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Binary Search
• Binary search is an approach in which we reduce the problem size

(also referred to as the search space) by half in each iteration and 
we would have found the solution by the time the search 

space/problem size narrows down to a threshold. 

T(n) = 1 * T(n/2) + f(n)
where f(n) is the time spent to decide which of the two sub halves (each of 
size n/2) of the problem (of size n) to choose.

‘n/2’ ‘n/2’

‘n’

‘n/4’ ‘n/4’

‘n/8’ ‘n/8’

a = 1; b = 2

With f(n) being a polynomial with

d ≥ 0, a ≤ bd.

T(n) = f(n) if d > 0
T(n) = Θ(logn) if d = 0



Types of Binary Search Problems

• Classical binary search: Searching for a 

key in a sorted array.



Binary Search
3.1 Searching for a

Key in a sorted array

• Binary search is a Θ(log n) algorithm

– the array needs to be sorted. 

• Working Principle

– Define a range of indices, left index to right index, within 

which the search key could be there. 

• For an array, left index = 0, right index = n-1

– Run Iterations: In each iteration

– find the middle index = (left index + right index) / 2

• It works by comparing a search key K with the array’s middle element 

A[m]. If they match, the algorithm stops; otherwise, the same operation 

is repeated recursively for the first half of the array if K < A[m], and for 

the second half if K > A[m].

• Though binary search in based on a recursive idea, it can be easily 

implemented as a non-recursive algorithm.



3.1 Searching for a Key in a Sorted Array

Search Key

K = 70

Example

l=0     r=12     m=6

l=7     r=12     m=9

l=7     r=8       m=7

C(n) = C(n/2) + 2 for n > 1

C(1) = 1

C(n) = C(n/2) + Θ(1) for n > 1

a = 1, b = 2, d = 0
a = bd

C(n) = Θ(n0logn) = Θ(logn)



Unsuccessful Search

Search K = 10

l=0   r=12   m=6

l=0   r=5     m=2

l=0   r=1     m=0

l=1   r=1     m=1

l=1   r=0    STOP!!

3.1 Searching for a Key in a Sorted Array



3.2 Searching for a Threshold Value for a 

Monotonically Increasing or Decreasing Function

• Sample Scenario

• Consider a monotonically decreasing function f(n) = 2/n2, 
where n is a positive integer (n > 0). 

• We need to develop a Θ(logn) algorithm that would 
determine the smallest value of n (called the threshold 
value) for which f(n) would be less than a target value 't‘
(say, t = 0.01). 

n f(n) = 2/n2
n f(n) = 2/n2

1 2 9 0.0247

2 0.5 10 0.02

3 0.222 11 0.0165

4 0.125 12 0.0139

5 0.08 13 0.0118

6 0.0556 14 0.0102

7 0.0408 15 0.0089

8 0.0313 16 0.0078



• Solution Approach (for optimization problems)
• Invariants (something that will remain true throughout the 

algorithm):

– We will keep the Left Index as an ‘n’ value for which f(n) is always 
going to be greater than or equal to the threshold value

– We will keep the Right Index as an ‘n’ value for which f(n) is always 
going to be less than the threshold value.

• We will go through a sequence of iterations of Binary Search until 
the difference between the Right Index and Left Index is greater
than ONE (note: we are dealing with integers here). 

– In each iteration, the middle index is the average of the Left 
Index and Right Index.

• If f(Middle Index) < target, we set: Right Index = Middle Index

• If f(Middle Index) >= target, we set: Left Index = Middle Index

• In each iteration, either the Left Index increases or the Right Index 
decreases.

– The moment the difference between the Left Index and Right Index is 
equal to 1, we will exit from the loop and say that the value of the Right 
Index is the threshold (smallest integer) value of ‘n’ for which the 
function value is less than the target.



It # Left Index Right Index Middle Index f(Middle Index)

1 1 100 (1 + 100)/2 = 50 0.0008 < target

2 1 50 (1 + 50)/2 = 25 0.0032 < target

3 1 25 (1 + 25)/2 = 13 0.0118 > target

4 13 25 (13 + 25)/2 = 19 0.0055 < target

5 13 19 (13 + 19)/2 = 16 0.0078 < target

6 13 16 (13 + 16)/2 = 14 0.0102 > target

7 14 16 (14 + 16)/2 = 15 0.0089 < target

8 14 15 STOP!

Function f(n) = 2/n2; for n > 0

Target = 0.01

Left Index = 1; f(Left Index) = 2  > target 

Right Index = 100; f(Right Index) = 2/1002 = 0.0002 < target

Threshold = Value of Right Index when we stop the iterations

= 15

Solution: 

15 is the smallest integer for which the function f(n) = 2/n2 is less than 0.01

# Iterations = log2 ( (100-1) / 1) = log2(99) ~ 7



Practice Problem
• Given a monotonically increasing function 

f(n) = n2/10000 (where ‘n’ is an integer), 

use a binary search algorithm to find the 

largest value of ‘n’ for which f(n) is less 

than a target (say, 0.01).



3.3 Finding the Maximum or 
Minimum in a Unimodal Array

• A (maximum or a concave down) unimodal array is an array that has a 
sequence of monotonically increasing integers followed by a sequence of 
monotonically decreasing integers.

• A (minimum or a concave up) unimodal array is an array that has a 
sequence of monotonically increasing integers followed by a sequence of 
monotonically decreasing integers.

• All elements in a unimodal array are unique

• Examples for (maximum/concave down) unimodal array.
– {4, 5, 8, 9, 10, 11, 7, 3, 2, 1}: Max. Element: 11

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Max. Element: 11
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Max. Element: 11
• There is an increasing seq., but there is no decreasing seq.

• Examples for (minimum/concave up) unimodal array.
– {9, 8, 5, 4, 7, 6, 12, 14}: Min. Element: 4

• There is an increasing seq. followed by a decreasing seq.

– {11, 9, 8, 7, 5, 4, 3, 2, 1}: Min. Element: 1
• There is no increasing seq. It is simply a decreasing seq.

– {1, 2, 3, 4, 5, 7, 8, 9, 11}: Min. Element: 1
• There is an increasing seq., but there is no decreasing seq.

Concave down

Concave up



Search Range: L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

3.3 Finding the Maximum Element in a 

Concave Down Unimodal Array

0        1        2        3       4        5       6         7 8        9

13 5 8 9 10 14 11 4 2

L = 0; R = 9; m = 4: A[m] < A[m+1]

L = 5; R = 9; m = 7: A[m] > A[m+1]

L = 5; R = 7; m = 6: A[m] > A[m+1]

L = 5; R = 6; m = 5: A[m] > A[m+1]

L = 5; R = 5; return A[5] = 14

C(n) = C(n/2) + 2

Using Master Theorem,

C(n) = Θ(logn) 

Space complexity: Θ(1)



Two Scenarios

L R

M

A[M] < 

A[M+1]

M+1 M M+1

Search Space
L = 

M+1

R

Search 

Space

Scenario 1

A[M] < A[M+1]

L R

M

A[M] >

A[M+1]

M+1

Search Space
L R 

= M
Search 
Space

Scenario 2

A[M] > A[M+1]

M

A[M] >

A[M+1]

M+1



• Proof of Correctness
– We always maintain the invariant that the maximum 

element lies in the range of indexes: L…R.

– If A[m] < A[m+1], then, the maximum element has to 
be either at index m+1 or to the right of index m+1. 
Hence, we set L = m+1 and retain R as it is, 
maintaining the invariant that the maximum element is 
in the range L…R.

– If A[m] > A[m+1], then, the maximum element is either 
at index m or before index m. Hence, we set R = m 
and retain L as it is, maintaining the invariant that the 
maximum element is in the range L...R.

– The loop runs as long as L < R. Once L = R, the loop 
ends and we return the maximum  element.

3.3 Finding the Maximum Element in a 

Concave Down Unimodal Array



L = 0; R = n-1

while (L < R) do

m = (L+R)/2

if A[m] < A[m+1]

L = m+1  // max. element is from m+1 to R

else if A[m] > A[m+1]

R = m // max. element is from L to m

end while

return A[L]

3.3 Finding the Maximum Element in a 

Concave Down Unimodal Array
0        1        2        3       4        5

3 5 8 9 10 14

L = 0; R = 5; m = 2: A[m] < A[m+1]

L = 3; R = 5; m = 4: A[m] < A[m+1]

L = 5; R = 5; return A[5] = 14



Practice Problem

• Design a binary search algorithm to find 

the minimum element in a concave up 

unimodal array. Run the algorithm on the 

following array and find the minimum.

{9, 8, 5, 4, 7, 6, 12, 14}



3.4 Local Minimum in One-Dimension 
and Two-Dimension Arrays

• Problem: Given an array A[0,…, n-1], an element at index i 
(0 < i < n-1) is a local minimum if A[i] < A[i-1] as well as A[i] 
< A[i+1]. That is, the element is lower than the element to 
the immediate left as well as to the element to the 
immediate right.

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Example:
– Let A = {8, 5, 7, 2, 3, 4, 1, 9}; the array has several local minimum. 

These are: 5, 2 and 1.

• Algorithm: Do a binary search and see if every element we 
index into is a local minimum or not.
– If the element we index into is not a local minimum, then we search 

on the half corresponding to the smaller of its two neighbors.



Local Minimum in an Array

8 5 7 2 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is a local minimum.

Examples

1)

8 5 2 7 3

0        1        2        3       4        5       6         7

4 1 9

Iteration 1: L = 0; R = 7; M = (L+R)/2 = 3   Element at A[3] is NOT a local minimum.

Search in the space [0…2] corresponding to the smaller neighbor ‘2’

Iteration 2: L = 0; R = 2; M = (L+R)/2 = 1   Element at A[1] is NOT a local minimum.

Search in the space [2…2] corresponding to the smaller neighbor ‘2’

Iteration 3: L = 2; R = 2; M = (L+R)/2 = 2. Element at A[2] is a local minimum.

2)



Local Minimum in an Array

Examples

Iteration 1: L = 0; R = 10; M = (L+R)/2 = 5   Element at A[5] is NOT a local minimum.

Search in the space [6…10] corresponding to the smaller neighbor ‘1’

Iteration 2: L = 6; R = 10; M = (L+R)/2 = 8   Element at A[8] is NOT a local minimum.

Search in the space [9…10] corresponding to the smaller neighbor ‘-8’

Iteration 3: L = 9; R = 10; M = (L+R)/2 = 9. Element at A[9] is a local minimum. STOP

3)
-2 -5 5 2 4

0        1        2        3       4        5       6         7 8        9       10

7 1 8 0 -8 10

Time-Complexity Analysis
Recurrence Relation: T(n) = T(n/2) + 3 for n > 3

Basic Condition: T(3) = 2

Using Master Theorem, we have

a = 1, b = 2, d = 0 � a = bd. 

Hence, T(n) = Θ(nd logn) = Θ(n0 logn) = Θ(logn)

Space Complexity: As all evaluations are done on the input array itself, no extra

space proportional to the input is needed. Hence, space complexity is Θ(1).

One comparison for A[M] with A[M+1]

One comparison for A[M] with A[M-1]

One comparison for A[M-1] with A[M+1]



Local Minimum in an Array

• Constraints: 
– The arrays has at least three elements

– The first two numbers are decreasing and the last two numbers are 
increasing.

– The numbers are unique

• Theorem: If the above three constraints are met for an 
array, then the array has to have at least one local 
minimum.

• Proof: Let us prove by contradiction. 
– If the second number is not to be a local minimum, then the third 

number in the array has to be less than the second number. 

– Continuing like this, if the third number is not to be a local minimum, 
then the fourth number has to be less than the third number and so 
on. 

– Again, continuing like this, if the penultimate number is not to be a 
local minimum, then the last number in the array has to be smaller 
than the penultimate number. This would mean the second 
constraint is violated (and also the array is basically a 
monotonically decreasing sequence). A contradiction.



• An element is a local 
minimum in a two-dim array if 
the element is the minimum 
compared to the elements to 
its immediate left and right as 
well as to the elements to its 
immediate top and bottom. 
– If an element is in the edge 

row or column, it is compared 
only to the elements that are 
its valid neighbors.

(i, j)

(i-1, j)

(i, j-1) (i+1, j)

(i-1, j)

(i, j)

(i-1, j)

(i, j-1)

(i-1, j)

Rightmost column

(i, j)

(i-1, j)

(i+1, j)

(i-1, j)

Leftmost Column

(i, j)

(i-1, j)

(i, j-1) (i+1, j)
Bottommost 

Row

(i, j)(i, j-1) (i+1, j)

(i-1, j)

Topmost 

Row

Local Minimum in a Two-Dimensional Array



Given an array A[0…numRows-1][0…numCols-1]

TopRowIndex = 0

BottomRowIndex = numRows – 1

while (TopRowIndex ≤ BottomRowIndex) do
MidRowIndex = (TopRowIndex + BottomRowIndex) / 2

MinColIndex = FindMinColIndex( A[MidRowIndex][ ] )

/* Finds the col index with the minimum element in the row 
corresponding to MidRowIndex */

MinRowIndex = FindMinRowIndexNeighborhood (A, MidRowIndex, 
MinColIndex)

/* Finds the min entry in the column represented by MinColIndex
and the rows MidRowIndex, MidRowIndex – 1, 

MidRowIndex + 1, as appropriate */

if (MinRowIndex == MidRowIndex)

return A[MinRowIndex][MinColIndex]
else if (MinRowIndex < MidRowIndex)

BottomRowIndex = MidRowIndex – 1

else if (MinRowIndex > MidRowIndex)
TopRowIndex = MidRowIndex + 1

end While

Local Minimum in a Two-Dimensional Array



Local Minimum in a Two-Dim Array: Ex. 1

0

1

2

3

4

5

6

0           1         2           3          4          5       6

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1
Use the 

FindMinColIndex

function

Use the function

FindMinRowIndexNeighborhood



Local Minimum in a Two-Dim Array: Ex. 1 (1)

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Iteration 2

0

1

2

3

4

5

6

0           1         2           3          4          5       6

Top Row Index

Bottom Row Index

Mid Row Index

The minimum element 

12 in Mid Row is smaller 

than its immediate top 

(40) and bottom (33) 

neighbors
12 at (1, 3) is a local minimum



Local Minimum in a Two-Dim Array: Ex. 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 1

0

1

2

3

4

5

0           1         2           3          4          5



Local Minimum in a Two-Dim Array: Ex. 2 (1)

Top Row Index

Bottom Row Index

Mid Row Index

Iteration 2

0

1

2

3

4

5

0           1         2           3          4          5

Top Row Index

Bottom Row Index

Mid Row Index

0

1

2

3

4

5

0           1         2           3          4          5

Bottom Row Index

The minimum element 

15 in Mid Row is smaller 

than its immediate top 

bottom (35) neighbor

15 at (0, 3) is a local minimum



Local Minimum in a Two-Dimensional Array

• Time Complexity Analysis

T(n2) = T(n2/ 2) + Θ(n)

Let N = n2.

T(N) = T(N/2) + Θ(N1/2) 

Use Master Theorem: a = 1, b = 2, d = ½

We have a < bd. Hence, T(N) = Θ(N1/2) = Θ(n) 

Time complexity to search

for the minimum element in

a row

The search space reduces by half

Space Complexity: Θ(1)


