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What is an Algorithm?
• An algorithm is a sequence of unambiguous instructions for solving a 

problem, i.e., for obtaining a required output for any legitimate input in 
a finite amount of time.

• Important Points about Algorithms

– The non-ambiguity requirement for each step of an algorithm 
cannot be compromised

– The range of inputs for which an algorithm works has to be 
specified carefully.

– The same algorithm can be represented in several different ways

– There may exist several algorithms for solving the same problem.

• Can be based on very different ideas and can solve the problem with 
dramatically different speeds
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The Analysis Framework
• Time efficiency (time complexity): indicates how fast 

an algorithm runs
– The time complexity of an algorithm is typically represented as a 

function of the input size

• E.g., sorting an array of ‘n’ integers, traversing a graph of ‘V’ vertices 
and ‘E’ edges

– If the input is just one element, the time complexity is represented 
as function of the number of bits needed to represent the input.

• E.g., log(n) to determine whether an integer ‘n’ is prime or not.

• Space efficiency (space complexity): refers to the 
amount of memory units required by the algorithm in 
addition to the space needed for its input and output

• Algorithms whose space complexity does not increase 
with input size (i.e., requires the same additional space 
irrespective of input size) are said to be in-place.



Units for Measuring Running Time
• The theoretical running time of an algorithm is to be measured with a 

unit that is independent of the extraneous factors like the processor 

speed, quality of implementation, compiler and etc.

– At the same time, it is not practical as well as not needed to count the 

number of times, each operation of an algorithm is performed.

• Basic Operation: The operation contributing the most to the total 

running time of an algorithm.

– It is typically the most time consuming operation in the algorithm’s 

innermost loop.

• Examples: Key comparison operation; arithmetic operation (division being 
the most time-consuming, followed by multiplication)

– We will count the number of times the algorithm’s basic operation is 

executed on inputs of size n.



Examples to 

Illustrate Basic

Operations

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

Best Case: 1 comparison

Worst Case: ‘n’ comparisons

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

Best Case: n-1 comparisons

Worst Case: n-1 comparisons

Note: Average Case number of 

Basic operations is the expected 

number of basic operations 

considered as a random variable 

under some assumption about 

the probability distribution of all 

possible inputs

5     7    3    1    8   10    2    9

0     1    2    3    4    5    6    7



Why Time Complexity is important? 

Motivating Example

• An integer ‘n’ is prime if it is divisible (i.e., the remainder 
is 0) only by 1 and itself.

• Algorithm A (naïve) Algorithm B (optimal)
Input n Input n

Begin Begin

for i = 2 to n-1 for i = 2 to √n

if (n mod i == 0)                          if (n mod i == 0)

return “n is not prime” return “n is not prime”

end if                                                   end if

end for                                              end for

“return n is prime” “return n is prime”

End                                                      End

Best-case: 1 division Best-case: 1 division

Worst-case: (n-1) – 2 + 1                   Worst-case: √n – 2 +1

= n-2 divisions   = √n – 1 divisions 

For larger n: ≈ n                                 For larger n: √n 



Comparison of ‘n’ and ‘√n’

Input size (n) Algorithm A (n) Algorithm B(√n)

1 1 1

10 10 3.16

100 100 10

1000 1000 31.62

10000 10000 100

100000 100000 316.23

1000000 1000000 1000

10000000 10000000 3162.28



Orders of Growth
• We are more interested in the order of growth on the number of times 

the basic operation is executed on the input size of an algorithm.

• We focus on the asymptotic order of growth: i.e., what happens when 

the input size (n) grows larger.

• For example, if the number of basic operations of two algorithms to 

solve a particular problem are n and n2 respectively, then 

– if n = 3, then we may say there is not much difference between requiring 

3 basic operations and 9 basic operations and the two algorithms have 

about the same running time. 

– On the other hand, if n = 10000, then it does makes a difference whether 

the number of times the basic operation is executed is n or n2.

Source: Table 2.1
From Levitin, 3rd ed.

Exponential-growth

functions



Asymptotic Notations: Formal Intro

t(n) = O(g(n))

t(n) ≤ c*g(n) for all n ≥ n0

c is a positive constant (> 0)

and n0 is a non-negative integer
c1 and c2 are positive constants (> 0)

and n0 is a non-negative integer

t(n) = Θ(g(n))

c2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0



Thumb Rule for using Big-O and Big-Θ
• We say a function f(n) = O(g(n)) if the rate of growth of 

g(n) is either at the same rate or faster than that of f(n).
– If the functions are polynomials, the rate of growth is decided by 

the degree of the polynomials.

– Example: 2n2 + 3n + 5 = O(n2); 

2n2 + 3n + 5 = O(n3); 

– note that, we can also come up with innumerable number of 
such functions for what goes inside the Big-O notation as long as 
the function inside the Big-O notation grows at the same rate or 
faster than that of the function on the left hand side.

• We say a function f(n) = Θ(g(n)) if both the functions f(n) 
and g(n) grow at the same rate.
– Example: 2n2 + 3n + 5 = Θ(n2) and not Θ(n3);

– For a given f(n), there can be only one function g(n) that goes 
inside the Θ-notation.

‘Faster’ means value of the function

quickly increases with increase in ‘n’

O – Loose Bound        Θ – Tight Bound



Asymptotic Notations: Example
2n ≤ 0.05 n2

for n ≥ 40
c = 0.05, n0 = 40

2n = O(n2)

More generally,

n = O(n2).



Asymptotic Notations: Example

for n ≥ 1

n ≤ 2n ≤ 5n

2n = Θ(n)

n

5n

2n

n



Relationship and Difference between 
Big-O and Big-Θ

• If f(n) = Θ(g(n)), then f(n) = O(g(n)).

• If f(n) = O(g(n)), then f(n) need not be Θ(g(n)).

• Note: To come up with the Big-O/Θ term, we exclude the lower order 
terms of the expression for the time complexity and consider only the 
most dominating term. Even for the most dominating term, we omit
any constant coefficient and only include the variable part inside the 
asymptotic notation.

• Big-Θ provides a tight bound (useful for precise analysis); whereas, 
Big-O provides an upper bound (useful for worst-case analysis).

• Examples:

(1) 5n2 + 7n + 2 = Θ(n2)
– Also, 5n2 + 7n + 2 = O(n2)

(2) 5n2 + 7n + 2 = O(n3), 

Also, 5n2 + 7n + 2 = O(n4), But, 5n2 + 7n + 2 ≠ Θ(n3) and ≠ Θ(n4) 

• The Big-O complexity of an algorithm can be technically more than 
one value, but the Big-Θ of an algorithm can be only one value and it 
provides a tight bound. For example, if an algorithm has a complexity 
of O(n3), its time complexity can technically be also considered as 
O(n4).



When to use 
Big-O and 

Big-Θ
• If the best-case and 

worst-case time 
complexity of an 
algorithm is guaranteed 
to be of a certain 
polynomial all the time, 
then we will use Big-Θ. 

• If the time complexity of 
an algorithm could 
fluctuate from a best-
case to worst-case of 
different rates, we will 
use Big-O notation as it 
is not possible to come 
up with a Big-Θ for such 
algorithms.

• Sequential key search

• Inputs: Array A[0…n-1], Search Key K

• Begin

for (i = 0 to n-1) do

if (A[i] == K) then

return “Key K found at index i”

end if

end for

return “Key K not found!!”

End

• Finding the Maximum Integer in an Array

• Input: Array A[0…n-1]

• Begin

Max = A[0]

for (i = 1 to n-1) do

if (Max < A[i]) then

Max = A[i]

end if

end for

return Max

End

O(n) only

and not

Θ(n)

Θ(n)

�It is also

O(n)



Another Example to Decide 
whether Big-O or Big-Θ

Skeleton of a pseudo code

Input size: n

Begin Algorithm

If (certain condition) then

for (i = 1 to n) do

print a statement in unit time

end for

else

for (i = 1 to n) do

for (j = 1 to n) do

print a statement in unit time

end for

end for

End Algorithm

Best Case

The condition in the if block 

is true

-- Loop run ‘n’ times

Worst Case

The condition in the if block

is false

-- Loop run ‘n2’ times

Time Complexity: O(n2)

It is not possible to come up

with a Θ-based time complexity

for this algorithm.



Arrays
• When we create an array (say, of integers) of size N, the operating 

system will allocate memory space that can be used to store the ‘N’
integers in consecutive blocks of memory.

• The starting address of the allocated memory block will be stored in 
a pointer to the array.

• Any index in an array can be accessed in constant time (i.e., Θ(1) 
time). For example, to access A[i], all we have to do is take the base 
address of the array pointer and to it the product of the array index i
and the # bytes for storing the data type in the array. 

• In the case of integers (example below), the address of the element 
at A[2] is 200 + 2*4 = 208. We thus do not need sequential access.

• To access A[9], we just need to do 200 + 9*4 = 236 and access the 
element there.

10 23 13 17

0    1    2    3   …….  N-1 

Memory
address2

0
0

2
0

4

2
0

8

2
1

2
Array index

A[0]

Array Values

A[2]

21…….

2
x

x
A

200
Array pointer



Arrays of Objects
Packet* packetArray = new Packet[numPackets];

for (int id = 0; id < numPackets; id++){

packetArray[id].setID(id);

packetArray[id].setData(id*10);

}

ID

Data

ID

Data

ID

Data

ID

Data

ID

Data

ID

Data

ID

Data

ID

Data

Packet objects

200        212        224       236      248        260       272       284

packetArray

200



C++ Code Review
Example 1: Arrays, Pointers and Random Number 

Generator







C++ Code Review
Example 2: Class, Pointers with Objects


