
CSC 323 Algorithm Design and Analysis, Fall 2020

Instructor: Dr. Natarajan Meghanathan

Assignment 1: Brute Force Algorithm for the Element Uniqueness Problem

Due by: Sept. 8th, 11.59 PM

In this programming assignment, you will implement the brute force algorithm discussed in Module 1 for the

"Element Uniqueness Problem." Each of you have been assigned two 'm' values that correspond to the maximum

value for an element in the array. The two 'm' values are independent and must be considered separately.

For a particular 'm' value, the values for the array size 'n' are: 0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 0.6m, 0.7m, 0.8m,

0.9m, m. For example, if m = 100, the values of the array size 'n' are: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

As part of your code, you should generate an array of size 'n' whose values are generated randomly in the range

[1...m]. Your algorithm should keep track of the number of comparisons needed to determine whether the array of

random elements (generated as above) is unique or not.

You should run your algorithm/code several times (say, 10000 times using an automated loop) for each (n, m) pair

and determine the average number of comparisons.

For each of the two 'm' values (with 'n' varying from 0.1m to m as described above), plot the values for 'n' vs. the

average number of comparisons for the n value.

Maximum Possible value (m) of the elements in your arrays:

Student Name m values Student Name m values

Allen, Kenneth 100, 1000 Redmond, BRandon 1000, 10000

Amos, Tara 200, 2000 Thomas, DiQuonte 1100, 11000

Atkins, Nayaa 300, 3000 Thompson, Da Johne' 1200, 12000

Dixon, Kobe 400, 4000 Williams, Opeoluwa 1300, 13000

Foster, Angel 500, 5000 Wilson, Kyla 1400, 14000

Harmon, Kenjeffery 600, 6000

Holliman, Qaylin 700, 7000

Irving, Atayliya 800, 8000

Rankin, Simeon 900, 9000

Note (For C++): For each iteration, if you create the array using dynamic memory allocation (for example, shown

below), then delete the allocated memory at the end of the iteration. This will prevent you from running out of

memory while running the 10000 iterations, especially with larger array size.

int *array = new int[numElements]; // at the beginning of an iteration

.............

...........

delete[] array; // at the end of an iteration

Submission (through Canvas):
(1) Upload your code (Java/C++/Python) as a separate file.

(2) Upload the rest of the deliverables (as mentioned below) put together as ONE PDF file.

(i) Excel plots (as required above for each 'm' value) and your explanation interpreting the results.

(ii) Your explanation of the results, addressing the following:

• For a given maximum value 'm' and with increase in the number of elements 'n', does the

average number of comparisons increase, decrease or remain about the same? Give an

explanation of why you see the pattern you observe.

• For a given value of 'n', does the average number of comparison depend on the value of 'm' or

not? Infer from the results/figures and explain.

