As IP provides only best effort service,
there is no guarantee that every message sent is received. Hence, UDP

messages are typically small so that fragmentation is not needed

7.2 User Datagram Protocol

(UDP)

UDP Datagram Format
• UDP SOURCE PORT and UDP DESTINATION PORT contain

respectively the port numbers of the sending and receiving processes/
applications.

• UDP message length specifies the total size of the UDP DATA in
bytes.

• UDP computes a checksum of the following fields: UDP SOURCE
PORT, UDP DESTINATION PORT, UDP MESSAGE LENGTH, UDP
DATA and IP SOURCE ADDRESS, IP DESTINATION ADDRESS and
IP H.LEN fields (the last three fields are called the pseudo header
fields – used to make sure the communication is between the
appropriate source and destination machines).

UDP Encapsulation

7.3 Transmission Control Protocol
(TCP)

TCP Header, Connection
Establishment

TCP: Byte Stream Management
• TCP is a byte-oriented protocol: the sending process writes bytes into a TCP

connection and the receiving process reads bytes out of the connection.

• Though TCP offers “byte-stream” service to application processes, TCP does

not transmit data over the internet in the form of bytes.

• A single TCP connection supports byte streams flowing in both directions.

• TCP on the source host buffers the bytes written by the sending process until

the bytes can be filled in to form a reasonably sized message (called TCP

segment) and then sends the segment to its peer TCP running at the

destination host.

• The TCP at the destination host, on receiving the TCP segment, empties the

contents of the segment into a receive buffer, which is read from (extracted) by

the receiving process at its leisure.

• The receiving process does not read data in the same size of pieces that were

inserted into the connection by the sending process. The fundamental unit of
data that is common to both the sending and receiving host processes is byte

and hence TCP is called a byte-stream oriented protocol.

TCP: Byte Stream Management

Application Process

.

.

.

Send Buffer

Application Process

.

.

.

Receive Buffer

Segment SegmentSegment …….

TCP
TCP

TCP Header Format

TCP Header Format
• Since TCP is a byte-oriented protocol, each byte of data

has a sequence number; the sequenceNum field contains
the sequence number for the first byte of data carried in a
segment.

• The Acknowledgement and AdvertisedWindow (used to
indicate the buffer space available in bytes) fields are filled
in the ACK packet sent to acknowledge the receipt of a data
packet. These fields are involved in the sliding window
algorithm.

• The checksum is computed over the TCP header, TCP
data, pseudo header-the source and destination addresses
and length fields from the IP header.

• The HdrLen field indicates the length of the TCP header in
32-bit words.

TCP Options
• The format of the options is similar to the one in the IP

header.
– 8-bit Options Type; 8-bit Options Length and (variable length)

Options Data

• Possible Options
– Window scaling factor: To indicate Advertised Window sizes that

are larger than 216-1 bytes, the advertising end host can indicate
a value ≤ in the Advertised Window and include a corresponding
scaling factor in the Options field.

• For example, to indicate an Advertised Window of size 80,000
bytes, the advertising host can advertise 20,000 in the Advertise
Window and set the Data portion of the Window scaling factor
options field to 4.

– Maximum Segment Size (MSS): To indicate the MTU of the
underlying network to the opposite end.

• MSS = MTU – [Max. IP header Size + Max. TCP header Size]

– Timestamp: Used for protection against wrapped around
sequence numbers.

• For each value of the timestamp field, there can be 232 different
sequence numbers for the bytes.

TCP Flags

• Flags – 12 bits; the first four bits are not used.

• The next two bits (ECE and CWR flags) are used for
Explicit Congestion Notification-related purposes.
– The end hosts sets the ECE flag in the ACK packets of the 3-way

handshake to indicate their support for ECN at the transport layer.

• The last six bits/flags fields are SYN, FIN, RESET, PUSH,
URG and ACK.
– The SYN flag is used to establish a TCP connection.

– The FIN flag is used to teardown a connection.

– The RESET flag is used by the receiver to abort a connection.

– The PUSH flag is set by the sender in order to indicate the receiver that the
segment was sent as a result of invoking the push operation.

– The URG flag signifies that the segment contains urgent data. The UrgPtr
field indicates where the non-urgent data contained in the current segment
begins. The urgent data is contained in the front portion of the segment data
body.

– The ACK flag is set when the receiver of the segment should pay attention
to the Acknowledgement field.

IP Header Format (v4)

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

IP Header Format
• ECN bits (2 bits) for Explicit Congestion

Notification
– 2 bit-combinations

• 0 0 (Non-ECT – EC not supported at transport layer)

• 0 1 or 1 0 (ECT–EC supported at the transport layer)

• 1 1 (CE: Congestion Experienced)

– If the end hosts can support ECN, the source sets
either 0 1 or 1 0 in the IP header of the datagrams sent.

– A router experiencing congestion, (instead of dropping
the packet right away) will overwrite the ECT bits with
the CE bits, letting the destination know that the
datagram was forwarded in spite of the impending
congestion.

– The destination has to now echo this EC notification in
the ACK packet sent to the source (through the ECE
flag in the TCP header)

Explicit Congestion Notification
• The idea is that if a router senses an impending congestion in its

queue (mechanisms are available to make this prediction), it can
notify the end hosts to slow down rather than dropping their packets
right away.

• The router notifies the destination end host through the ECT-flags in
the IP header.

• The destination notifies the source by setting the ECE (EC Echo)
flag in the TCP header for the ACK packets until it sees a data
packet with the CWR set.

• When the source slows down to send the subsequent segments, it
sets the CWR (Congestion Window Reduced) flag in the TCP
header to indicate that it has slowed down.

• The CWR flag is an indication to the destination not to set the ECE
flag for awhile
– If the router continues to set the ECT flags in the IP header in spite of

the source setting the CWR flag, the destination again sets the ECE flag
in the TCP ACK, triggering the source to further slow down.

• The intermediate routers stop setting the ECT flags in the IP header
after they see the probability of an impending congestion is below a
threshold.

Source Router Destination
IP Hdr: ECT: 01 or 10
TCP Hdr: ECE = 0; CWR = 0

Data Packet (congested)

IP Hdr: ECT: 11
TCP Hdr: ECE = 0; CWR = 0

Data Packet

IP Hdr: ECT: 01 or 10

TCP Hdr: ECE = 1; CWR = 0

AcknowledgmentIP Hdr: ECT: 11

TCP Hdr: ECE = 1; CWR = 0

Acknowledgment

IP Hdr: ECT: 01 or 10TCP Hdr: ECE = 0; CWR = 1

Data Packet

IP Hdr: ECT: 01 or 10
TCP Hdr: ECE = 0; CWR = 1

Data Packet

IP Hdr: ECT: 01 or 10

TCP Hdr: ECE = 0; CWR = 0

AcknowledgmentIP Hdr: ECT: 01 or 10

TCP Hdr: ECE = 0; CWR = 0

Acknowledgment

C
o

n
g

e
s
ti

o
n

 N
o

ti
fi

c
a
ti

o
n

 u
s
in

g

IP
 H

e
a
d

e
r

a
n

d
 T

C
P

 H
e
a
d

e
r

F
la

g
s

TCP Connection Establishment

Active Participant
(Client)

Passive Participant
(Server)

SYN, SequenceNum = x, WIN = ‘S’ bytes

SYN+ACK, SequenceNum = y,

WIN = ‘R’ bytes

Acknowledgement = x+1

ACK, Acknowledgement = y+1

(Three-Way Handshake)

Why a random starting sequence
number from each side?

Two reasons:

1) If there are multiple sessions

between the source-destination

using the same port numbers, a

random starting sequence number

helps to distinguish packets

2) A man-in-the-middle attacker

cannot easily guess the next
expected sequence number at the
other end and hijack a TCP session

TCP Connection Termination

(Three-Way Handshake)

Host 1 Host 2

FIN + ACK

FIN + ACK

ACK

Segment Triggering Techniques

• Maximum Segment Size (MSS) – the maximum size of the data that
can be transmitted by the TCP protocol at the sending host.

• MSS = (MTU of the underlying network to which the sending host is
attached) – (Size of the IP header + Size of the TCP header)

When to send a segment from the sending host to a receiving host
for a given pair of application processes?

• When bytes totaling up to MSS have accumulated at the send buffer
for the process.

• Periodically using a timer to trigger after a timeout.

• When the sending process wants to indicate that it wants to send
whatever has accumulated in the buffer so far and wants the receiver
to process them right away, then it invokes a PUSH operation.
Whatever the amount of non-sent data (of course size <= MSS) that
has accumulated at the Send buffer is used to form a segment and
transmitted to the receiving process.

7.4 TCP Flow Control and
Congestion Control

Flow Control
• Flow Control is the mechanism of adjusting the sending rate

according to the resources available at the destination.

• During the TCP connection establishment process, the source and
destination learn about the resources (i.e., the buffer space) that
each side can allocate for the connection and then periodically
update the available buffer space through the ‘Advertised Window
Size’ field in the TCP header of the Acknowledgment and data
packets.

• The Sliding Window algorithm is used to dynamically adjust the
number of outstanding packets (packets that have been sent but not
yet acknowledged).

• Classic TCP: Acknowledgments are sent only for the bytes that
have arrived in-order so far. The application at the receiver side can
read only the bytes received in-order so far.

• The bytes received out-of-order are simply buffered at the receiver
side. When the missing bytes come, a cumulative ACK indicating
the sequence number of the last byte received in-order is sent.

Data = 1000 bytes

Source Destination

R
T

T
 =

 2
 s

e
c

B/W = 8000 bytes/sec

During the RTT of 2 seconds,

the source could have sent

RTT * B/W = 2 sec * 8000 bytes/sec

= 16,000 bytes of data

With a STOP and GO approach,

the source just sends one data packet

and waits for an acknowledgment (ACK)

for that packet before sending the

next one.

In the example shown here, the

Efficiency of channel utilization for the

STOP and GO approach is

1000 /16000 = 1/16 < 10%

Sliding Window Approach: If the advertised

window allows, we could send

RTT*Bandwidth amount of

Data (i.e., keep the pipe full) before

waiting for an ACK

ACK

Data = 1000 bytes

R
T

T
 =

 2
 s

e
c

B/W = 8000 bytes/sec

ACK

Motivation for Sliding Window
S

T
O

P
 a

n
d

 G
O

 A
p

p
ro

a
c

h

Motivation for Sliding Window
• Example: Assume that we use the stop and go approach (send only

one data packet and wait for an ACK before sending the next data
packet)

• Let the bandwidth of the underlying network be 8000 bytes/sec and
the RTT (round trip time from source to destination networks) be 2
seconds.

• If the data packet size is 1000 bytes, then we have basically sent
only 1000 bytes/sec over a period of 2 seconds if we use the Stop
and go approach. Whereas, we could have sent a total of 16,000
bytes over a period of 2 seconds. The % efficiency of link utilization
is only 1/16th.

• If the Advertised Window can allow, we should try to “keep the pipe
full” by sending the RTT*Bandwidth amount of data (a window of
data packets) before we expect the first acknowledgment.

• The data packets (bytes) that have been sent and not yet
acknowledged are called outstanding packets (bytes).

Flow Control: Example 1

Receiving Process

TCP

NextByteExpected LastByteRcvd

LastByteRead

Sending Process

TCP

LastByteAcked LastByteSent

LastByteWritten

(2000) (2600)

3000 1700

2101 2400

Assume Receiver Buffer Size = 1,500 bytes
Advertised Window = Receiver Buffer Size – (Last Byte Rcvd – Last Byte Read)

Advertised Window = 1,500 – (2400 – 1700) = 800 bytes

Outstanding bytes = Last Byte Sent – Last Byte Acked = 2600 – 2000 = 600 bytes

Effective Window = Advertised Window – Outstanding bytes

= 800 – 600 = 200 bytes.

Hence, the sender could only send 200 more bytes.

Flow Control: Example 2
Source Destination

Advertised Window = 2500 bytes

Send Data 1 – 1000 bytes
Send Data 1001 – 2000 bytes
Send Data 2001 – 2500 bytes ACK up to 1000 bytes; Window = 1500

ACK up to 2000 bytes; Window = 500
ACK up to 2500 bytes; Window = 0Receive ACK for 1000

Receive ACK for 2000
Receive ACK for 2500 Application reads 2000 bytes

ACK up to 2500 bytes; Window = 2000

Send Data 2501 – 3500 bytes
Send Data 3501 – 4500 bytes

ACK up to 3500 bytes; Window = 1000

ACK up to 4500 bytes; Window = 0

Receive ACK for 3500
Receive ACK for 4500

ACK up to 4500 bytes; Window = 1000

Receive ACK for 4500 bytes

Application reads 1000 bytes

Congestion Control
• Congestion Control is the mechanism of adjusting the sending rate

according to the resources (i.e., bandwidth and router queue size)
available in the intermediate networks.

• Congestion Control is heavily dependent on the ‘Timeout’ value set
at the source in order to decide about retransmitting a data packet
that has not been acknowledged yet.

• As the Round-trip-time (RTT) between a source and destination
across the Internet dynamically changes, estimating a proper RTT is
key to setting the appropriate Timeout value to avoid unnecessary
retransmissions and at the same time effectively utilize the channel
bandwidth.

• The effective window (i.e., the amount of data the sender can send
to the receiver satisfying the conditions of flow control and
congestion control) is MIN(CongestionWindow, AdvertisedWindow)
– (LastByteSent – LastByteAcked).

Associating the Acknowledgements
with Retransmission

Original transmission

Sender Receiver

Retransmission

ACKS
a

m
p

le
 R

T
T

Original transmission

Sender Receiver

Retransmission

ACK
Sample

RTT

Which Sample RTT to be used to calculate the Estimated RTT?

Solution: Karn/ Partridge Algorithm

1. Use the simple retransmission algorithm, but measure the Sample RTT

only for messages that were not retransmitted.
2. For every timeout, set the next timeout twice the value of the last timeout,
a binary exponential backoff approach useful to handle congestion.

A Simple Retransmission Algorithm
• The round-trip time (RTT) for each connection should be estimated by

measuring the time it takes to receive a response.

• Each time TCP sends a message it starts a timer, measures the time at
which the acknowledgement arrives; the difference between these two
times is called the Sample RTT.

• For the first message, the Estimated RTT is the same as the Sample
RTT. For other messages, Estimated RTT is the weighted average
between the previous estimate and Sample RTT.

• A smaller value for α could track changes in the Sample RTT and is
heavily influenced during temporary fluctuations. A larger value for α
makes the retransmission algorithm not quick enough to adapt to real
changes.

Estimated RTT = α * Estimated RTT + (1-α) * Sample RTT

Timeout = 2 * Estimated RTT

Sample Question: Retransmission
Algorithm Example

• The following are the sample round-trip times (Sample RTTs) for the
acknowledgments or timeouts for a sequence of packet
transmissions at the sender side: 150 ms, 300 ms, 250 ms, timeout,
400 ms, timeout and 700 ms. Compute the estimated timeout value
at the end of each acknowledgment received or timeout incurred.
Use Karl’s simple retransmission algorithm (α =0.5).

– For the first packet, Est. RTT = Sample RTT

– For subsequent packets, Est. RTT = 0.5 * Sample RTT + 0.5 * Est. RTT

ERTT = 0.5*300 + 0.5*150

ERTT = 0.5*250 + 0.5*225

ERTT = 2 * ERTT

ERTT = 0.5*400 + 0.5*475

ERTT = 2 * ERTT

ERTT = 0.5*700 + 0.5*875

Additive Increase /
Multiplicative Decrease (AIMD)

• Idea of congestion control: As packet losses are rarely to occur due to

hardware errors/ transmission errors, a packet loss is considered by the

sender as a sign of congestion in the network and hence it begins to slow

down.

• Additive Increase:

• Initially, the sender does not know the congestion window. So, it starts

very conservatively sending only one segment per RTT (i.e., congestion

window = 1 segment).

• If an ACK is received within the timeout period, the sender sends two

segments for the next RTT (i.e., congestion window = 2 segments).

• If the sender receives ACKs for both the segments with in their timeout

period, it sends three segments for the next RTT and waits for three ACKs

within their timeout period. (i.e., congestion window = 3 segments)

• The above procedure is continued until the congestion window size equals

the advertised window or the congestion window size has to be dropped

due to packet loss.

Example: Additive Increase

Source
Destination

Additive Increase /
Multiplicative Decrease (AIMD)

• Multiplicative Decrease:

• For each packet loss, the sender decreases its congestion window by

one half of its current value.

• The congestion window size is not allowed to fall below one segment.

10

20

30

40

timeC
o

n
g

e
s

ti
o

n
 W

in
d

o
w

,
K

B

- Additive Increase

- Multiplicative Decrease

Typical TCP – Saw Tooth Pattern

Slow Start

• The additive increase mechanism is too slow to ramp up a connection

especially when starting from scratch.

• Slow start uses a congestion threshold (<= Advertised window) such

that the congestion window is exponentially increased until reaching

the congestion threshold and after that we increase the congestion

window incrementally similar to that in AIMD.

• Initially, the congestion window is equal to 1 segment.

• When one segment is transmitted and an ACK received, the sender

doubles the congestion window (congestion window 2 segments) for

the next RTT.

• If the ACKs for both the segments arrive, then the sender doubles the

congestion window (i.e., 4 segments) for the next RTT.

• The above procedure is repeated until the congestion window reaches

the advertised window or there is a packet loss.

Slow Start

• If there is a packet loss, the congestion threshold is set to half of the

current value of the congestion window, and the congestion window is

set to 1. The congestion window is then again ramped up using the

previously described exponential increase approach.

• When the congestion window reaches the congestion threshold, we

employ additive increase rather than exponential increase.

Slow Start

• The whole idea of ramping up exponentially until the congestion

threshold is that in the previous round, we knew that until the

congestion window was less than or equal the congestion threshold,

there was no loss of packets.

• When the congestion window was twice the congestion threshold, we

incurred a packet loss. So the actual capacity of the network that would

avoid a packet loss is somewhere between the congestion threshold

and the congestion window.

• So, in the current round, we proceed incrementally after the congestion

threshold aiming to reduce packet loss and get a stable congestion

window.

Slow Start
Source

Destination

Exponential increase until Congestion Window
reaches Congestion Threshold or Advertised Window

Slow Start

10

20

30

40

50

60

70

80

90

time

C
o

n
g

e
s

ti
o

n
 W

in
d

o
w

,
K

B

Congestion Threshold

- Additive Increase

- Exponential Increase

Fast Recovery

• With Fast Recovery, the source avoids the slow start and

instead simply cuts the congestion window by half and

resumes additive increase.

10

20

30

40

50

60

70

80

90

time

C
o

n
g

e
s

ti
o

n
 W

in
d

o
w

,
K

B

Congestion Threshold

- Additive Increase

- Exponential Increase

Sample Question: Flow Control and
Congestion Control

• Consider the status of a TCP connection at the source and

destination as shown in the Figure and Table below. Let the

Congestion Window size be 15,000 bytes.

Sample Question: Flow Control and
Congestion Control (continued…)

• What would be the Effective Window Size (the amount of data that
can be sent) by the source considering:

• (a) Only Congestion Control
Effective Window Size = Congestion Window Size – (Last Byte Sent – Last
Byte Acknowledged)

= 15,000 – (30,000 – 20,000) = 15,000 – 10,000 = 5,000 bytes

• (b) Only Flow Control
Advertised Window = Max. Receiver Buffer – (Last Byte Received – Last
Byte Read)

= (30,000) – (20,000 – 15,000) = 25,000 bytes

Effective Window Size = Advertised Window Size – (Last Byte Sent – Last
Byte Acknowledged)

= 25,000 – (30,000 – 20,000) = 15,000 bytes

• (c) Both Flow Control and Congestion Control
Effective Window Size = Min (Congestion Window Size, Advertised

Window Size) – (Last Byte Sent – Last Byte Acknowledged)
= Min (15000, 25000) – (30000 – 20000)

= 5000 bytes

Sample Question 1: Congestion Control
• Consider each of the three congestion control algorithms that work in units of

packets and that start each connection with a congestion window equal to one
packet. Assume an ACK is sent for each packet received in-order, and when a
packet is lost, ACKs are not sent for the lost packet and the subsequent
packets that were transmitted. The lost packet and the subsequent packets
have to be retransmitted by the sender. Whenever there is a packet loss and
the sender times out in a RTT, the congestion window size in the next RTT
has to be reduced to half of its size in the current RTT.

• For simplicity, assume a perfect timeout mechanism that detects a lost packet
exactly 1 RTT after it is transmitted. Also, assume the congestion window is
always less than or equal to the advertised window, so flow control need not
be considered.

• Consider the loss of packets with sequence numbers 5, 15, 22 and 27 in their
first transmission attempt. Assume these packets are delivered successfully in
their first retransmission attempt.

• Fill the following table to indicate the RTTs and the sequence numbers of the
packets sent. The sequence numbers of the packets sent range from 1 to 30.

• Compute the effective throughput achieved by this connection to send packets
with sequence numbers 1 to 30, each packet holds 1KB of data and that the
RTT = 100ms.

Sample Question: AIMD

5, 15, 22, 27
- Lost packets

Sample Question: Slow Start

5, 15, 22, 27
- Lost packetsCong. Threshold = 2

Cong. Threshold = 2

Cong. Threshold = 2

Cong. Threshold = 1

Sample Question: Fast Recovery

5, 15, 22, 27
- Lost packets

Cong. Threshold = 2

Cong. Threshold = 2

Cong. Threshold = 2

Cong. Threshold = 2

Sample Q2: Congestion Control
• Consider each of the three congestion control algorithms that work in units

of packets and that start each connection with a congestion window equal to
one packet. Assume an ACK is sent for each packet received in-order, and
when a packet is lost, ACKs are not sent for the lost packet and the
subsequent packets that were transmitted. The lost packet and the
subsequent packets have to be retransmitted by the sender. Whenever
there is a packet loss and the sender times out in a RTT, the congestion
window size in the next RTT has to be reduced to half of its size in the
current RTT.

• For simplicity, assume a perfect timeout mechanism that detects a lost
packet exactly 1 RTT after it is transmitted. Also, assume the congestion
window is always less than or equal to the advertised window, so flow
control need not be considered.

• Consider the loss of packets with sequence numbers 10, 25, 34 and 45 in
their first transmission attempt. Assume these packets are delivered
successfully in their first retransmission attempt.

• Fill the following table to indicate the RTTs and the sequence numbers of
the packets sent. The sequence numbers of the packets sent range from 1
to 50.

• Compute the effective throughput achieved by this connection to send
packets with sequence numbers 1 to 50, each packet holds 1KB of data
and that the RTT = 100ms.

Sample Question 2: AIMD

10, 25, 34, 45
Lost packets

Sample Question 2: Slow Start

10, 25, 34, 45
Lost packets

Sample Question 2: Fast Recovery

10, 25, 34, 45
Lost packets

