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Introduction to Divide and Conquer
• Divide and Conquer is an algorithm design strategy of dividing a

problem into sub problems, solving the sub problems and merging 
the solutions of the sub problems to get a solution for the larger 
problem.

• Let a problem space of size ‘n’ (for example: an n-element array 
used for sorting) be divided into sub problems of size ‘n/b’ each, 
which could be either overlapping or non-overlapping. 

• Let us say we solve ‘a’ of these sub problems of size n/b.

• Let f(n) represent the time complexity of merging the solutions of the 
sub problems to get a solution for the larger problem.

• The general format of the recurrence relation can be then written as 
follows: where T(n/b) is the time complexity to solve a sub problem 
of size n/b and T(n) is the overall time complexity to solve a problem 
of size n. 

T(n) = a * T(n/b) + f(n)



Recurrence Relations for Divide and Conquer

Non-Overlapping Sub Problems

‘n’

‘n/3’ ‘n/3’ ‘n/3’

T(n) 

= 3 * T (n/3) 

+ f(n)

Overlapping Sub Problems (a ≠ b)
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+ f(n)
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Polynomial Function
• A polynomial is an expression consisting of variables 

and coefficients, that involves only the operations of 
addition, subtraction, multiplication, and non-negative 

integer exponents of variables. 

• Example: f(n) = n3 + 4n2 – 2n + 1 is a polynomial (of 

degree 3). But f(n) = n-3 + 1 is not a polynomial (because 

of the negative exponent).

• A monotonically increasing polynomial function is a 

polynomial function (say, of an independent variable n) 

whose value either increases or remains the same with 
increase in n.

– That is, the function should be a non-decreasing function.



Master Theorem to Solve Recurrence 
Relations: T(n) = a * T(n/b) + f(n)

Note: To apply Master Theorem, the function f(n) should be a polynomial and 

should be monotonically increasing

Note: To satisfy the definition 

of a polynomial, ‘d’ should be 

a non-negative integer.

where d ≥ 0 and an integer

Master Theorem (O - version)

Note: We will try to apply the Θ – version
wherever possible. If the Θ – version

cannot be applied, we will try to apply the 

O-version.

Master Theorem (Θ - version)



1)1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

can be written as

T(n) = 4 T(n/2) + Θ(n) 

a = 4; b = 2; d = 1 � a > bd
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2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

Can be written as

T(n) = 4 T(n/2) + Θ(n2)

a = 4; b = 2; d = 2 � a = bd
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3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

Can be written as

T(n) = 4 T(n/2) + Θ(n3)

a = 4; b = 2; d = 3 � a < bd

( )3
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4) 4) T(nT(n) = 4T(n/2) + 1) = 4T(n/2) + 1

Can be written as

T(n) = 4 T(n/2) + Θ(n0) 

a = 4; b = 2; d = 0 � a > bd

( ) )()(
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5) T(n) = 4T(n/2) + (1/n)

T(n) = 4T(n/2) + n-1

a = 4, b = 2, d = -1 (< 0)

f(n) = 1/n is not a polynomial.

Master Theorem cannot be applied.



Master Theorem: More Problems



Master Theorem: More Problems



Merge Sort
• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of 
the arrays:

• compare the first elements in the remaining 
unprocessed portions of the arrays

• copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

– Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
other array into A.



Merge Sort



Merge Algorithm

Incase of a tie B[i] = C[j]

Insert the element in the 

Left sub array in A.



Example for Merge Sort

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9



The order 
recursion runs

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9

1

9

2

3

4

5

6

7

8

10

11

12

13

14



Analysis of Merge Sort

Best case: We will encounter n/2 comparisons (when every element in the left

sorted sub array is less than or equal to the first element in right sorted sub array)

At each step, exactly one comparison is made, after which the total number of

elements in the two arrays still needed to be processed is reduced by one.

Worst case: We will encounter (n-1) comparisons (when smaller elements come 

from the alternating sub arrays; neither of the two sub arrays will become empty 

before the other sub array contains just one element.

Though best case is different from worst case, both are ~ n, as n increases. 

Hence, the time complexity to merge: Cmerge(n) = Θ(n)

C(n) = 2*C(n/2) + Θ(n) for n > 1 and C(1) = 0

a = 2; b = 2; d = 1

a = bd
Hence, C(n) = Θ(nlogn)



Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort, bubble sort, 
selection sort) we saw in Module 1, Merge sort incurs a 
time-complexity of Θ(nlogn), whereas the other sorting 
algorithms we have seen incur a time complexity of 
O(n2) or Θ(n2) .

• The tradeoff is Merge sort requires additional space 
proportional to the size of the array being sorted. That is, 
the space-complexity of merge sort is Θ(n), whereas the 
other sorting algorithms we have seen incur a space-
complexity of Θ(1).
– Algorithms that incur a Θ(1) space complexity are said to be 

“in place”



Number of Inversions in an Array

• Given an array A, an inversion 
is said to have occurred if i < j 
and A[i] > A[j].

• Example 2      8      1     9      3     7
0        1         2        3        4       5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

The number of inversions in an array can be computed as the

Sum of the number of inversions encountered in each of the

Merging steps of the Merge Sort algorithm.

i

0       1       2        3 4        5       6         7

j

Sorted Left Half Sorted Right Half

Mid = 4, the index of the

first element in the right half

If A[i] > A[j], then 

everything to the right of

Index in the sorted left

half are also going to be

greater than A[j]. Hence,

the number of inversions

due to A[i] > A[j] is:

Mid – i. 



# Inversions in the Merge Step (Ex.2)

0       1       2       3       4 5          6        7        8        9

14     17     19     22      25 13        16     18       20       27

Mid = 5

# Inversions in the 

Merging Step

= 5 + 4 + 3 + 2

= 14



# Inversions in the Merge Step (Ex.2)

0       1       2       3       4 5          6        7        8        9

2       3       8       9      10 1         4        5         7       8  

Mid = 5

# Inversions in the 

Merging Step

= 5 + 3 + 3 + 3 + 2

= 16



Total # Inversions (all Merging Steps): Ex. 3

8      3       2      9      7      1      5      4

8      3       2      9 7      1      5      4

8      3 2      9 7      1 5      4

8      3 2      9 7      1 5      4

3      8 2      9 1      7 4      5

2      3       8      9 1      4      5      7

1      2       3      4      5      7      8      9

0         1          2        3         4        5         6   7

0         1          2         3 4         5        6         7

0         1 2         3 4         5 6         7

0 1 2 3 4 5 6 7

1 0
0         1 2         3

2

0         1          2         3

4 5 6 7
1 1

4         5        6         7

0         1          2        3         4        5         6   7

(8, 3)

(3, 2)

(8, 2) 2

(7, 4)

(7, 5)

10(2, 1); (3, 1); (8, 1);

(9, 1); (8, 4); (9, 4);

(8, 5); (9, 5); (8, 7); (9, 7)

(7, 1) (5, 4)

Total # Inversions = 1 + 0 + 2 + 1 + 1 + 2 + 10 = 17



Total # Inversions: Ex. 4

2      8       1      9      3      7

2      8       1

2 8      1

2 8      1

1      8

1      2       8

0         1          2        3         4        5

0         1          2

0 1         2

0 1 2

1
1         2

1

0         1          2

(2, 1)

2(8, 3)

(8, 7)
Total # Inversions = 1 + 1 + 2 + 2 = 6

9      3       7

3         4          5

(8, 1)

9 3      7

9 3      7

3      7

3      7       9

3 4         5

3 4 5

4         5

2

3         4          5(9, 3)

(9, 7)

1      2       3      7      8      9

0         1          2        3         4        5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)



Finding the Maximum Integer in an 
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index 

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index 

positions of the maximum element 

in the sub arrays, We do not need to 

create additional space. So, this 

algorithm is in-place.

Divide part

Conquer part

Terminating Condition

Getting ready to

divide



Max Integer Index Problem: Time 
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2) ) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the 

time-complexity. The overhead comes with recursion.



FindMaxIndex: Example



FindMaxIndex: Example (contd..)

0 1 5 6

1 2

1

3 4

3

3

5 7 8 9

5 9

5


