
Module 2:
List ADT

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Data processed by an Algorithm
• The design and development as well as the time and

storage complexities of an algorithm for a problem
depend on how we store and process the data on which
the algorithm is run.

• For example: if the words in a dictionary are not sorted, it
would take a humongously long time to come up with an
algorithm to search for a word in the dictionary.

• Sometimes, the data need not be linear (like a
dictionary) and need to be hierarchical (like a road map
or file system).

• Layman example
– Abstract view of a car (any user should expect these features for

any car): Should be able to start the car, turn steering, press
brake to stop and press gas to accelerate, change gear, etc.

– Implementation (responsibility of the manufacturer and not the
user): How each of the above is implemented? Varies with the
targeted gas efficiency, usage purpose, etc.

Abstract Data Type (ADT) vs.
Data Structures

• Data processed by an algorithm could be
represented at two levels:
– Abstract level (also called logical or user level):

merely state the possible values for the data and what
operations/functions the algorithm will call to store
and access the data

– Implementation level (also called system level): deals
with how the implementation should be done to
perform the functions defined for the data at the
abstract level.

• The abstract (logical) representation of data is
commonly referred to as Abstract Data Type
(ADT)

• The term “data structure” is considered to
represent the implementation model of an ADT.

Common ADTs and the Data
Structures for their Implementation

• List, Stack, Queue

– Arrays, Linked List

• Priority Queue

– Heap

• Dictionary

– Hash Table, Binary Search Tree

• Graph

– Adjacency List, Adjacency Matrix

List ADT

• Data type

– Store a given number of elements of a
particular data type

• Functions/Operations

– Create an initial empty list

– Test whether or not a list is empty

– Read element based on its position in the list.

– Insert, delete or modify an entity at a specific
position in the list

10 23 13 17

0 1 2 3

10

23

17

19

Static List ADT
• A collection of entities of the same data type
• List ADT (static)

– Functionalities (logical view)
• Store a given number of elements of a given data type

• Write/modify an element at a particular position

• Read an element at a particular position

• Implementation:
– Arrays: A contiguous block of memory of a certain

size, allocated at the time of creation/initialization
• Time complexity to read and write/modify are Θ(1) each

10 23 13 17

0 1 2 3 ……. N-1

Memory
address 2

0
0

2
0

4

2
0

8

2
1

2

Array index

A[0]

Array, A

A[2]

21…….

2
x

x
array

200

Code 1(C++): Static List
Implementation using Arrays

#include <iostream>
using namespace std;

Dynamic List ADT
• Limitations with Static List

– The list size is fixed (during initialization); cannot be increased or
decreased.

– A new element cannot be inserted (if the list is already full) or an
existing element cannot be deleted.

• Key Features of a Dynamic List
– Be able to resize (increase or decrease) the list at run time. The list

size need not be decided at the time of initialization. We could start
with a list of size one and populate it as elements are to be added.

– Be able to insert or delete an element at a particular index at any time.

• Performance Bottleneck
– When we increase the size of the list (i.e., increase the size of the

array that stores the elements), the contents of the array need to be
copied to a new memory block, element by element. � O(n) time for
each resize operation.

– Hence, even though, we could increase the array size by one element
at a time, the ‘copy’ operation is a performance bottleneck and the
standard procedure is to double the size of the array (list) whenever
the list gets full.

– A delete operation also takes O(n) time as elements are to be shifted
one cell to the left.

Code 2: Code for Dynamic List
ADT Implementation using Arrays

Variables and Constructor (C++)

isEmpty (C++)

Function to free the memory (C++)

2
0

4
5

1
2

1
7

2
7

@600
array
600

maxSize = 8

endOfArray = 4

0 1 2 3 4 5 6 7

Note: The accessible portion

of the List/array is from

index 0 to endOfArray

Code 2: Insert Function (C++)

Will take O(n) time each, where
n = maxSize + 1

Self-healing code logic

Code 2: Resize Function (C++)

Have another pointer (a temporary ptr)
to refer to the starting address of
the memory represented by the original

array

Allocating a new set of memory blocks to the ‘array’ variable

Copying back the contents pointed to by the
temporary array pointer to the original array

If the array size is reduced from maxSize to s, only
the first ‘s’ elements are copied. Otherwise, all
the maxElements are copied

new value of maxSize

Note: Include <algorithm> header

file if the min function is not
automatically loaded to your
computing environment.

tempArray

108

array

108

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
2

1
7

2
0

4
5

2
7

Insert Operation
(incl. Relocation and Doubling the Size of the Array)

array

144

0 1 2 3
endOfArray = 3maxSize = 4

endOfArray = 4

maxSize = 8

0 1 2 3 4 5 6 7

insertIndex = 4

Example for Insert Operation
(Array-based Dynamic List ADT)

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

Before entry to the loop

Assume insertIndex = 2; data = 30

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

37

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

index = 4

Assume insertIndex = 2; data = 30

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37
2

1
6

0 1 2 3 4 5 6 7

37
2

2
0

2
2

4

2
2

8
maxSize = 8; endOfArray = 4

@ end of the index = 4 iteration

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

17

2
1

6

0 1 2 3 4 5 6 7

37

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

index = 3

10 23 13 13

2
0

0

2
0

4

2
0

8

2
1

2

17

2
1

6

0 1 2 3 4 5 6 7

37

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

index = 2

10 23 30 13
2

0
0

2
0

4

2
0

8

2
1

2

17

2
1

6

0 1 2 3 4 5 6 7

37

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

After exiting from the loop; the data is
written at insertIndex = 2

Time Complexity Analysis of Insert

Best Case: If the insert is to be done at index corresponding to endOfArray + 1

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

Before entry to the loop

Assume insertIndex = 5; data = 30

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

30

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

After the loop

Note: We will not be even entering the loop

as index = 4 is < insertIndex = 5

Time Complexity Analysis of Insert

Worst Case: If the insert is to be done at index 0

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

10 23 13 17 37

0 1 2 3 4 5 6 7

37index = 4

10 23 13 17 17

0 1 2 3 4 5 6 7

37index = 3

10 23 13 13 17

0 1 2 3 4 5 6 7

37index = 2
Before entry to the loop

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7
2

2
0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

10 23 13 13 17

0 1 2 3 4 5 6 7

37index = 2

10 23 23 13 17

0 1 2 3 4 5 6 7

37index = 1

10 10 23 13 17

0 1 2 3 4 5 6 7

37index = 0

2
0

0

2
0

4

2
0

8

2
1

2

2
1

6

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

After exiting the loop

Before entry to the loop

30 10 23 13 17

0 1 2 3 4 5 6 7

37

Worst Case: If the insert is to be done at index 0

The number of copy operations is endOfArray + 1,
which could be at most maxSize-1. Hence, the
Time complexity for the insert operation is O(n),

where ‘n’ is the size of the List

Problem with Incrementing the
array size by one

2
0

@100

2
0

@200

4
5

2
0

@500

4
5

1
2

array
100

maxSize = 1 maxSize = 2

array
200

maxSize = 3

array
500

2
0

@300

4
5

1
2

maxSize = 4

array
300

1
7

memory cells allocated to eventually store a list of 4 elements is

1 + 2 + 3 + 4 = 10;

For 8 elements: 1 + 2 + 3 + …. + 8 = 8*(8+1)/2 = 36

In general, 1 + 2 + 3 + 4 + … + n = n(n+1)/2 = Θ(n2)

Doubling the array size
2

0

@100

2
0

@200
4

5

array
100

maxSize = 1 maxSize = 2

array
200

2
0

@300

4
5

1
2

maxSize = 4

array
300

1
7

2
0

4
5

1
2

1
7

2
7

@600

array
600

maxSize = 8

memory cells allocated to eventually store a list of 8 elements is:
1 + 2 + 4 + 8 = 15
In general, the number of cells to store at most ‘n’ elements, where ‘n’ is
a perfect square of 2; i.e., n = 2k, where k is an integer >= 0; k = log2(n)
1 + 2 + 4 + 8 + … + n = 20 + 21 + 22 + 23 + … + 2k, where k = log2(n)
= 2(k+1) – 1 = 2*2k – 1 = 2n – 1 = Θ(n)

Code 2: Other Auxiliary Functions
(C++)

Example for Delete Operation
(Array-based Dynamic List ADT)

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

Before entry to the loop

Assume deleteIndex = 2

10 23 17 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

index = 2

10 23 17 17

2
0

0

2
0

4

2
0

8

2
1

2

37
2

1
6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8
maxSize = 8; endOfArray = 4

@ end of index = 2 iteration

Assume deleteIndex = 2

10 23 17 37

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

index = 3

10 23 17 37

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 3

After exiting the loop

Accessible portion
of the array

Time complexity of Delete
Best Case: If the delete is to be done at index corresponding to endOfArray

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

Before entry to the loop

Assume deleteIndex = 4

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 3

After exiting the loop

Accessible portion
of the array

Time complexity of Delete
Worst Case: If the delete is to be done at index 0

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 4

Before entry to the loop

Assume deleteIndex = 0

23 23 13 17 37

0 1 2 3 4 5 6 7

index = 0

23 13 13 17 37

0 1 2 3 4 5 6 7

index = 1

23 13 17 17 37

0 1 2 3 4 5 6 7

index = 2

Worst Case: If the delete is to be done at index 0

10 23 13 17

2
0

0

2
0

4

2
0

8

2
1

2

37

2
1

6

0 1 2 3 4 5 6 7

2
2

0

2
2

4

2
2

8

maxSize = 8; endOfArray = 3

Before entry to the loop

Assume deleteIndex = 0

23 13 17 17 37

0 1 2 3 4 5 6 7

index = 2

23 13 17 37 37

0 1 2 3 4 5 6 7

index = 3

23 13 17 37 37

0 1 2 3 4 5 6 7

Accessible portion
of the array

The worst case number of copy operations

correspond to endOfArray, which is n-1
where n is maxSize.
Hence, the time complexity of the Delete
Operation is O(n-1) = O(n).

Code 2: C++ main function

We will set the maximum size of the list to 1
and double it as and when needed

Pros and Cons of Implementing
Dynamic List using Array

• Pros: Θ(1) time to read or modify an element at a
particular index

• Cons
– O(n) time to insert or delete an element (at any arbitrary

position); inserting at the beginning of the list is the most time
consuming.

– When we double the array size (to handle the need for more
space), the memory management system of the OS needs to
search for contiguous blocks of memory that is double the
previous array size.

• Sometimes, it becomes difficult to allocate a contiguous block
of memory, if the requested array size is larger. Note: Array is
a contiguous block of memory

– Also, note that when we double the space for an array-based
List, half of it could remain unused

Linked List
• A Linked List stores the elements of the ‘List’ in separate memory

locations and we keep track of the memory locations as part of the
information stored with an element (called a node).
– A ‘node’ in a Linked List contains the data value as well as the address

of the next node.

• Singly Linked List: Each node contains the address of the node with
the subsequent value in the list. There is also a head node that
points to the first node in the list.

Data

nextNodePtr

• Doubly Linked List: Each node contains the address of the node with
the subsequent value as well as the address of the node with the
preceding value. There is also a head node pointing to the first node
in the list and a tail node pointing to the last node in the list.

prevNodePtr

Data

nextNodePtr

• Note: Memory address can be represented in 4 bytes. Hence, each
pointer or reference to a memory will take 4 bytes of space.

With singly linked list – we can traverse only in one direction

With doubly linked list – we can traverse in both directions

Singly Linked List

20

1
3

6 45 12 17

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

6

1
7

6

(N
U

L
L

)0

1
2

0

Head

Node Node Node Node Node

Memory Address

List data
20 45 12 17

120

@ 104

headPtr

104

136

@ 120

156

@ 136

176

@ 156

0

@ 176

Head node

20 45 12 17

N
N

P

D
a

ta

N
N

P

D
a

ta

N
N

P

N
N

P

D
a

ta

N
N

P

D
a

ta

Doubly Linked List

20

1
3

2 45

1
1

6 12

1
5

2 17

1
7

2

1
0

0

1
0

4

1
0

8

1
1

2

1
1

6

1
2

0

1
2

4

1
2

8

1
3

2

1
3

6

1
4

0

1
4

4

1
4

8

1
5

2

1
5

6

1
6

0

1
6

4

1
6

8

1
7

2

1
7

6

1
8

0

1
8

4

1
8

8

1
9

2

1
9

6

2
0

0

2
0

4

2
0

8

1
5

2

1
7

2

0

(N

U
L
L
)

(N
U

L
L
)0

1
3

2

1
1

6

Head

Node Node Node Node Node

Memory Address

Tail

Node

Head Node

@ 100

Tail Node

@ 196

@ 116 @ 132 @ 152

N
N

P

P
N

P

D
a

ta

116

N
N

P

P
N

P

D
a

ta

172132

N
N

P

P
N

P

D
a

ta

1320 20

N
N

P

P
N

P

D
a

ta

152116 45

N
N

P

P
N

P

D
a

ta

17212

headPtr

100
tailPtr

196

@ 172

N
N

P

P
N

P

D
a

ta

0152 17

Singly Linked List Implementation (Code 3)

Class Node

C++

Singly Linked List: Class List
Class List (C++) Initialization of List Object

Data
NextNodePtr

= 0

Head Node

Address: 100

(indicated as @ 100)

/* Note that the data for the
Head node is not set */

100

headPtr

Convention used to represent a Linked List.

Let the List be 10 5 7 9

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

// 0 – indicates NULL
// i.e., the ptr is not

// pointing to

// any address

Head node

10 5 7 9

The numbers 100, 200, 70, 500, 700 below the nodes represent
the address at which these nodes are stored, indicated with an @ symbol

Class List (C++)

If the nextNodePtr for
the headPtr points to null (0),
then the list is empty. Otherwise,

the list has at least one node.

Move the currentNode ptr from first node
in the list to end of the list. When we come

out of the ‘while’ loop, the prevNode ptr

is the last node in the list and
currentNode ptr points to null (0).

prevNodePtr and currentNodePtr
• As we traverse through the list, node by node, we will maintain two

pointers: the prevNodePtr and currentNodePtr.
– The currentNodePtr has the address for the node that is currently being

visited/ processed.

– The prevNodePtr has the address for the node that was just visited
before the current node.

• We have reached the end of the list when currentNodePtr is 0 (i.e.,
does not point to any node).

500

@ 300

700

@ 500

D
a
ta

Elements to the left

of this node

………………….. D
a
ta

Elements to the right

of this node

…………………..

prevNodePtr
300

currentNodePtr
500

Let the List be 10 5 7 9 and now we want to insert element ’30’ at the end.

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

Initialization of prevNodePtr and
currentNodePtr (before the while
loop)

200

headPtr

100

70 500 700 0

Head node

10 5 7 9

Example: Insertion at the End of the List (1)

prevNodePtr
100

currentNodePtr
200

@ 100 @ 200 @ 70 @ 500 @ 700

Inside the while loop Example continued (2)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
200

currentNodePtr
200

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
200

currentNodePtr
70

Inside the while loop Example continued (3)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
500

Inside the while loop Example continued (4)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
500

currentNodePtr
500

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
500

currentNodePtr
700

Inside the while loop Example continued (5)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
700

currentNodePtr
700

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
700

currentNodePtr
0

After the while loop Example continued (6)

Let ’30’ be the data to be

inserted at the end of the

Linked List

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700
Head node

10 5 7 9

prevNodePtr
700

currentNodePtr
0

030

@ 900

New Node

newNodePtr
900

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

900

@ 700
Head node

10 5 7 9

prevNodePtr
700

currentNodePtr
0

030

@ 900

New Node

newNodePtr
900

Class List (C++)

During the beginning and end of the while loop,
the value for ‘index’ corresponds to the

Position of the currentNode ptr and prevNode ptr

corresponds to index-1.

If index equals insertIndex, we break from
the while loop and insert the new node
at the index in between prevNode and

currentNode.

index refers to the node pointed
by currentNodePtr at any time

Let the List be 10 5 7 9 and let us say we want to insert element ’30’ at insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

Initialization of prevNodePtr and
currentNodePtr (before the while
loop)

200

headPtr

100

70 500 700 0

Head node

10 5 7 9

Example: Insertion at insertIndex = 2 (1)

prevNodePtr
100

currentNodePtr
200

@ 100 @ 200 @ 70 @ 500 @ 700

An array version
0 1 2 3
10 5 7 9

index = 0

Inside the while loop Example continued (2)

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
200

currentNodePtr
200

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
200

currentNodePtr
70

insertIndex = 2

index = 1

index = 0

Inside the while loop Example continued (3)

insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
500 index = 2

index = 1

At the time of breaking from the while loop Example continued (3)

insertIndex = 2

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
500

index = 2

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9

prevNodePtr
70

currentNodePtr
500

50030

@ 900

New Node

newNodePtr
900

After breaking from
the while loop
Linking of the

newNode

Class List (C++)

The ‘index’ value corresponds to the
Position of the currentNode ptr and
index-1 corresponds to prevNode ptr

Class List (C++)

Delete (deleteIndex) Function

First

Node
headNode

headPtr

prevNodePtr

currentNodePtrInitialization

At the beginning of
an iteration inside
the ‘while’ loop

getnextNodePtr()

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr

Node at

‘index’

Node at

‘index - 1’
Node at

‘index+1’

prevNodePtr currentNodePtr

At the end of
an iteration inside
the ‘while’ loop

index = 0

nextNodePtr

When index != deleteIndex

Delete (deleteIndex) Function
When index == deleteIndex

Inside the ‘while’ loop

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr nextNodePtr

Outside the ‘while’ loop

Node at

‘index’

Node at

‘index - 1’

Node at

‘index+1’

prevNodePtr currentNodePtr
nextNodePtr

currentNode at index = deleteIndex
is disconnected from the Linked List

Class List (C++)

The next node for ‘prevNode’ ptr
is now ‘next node’ and not
‘current node’

Let the List be 10 5 30 7 9 and now we want to delete ’30’ at deleteIndex = 2

Initialization of the pointers

Example: Deletion at deleteIndex = 2

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

next
NodePtr
100

prevNodePtr
100

currentNodePtr
200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 0

Example: Deletion at deleteIndex = 2

next
NodePtr
100

prevNodePtr
200

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 1

next
NodePtr
100

prevNodePtr
70

currentNodePtr
900

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 2

nextNodePtr
500prevNodePtr

70

currentNodePtr
900

200

@ 100

headPtr

100

70

@ 200

500

@ 70

700

@ 500

0

@ 700

Head node

10 5 7 9500

@ 900

30

index = 2

A
ft

e
r

e
x

it
in

g
 f

ro
m

 t
h

e

‘w
h

il
e

’
lo

o
p

Delinking of Node at index = 2 (element ’30’ from the Linked List)

Iterative
Print

Class List (C++)

Linked List vs. Arrays: Memory Usage
Data size Next Node Ptr Prev Node Ptr Node Size %ovh

Singly Linked List 4 (int) 4 N/A 8 bytes 100%
Singly Linked List 32 4 N/A 36 bytes 12.5%
Doubly Linked List 4 (int) 4 4 12 bytes 200%
Doubly Linked List 32 4 4 40 bytes 25%

Code 6: Run Time
Complexity Analysis

Linked List vs. Arrays: Time Complexity
Array Singly Linked Doubly Linked

List List
Read/Modify Θ(1) O(n) O(n)
Insert O(n) O(n) O(n)
Delete O(n) O(n) O(n)

isEmpty Θ(1) Θ(1) Θ(1)
Count Θ(1) O(n) O(n)

We typically use arrays if there are more frequent read/modify
operations compared to Insert/Delete

We typically use Linked Lists if there are more frequent insert/delete
operations compared to read/modify (remember: arrays come with
the overhead of creating a new block of memory, if needed, and
copying the elements to the new block)

Note: With arrays, Insert operations are more time consuming if
need to be done at the smaller indices. With singly linked lists,
insert operations are more time consuming if done towards the
end of the list.

Number of Inversions in a
Singly Linked List

• Given a Singly Linked List of data (say
integers), an inversion is said to have
occurred if an integer i is more closer to
the head node compared to an integer
j, but i > j

• Example

Inverted Pairs
(2, 1)
(8, 1)

(8, 3)
(8, 7)
(9, 3)
(9, 7)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

Inversions = 6

Code 8: Number of
Inversions in a Singly

Linked List

N
o

te
:

T
h

is
 c

o
d

e
 i

s
 i
n

 t
h

e
 m

a
in

(
)

fu
n

c
ti

o
n

,
a

s
s

u
m

in
g

 l
is

tS
iz

e
is

 a
 v

a
ri

a
b

le
 i

n
p

u
t

b
y

th
e

 u
s

e
r

fo
r

th
e

 n
u

m
b

e
r

o
f

e
le

m
e
n

ts
 i

n
 t

h
e

 l
is

t

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

70
No Inversion

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700
Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

900
Inversion
(2, 1)

First Iteration (currentNodePtr = 200)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

700
No Inversion

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700
Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

300
No Inversion

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700
Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

500
No Inversion

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700
Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

200

tempNodePtr

0

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

tempNodePtr

900
Inversion
(8, 1)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

tempNodePtr

500
No Inversion

Second Iteration (currentNodePtr = 70)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

tempNodePtr

700
Inversion
(8, 3)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

tempNodePtr

300
Inversion
(8, 7)

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

300

@ 700

Head node

2 8 9 3500

@ 900

1 0

@ 300

7

currentNodePtr

70

tempNodePtr

0

Inserting at an Appropriate
Location Decided at Run time

• Consider the problem of maintaining a list of integers
such that it always has the negative integers followed by
positive integers.

• Newly input integers are to be inserted on a last input
last insert basis.
– i.e., a positive integer is inserted at the end of all the positive

integers in the list (which basically corresponds to the end of the
list).

– a negative integer is inserted at the end of all the negative
integers that are currently in the list.

Inserting at an Appropriate
Location Decided at Run time

Code 9: Inserting at an

Appropriate Location Decided

at Run time

200

@ 100

headPtr

100

70

@ 200

0

@ 70

Head node

23 10

currentNodePtr

200

prevNodePtr

100

To Insert - 45

200

@ 500

-45

500

@ 100

headPtr

100

70

@ 200

0

@ 70

Head node

23 10

currentNodePtr

200

prevNodePtr

100

newNodePtr

500

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

-4 -7 9 3500

@ 900

1

To Insert - 3
currentNodePtr

200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

-4 -7 9 3500

@ 900

1

currentNodePtr

200
prevNodePtr

100

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

-4 -7 9 3500

@ 900

1

prevNodePtr

200

currentNodePtr

70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

-4 -7 9 3500

@ 900

1

prevNodePtr

70

currentNodePtr

900

900

@ 300

-3

newNodePtr

300

200

@ 100

headPtr

100

70

@ 200

300

@ 70

700

@ 500

0

@ 700

Head node

-4 -7 9 3500

@ 900

1

prevNodePtr

70

currentNodePtr

900

Sorting Algorithm: Selection Sort
• Given an array A[0…n-1], we proceed for a total of n-1 iterations

• In iteration i (0 ≤ i ≤ n-2), we initially assume i to be the index
(minIndex) where the minimum element is. We compare the value of
the element at minIndex with those at indexes i+1 to n-1 and update
minIndex accordingly (i.e., if any index has an element with further
lower value). At the end of the ith iteration, we swap the element at
minIndex with the element at index i.

Comparisons
(n-1) + (n-2) + …. + 1 = n(n-1)/2 = Θ(n2)

There is no best or worst case. In the ith
Iteration, we have to find if there exists
any element that is less than the
element at index i.

5

0

6

1

5

2

4

3

3

4

10

5

9

6

1

7

7

8

8

9

Given Array

5

0

6

1

5

2

4

3

3

4

10

5

9

6

1

7

7

8

8

9
Iteration 0

1

0

6

1

5

2

4

3

3

4

10

5

9

6

5

7

7

8

8

9
Iteration 0
(After)

Iteration 1
1

0

6

1

5

2

4

3

3

4

10

5

9

6

5

7

7

8

8

9

Iteration 1
(After) 1

0

3

1

5

2

4

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 2

Iteration 2
(After)

1

0

3

1

5

2

4

3

6

4

10

5

9

6

5

7

7

8

8

9

1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 3
1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 3
(After)

1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 4
1

0

3

1

4

2

5

3

6

4

10

5

9

6

5

7

7

8

8

9

Iteration 4
(After)

1

0

3

1

4

2

5

3

5

4

10

5

9

6

6

7

7

8

8

9

Iteration 5
1

0

3

1

4

2

5

3

5

4

10

5

9

6

6

7

7

8

8

9

Iteration 5
(After)

1

0

3

1

4

2

5

3

5

4

6

5

9

6

10

7

7

8

8

9

Iteration 6 1

0

3

1

4

2

5

3

5

4

6

5

9

6

10

7

7

8

8

9

Iteration 6
(After)

1

0

3

1

4

2

5

3

5

4

6

5

7

6

10

7

9

8

8

9

Iteration 7 1

0

3

1

4

2

5

3

5

4

6

5

7

6

10

7

9

8

8

9

Iteration 7
(After)

1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Iteration 8
1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Iteration 8
(After)

1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Final Sorted Array
1

0

3

1

4

2

5

3

5

4

6

5

7

6

8

7

9

8

10

9

Find the

address of the
node with the

minimum data
/* Assigns the address
of the first data node
as the initial value of

minDataNodePtr */// return ‘0’ (null) if the list is empty

/* Inside this loop, minDataNodePtr will be
set to the address of the node (if any exists)
whose data is less than the data of the node

whose address is stored in minDataNodePtr */

Code 7

currentNodePtr
200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

Find the address of the node with the minimum data

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
200

currentNodePtr
200

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
200

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
200

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
200

currentNodePtr
500

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
900

currentNodePtr
70

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
200

currentNodePtr
500

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
900

currentNodePtr
700

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
900

currentNodePtr
700

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
900

currentNodePtr
0

200

@ 100

headPtr

100

70

@ 200

900

@ 70

700

@ 500

0

@ 700

Head node

10 25 7 9500

@ 900

3

minDataNodePtr
900

Singly vs. Doubly Linked List

120

@ 104

headPtr

104

136

@ 120

156

@ 136

176

@ 156

0

@ 176

Head node

20 45 12 17

N
N

P

D
a

ta

N
N

P

D
a

ta

N
N

P

N
N

P

D
a

ta

N
N

P

D
a

ta

Head Node

@ 100

Tail Node

@ 196

@ 116 @ 132 @ 152

N
N

P

P
N

P

D
a

ta

116

N
N

P

P
N

P

D
a

ta

172132

N
N

P

P
N

P

D
a

ta

1320 20

N
N

P

P
N

P

D
a

ta

152116 45

N
N

P

P
N

P

D
a

ta

17212

headPtr

100
tailPtr

196

@ 172

N
N

P

P
N

P

D
a

ta

0152 17

Singly vs. Doubly Linked List
• A doubly linked list has two additional nodes: a head node

and tail node

• A doubly linked list could be traversed in either direction
(from head node or from tail node).

– nextNodePtr values at the nodes are used to access in
the forward direction (from head node)

– prevNodePtr values at the nodes are used to access in
the reverse direction (from the tail node)

• In the forward direction: The headPtr points to the head
node whose next node is the first data node in the list and
the node previous to the tail node is the last data node
whose nextNodePtr is set to 0 (null).

• In the reverse direction: The tailPtr points to the tail node
whose previous node is the first data node and the node
next to the head node is the last data node whose
prevNodePtr is set to 0 (null).

Singly
Linked List

Doubly
Linked List

Data
Next
Node

Ptr

Data
Prev
Node

Ptr

Next
Node

Ptr

Class
Node

C++

Doubly
Linked List

Singly
Linked List

Head Node

@ 100

N
N

P

P
N

P

D
a

ta

0

headPtr

100

Tail Node

@ 196

N
N

P

P
N

P

D
a

ta

0

tailPtr

196

In
it

ia
li

z
a

ti
o

n

o
f

a
 D

o
u

b
ly

L
in

k
e

d
 L

is
t

