
CSC 323 Algorithm Design and Analysis, Fall 2020

Instructor: Dr. Natarajan Meghanathan

Assignment 2: Algorithm to Determine the Longest Subsequence of Consecutive Integers in

an Array using Hash tables, its Optimization and the Analysis of the Space-Time Tradeoff

Due by: Sept. 15th, 11.59 PM Submission through Canvas (as instructed below)

In this programming assignment, you will work on the algorithm (discussed in Module 1) to determine

the length of the longest sub sequence of consecutive integers in an array.

You will implement the algorithm using Hash tables. You are provided with sample code representing
the linked list-based implementation of Hash tables (as an array of Linked Lists). You could go through

the code to understand the implementation of a Hash table and the functions that can be called on it.

In the Module 1 slides, it was mentioned that the array of integers for the algorithm has to be unique.

Actually, it is not a mandatory requirement. The algorithm can still work on a random array of integers
with some integers repeated. However, for an arbitrary array (that could have repeated integers), the

algorithm could waste time in determining multiple occurrences of the same sub sequence of consecutive

integers. For example, if the array is: 7 2 1 3 1 1 3 4, the algorithm would find three instances of the
longest sub sequence 1 2 3 4. On the other hand, if the array is: 7 2 1 3 4, the algorithm would find only

one instance of the longest sub sequence 1 2 3 4.

In this programming assignment, you will implement two versions of the algorithm: The first version
would be the implementation of the algorithm (as discussed in Module 1) without any optimization. The

second version would be an implementation of the algorithm with an optimization strategy. In this regard,

you are supposed to design a strategy to prevent the algorithm from searching for the same sub sequence

more than once and implement an optimized version of the algorithm incorporating the strategy. You
could use additional space as part of this optimization strategy, as large as O(n), where n is the number of

elements in the input array. The expectation is that the additional space used would aid in reducing the

run time.

You are given a startup code titled: HashTable_LinkedList_ContinuousSeqVersion that has the Linked

List-based implementation of a Hash table as well as the main function setup to run the algorithm for

several trials and measure the average length of the longest sub sequence of consecutive integers and the
average run time (referred to in the code as average detection time and is measured in milliseconds).

The number of trials is always 25. The maximum value for an element in the array is 25000 (i.e., the

range of elements generated is 1...25000). Note that the programs are likely to run for a longer time, even

if the implementation is correct. So, patiently wait!

The parameters that you will vary for a particular run of the code are as follows:

(N) number of elements to be generated: 10000, 100000
(S) size of the hash table: 11, 101, 1009

Submission

(1 - 60 pts) Submit two separate files featuring the entire code of the algorithm (one file for the algorithm
implemented without any optimization and another file for the algorithm implemented with optimization).

(2 - 40 pts) Submit a single PDF file, including the following:

 (i - 15 pts) Provide a description of your optimization strategy and explain how it could reduce

 the run time at the cost of additional space, if any.
 (ii - 10 pts) Present a table (the values of N as rows and the values of S as columns) for each of

 the average largest sequence length and the average detection time (in milliseconds).

 (iii - 15 pts) Discuss the impact of the size of the hash table on the average detection time.

