
Module 2:
Divide and Conquer

Dr. Natarajan Meghanathan

Professor of Computer Science

Jackson State University

Jackson, MS 39217

E-mail: natarajan.meghanathan@jsums.edu

Introduction to Divide and Conquer
• Divide and Conquer is an algorithm design strategy of dividing a

problem into sub problems, solving the sub problems and merging
the solutions of the sub problems to get a solution for the larger
problem.

• Let a problem space of size ‘n’ (for example: an n-element array
used for sorting) be divided into sub problems of size ‘n/b’ each,
which could be either overlapping or non-overlapping.

• Let us say we solve ‘a’ of these sub problems of size n/b.

• Let f(n) represent the time complexity of merging the solutions of the
sub problems to get a solution for the larger problem.

• The general format of the recurrence relation can be then written as
follows: where T(n/b) is the time complexity to solve a sub problem
of size n/b and T(n) is the overall time complexity to solve a problem
of size n.

T(n) = a * T(n/b) + f(n)

Recurrence Relations for Divide and Conquer

Non-Overlapping Sub Problems

‘n’

‘n/3’ ‘n/3’ ‘n/3’

T(n)

= 3 * T (n/3)

+ f(n)

Overlapping Sub Problems (a ≠ b)

‘n’

‘n/3’

‘n/3’

‘n/3’

T(n)

= 4 * T (n/3)

+ f(n)

‘n/3’

Polynomial Function
• A polynomial is an expression consisting of variables

and coefficients, that involves only the operations of
addition, subtraction, multiplication, and non-negative

integer exponents of variables.

• Example: f(n) = n3 + 4n2 – 2n + 1 is a polynomial (of

degree 3). But f(n) = n-3 + 1 is not a polynomial (because

of the negative exponent).

• A monotonically increasing polynomial function is a

polynomial function (say, of an independent variable n)

whose value either increases or remains the same with
increase in n.

– That is, the function should be a non-decreasing function.

Master Theorem to Solve Recurrence
Relations: T(n) = a * T(n/b) + f(n)

Note: To apply Master Theorem, the function f(n) should be a polynomial and

should be monotonically increasing

Note: To satisfy the definition

of a polynomial, ‘d’ should be

a non-negative integer.

where d ≥ 0 and an integer

Master Theorem (O - version)

Note: We will try to apply the Θ – version
wherever possible. If the Θ – version

cannot be applied, we will try to apply the

O-version.

Master Theorem (Θ - version)

1)1) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n

can be written as

T(n) = 4 T(n/2) + Θ(n)

a = 4; b = 2; d = 1 � a > bd

())()(24log2 nnnT Θ=Θ=

2) 2) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n22

Can be written as

T(n) = 4 T(n/2) + Θ(n2)

a = 4; b = 2; d = 2 � a = bd

()nnnT log)(
2

Θ=

3) 3) T(nT(n) = 4T(n/2) + n) = 4T(n/2) + n33

Can be written as

T(n) = 4 T(n/2) + Θ(n3)

a = 4; b = 2; d = 3 � a < bd

()3
)(nnT Θ=

4) 4) T(nT(n) = 4T(n/2) + 1) = 4T(n/2) + 1

Can be written as

T(n) = 4 T(n/2) + Θ(n0)

a = 4; b = 2; d = 0 � a > bd

())()(
24log2 nnnT Θ=Θ=

5) T(n) = 4T(n/2) + (1/n)

T(n) = 4T(n/2) + n-1

a = 4, b = 2, d = -1 (< 0)

f(n) = 1/n is not a polynomial.

Master Theorem cannot be applied.

Master Theorem: More Problems

Master Theorem: More Problems

Merge Sort
• Split array A[0..n-1] in two about equal halves and make

copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:

• compare the first elements in the remaining
unprocessed portions of the arrays

• copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

Merge Sort

Merge Algorithm

Incase of a tie B[i] = C[j]

Insert the element in the

Left sub array in A.

Example for Merge Sort

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

The order
recursion runs

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

1

9

2

3

4

5

6

7

8

10

11

12

13

14

Analysis of Merge Sort

Best case: We will encounter n/2 comparisons (when every element in the left

sorted sub array is less than or equal to the first element in right sorted sub array)

At each step, exactly one comparison is made, after which the total number of

elements in the two arrays still needed to be processed is reduced by one.

Worst case: We will encounter (n-1) comparisons (when smaller elements come

from the alternating sub arrays; neither of the two sub arrays will become empty

before the other sub array contains just one element.

Though best case is different from worst case, both are ~ n, as n increases.

Hence, the time complexity to merge: Cmerge(n) = Θ(n)

C(n) = 2*C(n/2) + Θ(n) for n > 1 and C(1) = 0

a = 2; b = 2; d = 1

a = bd
Hence, C(n) = Θ(nlogn)

Merge Sort: Space-time Tradeoff

• Unlike the sorting algorithms (insertion sort, bubble sort,
selection sort) we saw in Module 1, Merge sort incurs a
time-complexity of Θ(nlogn), whereas the other sorting
algorithms we have seen incur a time complexity of
O(n2) or Θ(n2) .

• The tradeoff is Merge sort requires additional space
proportional to the size of the array being sorted. That is,
the space-complexity of merge sort is Θ(n), whereas the
other sorting algorithms we have seen incur a space-
complexity of Θ(1).
– Algorithms that incur a Θ(1) space complexity are said to be

“in place”

Number of Inversions in an Array

• Given an array A, an inversion
is said to have occurred if i < j
and A[i] > A[j].

• Example 2 8 1 9 3 7
0 1 2 3 4 5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

The number of inversions in an array can be computed as the

Sum of the number of inversions encountered in each of the

Merging steps of the Merge Sort algorithm.

i

0 1 2 3 4 5 6 7

j

Sorted Left Half Sorted Right Half

Mid = 4, the index of the

first element in the right half

If A[i] > A[j], then

everything to the right of

Index in the sorted left

half are also going to be

greater than A[j]. Hence,

the number of inversions

due to A[i] > A[j] is:

Mid – i.

Inversions in the Merge Step (Ex.2)

0 1 2 3 4 5 6 7 8 9

14 17 19 22 25 13 16 18 20 27

Mid = 5

Inversions in the

Merging Step

= 5 + 4 + 3 + 2

= 14

Inversions in the Merge Step (Ex.2)

0 1 2 3 4 5 6 7 8 9

2 3 8 9 10 1 4 5 7 8

Mid = 5

Inversions in the

Merging Step

= 5 + 3 + 3 + 3 + 2

= 16

Total # Inversions (all Merging Steps): Ex. 3

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1 0
0 1 2 3

2

0 1 2 3

4 5 6 7
1 1

4 5 6 7

0 1 2 3 4 5 6 7

(8, 3)

(3, 2)

(8, 2) 2

(7, 4)

(7, 5)

10(2, 1); (3, 1); (8, 1);

(9, 1); (8, 4); (9, 4);

(8, 5); (9, 5); (8, 7); (9, 7)

(7, 1) (5, 4)

Total # Inversions = 1 + 0 + 2 + 1 + 1 + 2 + 10 = 17

Total # Inversions: Ex. 4

2 8 1 9 3 7

2 8 1

2 8 1

2 8 1

1 8

1 2 8

0 1 2 3 4 5

0 1 2

0 1 2

0 1 2

1
1 2

1

0 1 2

(2, 1)

2(8, 3)

(8, 7)
Total # Inversions = 1 + 1 + 2 + 2 = 6

9 3 7

3 4 5

(8, 1)

9 3 7

9 3 7

3 7

3 7 9

3 4 5

3 4 5

4 5

2

3 4 5(9, 3)

(9, 7)

1 2 3 7 8 9

0 1 2 3 4 5

Inverted Pairs

(2, 1)

(8, 1)

(8, 3)

(8, 7)

(9, 3)

(9, 7)

Finding the Maximum Integer in an
Array: Recursive Divide and Conquer

Algorithm FindMaxIndex(Array A, int leftIndex, int rightIndex)

// returns the index of the maximum left in the array A for //index

positions ranging from leftIndex to rightIndex

if (leftIndex = rightIndex)

return leftIndex

middleIndex = (leftIndex + rightIndex)/2

leftMaxIndex = FindMaxIndex(A, leftIndex, middleIndex)

rightMaxIndex = FindMaxIndex(A, middleIndex + 1, rightIndex)

if A[leftMaxIndex] ≥ A[rightMaxIndex]

return leftMaxIndex

else

return rightMaxIndex

Since we keep track of the index

positions of the maximum element

in the sub arrays, We do not need to

create additional space. So, this

algorithm is in-place.

Divide part

Conquer part

Terminating Condition

Getting ready to

divide

Max Integer Index Problem: Time
Complexity

T(n) = 2*T(n/2) + 1

i.e., T(n) = 2*T(n/2) + Θ(n0)

a = 2, b = 2, d = 0

bd = 20 = 1. Hence, a > bd

T(n) = Θ(nlogb(a)) = = Θ(n log2(2)) = Θ(n)

Note that even an iterative approach would take Θ(n) time to compute the

time-complexity. The overhead comes with recursion.

FindMaxIndex: Example

FindMaxIndex: Example (contd..)

0 1 5 6

1 2

1

3 4

3

3

5 7 8 9

5 9

5

