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1.0  Introduction 
 

• Epidemiology: The branch of science that deals with the study of the control and spread of 

diseases, viruses, ideas, etc., upon a population or system. 

– Epi: Upon or on 
– Demos: people 

– Logy – study 

 
• Computational Epidemiology: is a field that focuses on the study and development of 

computational techniques and tools for modeling, simulating, predicting and mitigating the spread 

of diseases, viruses, etc. 

 
Compartmental Models 

 

• The population is assigned to non-overlapping compartments, identified with labels: such as, S – 
Susceptible, E – Exposed, I – Infected, R – Recovered, etc. 

• The order of the labels in a model name typically follows the flow patterns between the 

compartments: 
– For example: SIR model means an individual moves from susceptible state to infected 

state and then to recovered state. This implies, a susceptible individual cannot directly 

move to recovered state in unit time. Also, a recovered individual is no longer 

susceptible. 
– SIS model means an individual moves from susceptible state to infected state and then 

moves back to susceptible state. 

• The models try to predict the spread of a disease, the total number of infected at any time, the 
duration of an epidemic, etc. 

 

SI 
SIS 

SIR 

SIRS 

 
All the models studied here do not take into consideration "vital dynamics" (also called "demographic 

data"): i.e., birth rate and death rate 
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1.1   SI Model 
 

S(t) - # susceptible individuals 

I(t) - # infected individuals 

 
N = 1000 

S(t = 0) = 990 

I(t = 0) = 10 
 

S(t = 1) = 950 

I(t = 1) = 50 

 
S(t = 2) = 900 

I(t = 2) = 100 

 
At any time t, S(t) + I(t) = N, the total # individuals 

 

The probability that an infected individual will come into contact with a susceptible individual at time t is 
S(t)/N 

 

The infected individual spreads the disease with probability β (measured as the probability for an 

infection per time unit).  
 

Let <k> be the "average" number of contacts per infected individual. 

 
The probability that these contacts can be among the susceptible individuals is S(t)/N 

 

>< k
N

tS
*

)(
 is the number of contacts who are also susceptible for the infected individual 

 

Hence, the number of susceptible individuals (among the contacts) infected by an infected individual at 

time t is β**
)(

>< k
N

tS
 

 
------------------- 

<k>β is the number of contacts that can be infected by the infected individual and is also called the 

transmissibility or transmission rate.  
-------------- 

 

Considering that there at I(t) infected individuals at time t, the total number of susceptible individuals 
infected by the I(t) infected individuals is I(t)* <k>β* S(t)/N 

 

---------------------------- 
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The change in the number of infected individuals, denoted as dI(t), occurring over a time period dt, is 

given by: 
 

From time t ... t+dt 

Change in the number of infected individuals = dI(t) = I(t+dt) - I(t) = I(t)* <k>β* S(t)/N * dt 

 
Rate of change in the number of infected individuals I(t) with respect to time 

// differential equation 

NtSktI
dt

tdI
/)(*)*(

)(
β><=                 .............................. (1) 

 

Let s(t) = S(t)/N and i(t) = I(t)/N be the fractions of susceptible and infected individuals at time t.  
For simplicity, we can denote s(t) as s and i(t) as i. 

 

Divide both sides of (1) by N, we get:  
 

NtSktI
dt

tdI
/)(*)*(

)(
β><=  

 

N

NtSktI

Ndt

tdI /)(*)*()( β><
=  

 

NtSkNtI
Ndt

tdI
/)(**/)(

)(
β><=  

 

I(t) / N = i(t) = i 
 

i.e., ski
dt

di
** β><=  

 

Hence,  

)1(** iki
dt

di
−><= β            ............................................. (2) 

 
S(t) + I(t) = N // invariant - something that is maintained at all the time instants 

 

S(t) + I(t)      N 

-----------  = ---- = 1 
     N             N 

 

In the SI model, s(t) + i(t) = 1 at any time t. 
 

0=+
dt

di

dt

ds
 

 

dt

di

dt

ds
−=  
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ski
dt

ds
** β><−=  

 

 
Let the initial condition be that i = i0 at t = 0. 

 

 

Final equation for SI Model 

 

tk

tk

eii

ei
i

β

β

><

><

+−
=

*)1(

*

00

0                     

.................................. (6) 

 
We plot aside, i as a function of t for two 

different values of i0: 0.0001 and 0.000001. 

For both cases, <k>β (referred to as the 
transmission rate): the number of contacts 

that can be infected by the infected 

individual is assumed to 1.5. 
 

 

 

For all practical purposes, i0 is very small compared to 1. Hence 1- i0 ~ 1. 

Hence, 
tk

tk

ei

ei
i

β

β

><

><

+
=

*1

*

0

0  

 

Observations: 

(1) At the beginning, the fraction of infected individuals grows exponentially with time, as S(t)/N is close 
to 1 in the beginning and everyone an infected individual encounters is most likely to be a susceptible 

individual. 

(2) Characteristic time is the time it takes for the fraction of infected individuals to be (1/e ~ 36% ) of the 
entire population. 

 

When t is small: 

 

tk

tk

eii

ei
i

β

β

><

><

+−
=

*)1(

*

00

0  

 

 

When t->0, the denominator tends to (1-i0) + i0*e^0 ~ 1-i0+i0*1 = 1 

==> 
tkeii β><= *0  

Thus, at the beginning, the fraction of infected individuals grows exponentially with time, as S(t)/N is 
close to 1 in the beginning and everyone an infected individual encounters is most likely to be a 

susceptible individual. 
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To estimate the characteristic time, we need to evaluate t for i = 0.36 ( = 1/e). 

e = 2.7183 
1/2.7183 = 0.36 

 

 

tk

tk

ei

ei
i

β

β

><

><

+
=

*1

*

0

0 = 0.36 

 
tkei β><*0  = 0.36 + 0.36*

tkei β><*0  

]36.01[*0 −>< tkei β
 = 0.36  

 

0.64*
tkei β><*0  = 0.36 

 

If i0 = 0.0001 and <k>β = 1.5,  

0.64*0.0001*e^(1.5*t) = 0.36 

e^(1.5*t) = 5625 
 

5625 = e^(1.5*t) 

 
1.5t = ln(5625) = 8.635 

t = 5.75 units 

 
If i0 = 0.000001 and <k>β = 1.5,  

0.64*0.000001*e^(1.5*t) = 0.36 

e^(1.5*t) = 562500 

1.5t = ln(562500) = 13.24 
t = 8.83 units 

 

The SI model forms the basis for other epidemic models, but is however not realistic enough as most 
infected individuals recover with the body's immune system or through medical treatment.  

 

Practice Problems: 

(1) Analyze the impact of the term <k>β  (1.5 and 2.5) on the rate of increase in the fraction of infected 

individuals with time for a given 0i  (0.0001) 

 

--------------------- 
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1.2  SIS Model 
 

The SIS model comprises of the same two states (Susceptible-S and Infected-I) of the SI model, but 

considers the possibility of the infected individuals to recover (and thereby they again become 

susceptible). 
 

 
 

Diseases caused by bacteria are usually of SIS type. 

   

The infected individual is assumed to spend an average of 1/µ time units in the infected state, where µ is 
the probability that an infected individual will recover at any time unit (and will be considered 

susceptible). 

 
µ = 0.2 is the probability that an infected individual will recover on a particular day 

1/ µ = 5 is the number of days (on average) an infected individual will recover 

 

1/ µ = average time period for an infected individual to recover = 5 days 
 

 

For example, if 1/µ = 5 ==> µ = 0.2. This implies, if we generate 5 random numbers (one trial) in the 
range of 0 to 1, we can expect to see one among the 5 random numbers to be less than or equal to 0.2. To 

be more statistically thorough, we can repeat the trials a large number of times (say 100 trials) and obtain 

a total of 5*100 = 500 random numbers and sort them, we can expect to see around 100 random numbers 
out of the 500 random numbers (~100/500 = 0.2) to be less than or equal to 0.2.  
 

As per the SI model, we have (eq. 2) 

 

)1(** iki
dt

di
−><= β            ............................................. (2) 

 

We enhance this model to mimic the SIS model as follows: 

 

If µ is the probability with which an infected individual can recover at a particular time unit, the 
probability that an infected individual will recover in dt time units is µ*dt. There are I(t) infected 

individuals at time t and the number of infected individuals who would have recovered by time t +dt is: 

µ*dt * I(t). 
 

Going from fundamentals, we can enhance and write the differential equation for I(t) as follows: 

 

dttIdtNtSktItdI *)(**/)(*)*()( µβ −><=  

 

)(*/)(*)*(
)(

tINtSktI
dt

tdI
µβ −><=  
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Dividing by 'N' on both sides, we get: 
 

N

tI

N

NtSktI

Ndt

tdI )(*/)(*)*()( µβ
−

><
=  

 

i(t) = I(t)/N 

s(t) = S(t)/N 

iski
dt

di
**** µβ −><=  

 
s+i = 1 

S(t) + I(t) = N 

 

iiki
dt

di
*)1(** µβ −−><=   ..................................(7) 

 
The term µ*i captures the rate at which the infected individuals recover from the disease. 

 

The solution for the differential equation of (7) is: 
 

( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1          ........................... (8) 

where C is an integration constant whose value (obtained by setting i = i0 @ t = 0) is as follows: 

( )><−−
=

ki

i
C

βµ /1 0

0                    ............................. (9) 

 

 

For all practical purposes, C can be simplified as (considering that i0 is much smaller than 1): 

( )><−
=

k

i
C

βµ /1

0                 ......................................... (10) 

 

 
When t is closer to 0: 

 

From equation (8), we have: 

( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1  

 
( )tkCe µβ −><+1 can be approximated to 1: as 

( )tkCe µβ −><
~ C and C can be considered to be reasonably 

smaller than 1 (i.e., the term 
( )tkCe µβ −><

 becomes greater than 1, only if 
( )tke µβ −><

becomes greater than 

1 and not due to C).  

 
Hence, Equation (8) simplifies to, 
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( )tk
Ce

k
i

µβ

β

µ −><










><
−= 1  

Substituting for C from equation (10) in the above equation, we get: 

 

( )
( )tk

e
k

i

k
i

µβ

βµβ

µ −><

><−








><
−=

/1
1 0  

 

i.e., 
( )tkeii µβ −><= *0        .................... (11) contributing to an exponential outbreak at the early stages. 

 

When t is closer to ∞: 

 
( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1  

 
( )tkCe µβ −><

 will be much greater than 1 and hence,  
( )

( )tk

tk

Ce

Ce
µβ

µβ

−><

−><

+1
~ 1 

 
( )

( )tk

tk

Ce

Ce
µβ

µβ

−><

−><

+1
=

( )

( )tk

tk

Ce

Ce
µβ

µβ

−><

−><

~1 

 

Therefore, i of equation (8) reduces to: 
( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1  

 










><
−=

k
i

β

µ
1            ....................... (12), the spread is considered to have reached an endemic state 

(i.e., saturated: the fraction of infected individuals is a constant). 

 









−=

0

1
1

R
i  
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Figure: Simulation of the SIS Model, β<k> = 1.5 

 

 

 

 
 

Figure: Simulation of the SIS Model, µ = 1.0 

 

Basic Reproductive Number 

For the SIS model, we define the basic reproductive number as 
µ

β ><
=

k
R0  and define the 

characteristic time as 
( )1

1

0 −
=

Rµ
τ  for diseases with R0 > 1. 
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infectious period (period for which an infection exists) = 
µ

1
 

 
The basic reproductive number represents the average number of susceptible individuals infected by an 

infected individual during its infectious period in a fully susceptible population. One important 

assumption is that R0 represents the number of individuals an infected individual can infect if all its 
contacts are susceptible. In other words, R0 is the number of new infections each infected individual 

causes under ideal circumstances. 

 
 

If R0  > 1, it implies that each infected individual on average can infect more than one healthy/susceptible 

person and/or the average infectious period per person is larger; the pathogen is predicted to exist and 

eventually reach an endemic state where the fraction of infected individuals is 1-1/R0. The larger the R0, 
the faster the spread (i.e., the pathogen/epidemic quickly reaches the endemic state) and the larger the 

fraction of infected individuals. 

 
If R0 < 1, an infected individual on average can infect less than one susceptible person and/or the average 

infectious period person is smaller, and the pathogen eventually disappears from the population. The 

lower is the R0 < 1, the more sooner the pathogen/epidemic will disappear. 
 

 

 
(adapted from [https://www.npr.org/sections/goatsandsoda/2021/08/11/1026190062/covid-delta-variant-
transmission-cdc-chickenpox]) 

 
Disease Transmission R0   

Measles Airborne 12-18 

Pertussis Airborne droplet 12-17 

Diptheria Saliva 6-7 

Smallpox Social contact 5-7 

Polio Fecal oral route 5-7 

Rubella Airborne droplet 5-7 

Mumps Airborne droplet 4-7 

HIV/AIDS Sexual contact 2-5 

SARS Airborne droplet 2-5 

Influenza Airborne droplet 2-3 

COVID-19 
(original strain) 

Airborne droplet,  
Social contact, Saliva 

2-3 

COVID-19 

(delta variant) 

Airborne droplet,  

Social contact, Saliva 

5-6 
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Practice Problems: 
(1) Determine the value of the transmission rate (term <k>β) for a given R0, t, i0 and i. Also, determine 

the value of µ. 

i0 = 0.0001, R0 =  3, i = 0.5, t = 5 

 
( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1             

µ

β*
0

><
=

k
R =  3 

 

t
k

t
k

Ce

Ce

k
i









−

><









−

><

+

















><
−=

1

1

1

1
1

µ

β
µ

µ

β
µ

µ

β
 

 
( )

( )513

513

13

1
15.0

−

−

+








−=

µ

µ

Ce

Ce
 

( )><−
=

k

i
C

βµ /1

0  = 0.0001 / [1 - 1/3] = 0.00015 

 

 

µ

µ

10

10

00015.01

00015.0

3

1
15.0

e

e

+








−=  

µ

µ

10

10

00015.01

0001.0
5.0

e

e

+
=  

 
0.5 + 0.000075e^(10µ) = 0.0001e^(10µ) 

 

0.5 = 0.000025e^(10µ) 

 
e^(10µ) = 0.5/0.000025 = 20000 

 

)20000ln()(log 10 =µe
e

 

10µ = ln(20000) = 9.9035 

µ = 9.9035/10 = 0.99 
 

µ

β*
0

><
=

k
R = 3 = 

99.0

*β>< k
 

 

<k>β = 2.97 

 

 
What happens when µ > β<k> 

i.e., the recovery rate greater than the number of individuals who can get infected when in contact with 

one infected individual 
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( )

( )tk

tk

Ce

Ce

k
i

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1          ........................... (8) 

 

( )><−
=

k

i
C

βµ /1

0  

 

the exponent in equation (8) becomes negative; the number of infected individuals decreases 

exponentially and the disease soon dies out. 
 

 
SIS model with µ = 1 and µ = 0.5 vs. β<k> = 0.95, i0 = 0.001 

 
 

Practice Problem 2:  

Consider the spread of an epidemic under the SIS model. The R0 and characteristic time for the epidemic 
are 3 and 10 days respectively.  

(a) What is the average duration of infection for a person? 

(b) If the fraction of the people infected during the 30th day of the epidemic is 0.5, draw a plot that 
presents the fraction of the people infected during each of the first 100 days of the epidemic. 

 

Solution: 

Characteristic Time: Is the time it takes for the disease to reach an Equilibrium state (steady-state) 

Characteristic time for SIS model,
( )1

1

0 −
=

Rµ
τ  = 10 days 

 

( )
10

13

1
=

−
=

µ
τ  
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202*10
1

==
µ

 

 
 

20)13(*10
1

=−=
µ

 days is the average duration of infection for a person. 

 

µ = 1/20 = 0.05 is the probability with which an infected person will recover on a particular day 

 

 
R0 = 3 = <k>β / µ ; <k> is the average # of susceptible contacts per infected individual 

        β is the probability with which an infected individual can spread the disease to a  

   susceptible individual per unit time when comes into contact with the latter  
 

<k>β = R0 * µ = 3*0.05 = 0.15. 

 
R0 = <k>β / µ 

 

1/R0 = µ / <k>β  

 

Per the SIS model, 

( )

( )tk

tk

Ce

Ce

k
ti

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1)(  ...................... (8) 

 

Given that i(t = 30) = 0.5, we have: 

 
( )

30)05.015.0(

3005.015.0

13

1
15.0)30(

−

−

+








−===

Ce

Ce
ti  

 

The value for e is 2.7183 

 

086.20*1

391.13*

086.20*1

086.20*

3

2
5.0

C

C

C

C

+
=

+








=  

 

5.0
086.20*1

391.13*
=

+ C

C
 

 

C*13.391 = 0.5*[1+C*20.086] 
 

C*13.391 = 0.5 + C*10.043 

C*[13.391-10.043] = 0.5 
 

C = 0.5 / (13.391 - 10.043) = 0.1493 

 
The epidemic becomes an endemic when the fraction of infected people i = 1 - 1/R0. = 1 - 1/3 = 0.6667.  

 

Substituting back for C = 0.1493 in equation (8) for the SIS model 
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( )

( )tk

tk

Ce

Ce

k
ti

µβ

µβ

β

µ
−><

−><

+








><
−=

1
1)(  

 

( )t

t

e

e
ti

05.015.0

)05.015.0(

*1493.01

*1493.0

3

1
1)(

−

−

+








−=  
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1.3   SIR Model 
 

The infected people recover at rate µ and enter to the Recovered (R) state. The dead people are also 

considered to have moved to the R state. 

 
Diseases caused by viruses are usually of SIR type. 

 

Let R(t) represents the number of recovered people at time t out of a population of N. 
 

If i(t) (simply represented as i) represents the fraction of infected people: I(t)/N at time t,  

the rate at which the fraction of recovered people r(t) (simply represented as r) = R(t)/N changes in a time 

period dt given by: 
 

 
 

------------------ 
r(t+dt) = r(t) + i*µ*dt 

r(t+dt) – r(t) = dr(t) = i*µ*dt 

 
dr(t) 

------ = i*µ 

dt 
 

In time dt, the probability with which an infected person can recover is µ*dt 

 

i(t) is the fraction of infected people at time t 
Fraction of infected people who will recover in time ‘dt’ is i(t) * µ*dt 

= i*µ*dt 

----------------------------- 
 

i
dt

dr
*µ=             ............................... (9) 

 

 

Let S(t) represents the number of susceptible people at time t out of a population of N and s(t) = S(t)/N 
represents the fraction of susceptible people at time t (simply represented as s).  

 

At any time t, s + i + r = 1 

 
s = 1-i-r 

 

An infected individual can infect its contacts (<k> in number) with a probability β. The average fraction 
of susceptible contacts that can get infected per infected individual is s*<k>*β. With i as the fraction of 

infected people, the fraction of susceptible population getting infected at time dt is i*s*<k>*β, which is: 

i*(1-i-r) *<k>*β. 
 

---------------- 

s(t) 
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s(t+dt)  

 
β is the probability with which a susceptible person can get infected by an infected individual per time 

unit (per day) 

 

 
fraction of susceptible contacts (people) who can get infected by an infected individual per time unit = 

s*<k>*β 

 
There are 'i' fraction of infected people 

 

Fraction of susceptible people who can get infected by 'i' fraction of infected people per time unit  
is i*s*<k>*β 

 

Fraction of susceptible people who can get infected by 'i' fraction of infected people for 'dt' time units  

is i*s*<k>*β*dt 
 

 

s(t) > s(t+dt) 
s(t) - s(t+dt) = i*s*<k>*β*dt 

 

ds(t) = s(t+dt) - s(t) = - i*s*<k>*β*dt 
 

ds(t): change in the fraction of susceptible people 

 

ds(t)/dt = - i*s*<k>*β 
 

--------------- 

( )riik
dt

ds
−−><−= 1**β            .................................. (10) 

 

 

Note that i*(1-i-r) *<k>*β is the fraction of newly infected people in time dt and µ*i is the fraction of the 

infected people who have recovered in time dt. 
 

--------------- 

 
i(t) is the fraction of infected people at time t 

 

susceptible --> infected: i(t)*s(t)*<k>*β*dt  
infected --> recovered: i(t)*µ*dt 

 

i(t+dt) = i(t) + i(t)*s(t)*<k>*β*dt - i(t)*µ*dt 

di(t) = i(t+dt) - i(t) = i(t)*s(t)*<k>*β*dt - i(t)*µ*dt 
 

di(t)/dt = i*s*<k>*β - i*µ 

 
--------------- 

 

All Copyrights 

Dr. Natarajan Meghanathan 

natarajan.meghanathan@
jsums.edu 

Jackson State University



 17 

Hence, ( ) iriik
dt

di
*1** µβ −−−>=<      .................................. (11) 

 

( )[ ]µβ −−−><= riki
dt

di
1**  

 

Let s0 and i0 represent the fraction of susceptible people and infected people respectively at time 0.  
At time 0, there are no recovered people. Hence, s0 + i0 = 1. 

 

At any time t > 0, the fraction of susceptible people can only decrease as they get infected. Hence,  

s(t) <= s0 
s <= s0 

 

( )ri −−1  (which is s) is always less than or equal to s0. 

 

Hence, ( )[ ]µβ −−−>< riki 1**  ≤  [ ]µβ −>< 0** ski   

 

Therefore, [ ]µβ −><≤ 0** ski
dt

di
                        ..................................... (12) 

 

Basic Reproductive Number 
 

For the rate of infection to decrease over time, di/dt < 0 

 

( )[ ]µβ −−−><= riki
dt

di
1**  

 

( )[ ] 01** <−−−><= µβ riki
dt

di
 

 
Since i is a fraction 0 ≤ i ≤ 1,  

 

for di/dt < 0: ( )[ ]µβ −−−>< rik 1*  < 0 

 

( )[ ]µβ −−−>< rik 1*  < 0 

 

i.e., ( ) µβ <−−>< rik 1*  

 

( ) βµ ><<−− kri /1  

 

βµ ><< ks /  

 
 

Note that R0 = µβ />< k  is the basic reproductive number for the SIS model (also applicable for the 

SIR model). 
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Hence, for the SIR model if 0/1 Rs < , the rate of infection spread with time will decrease and will 

eventually die down. 

For any time t, if di/dt has to be less than 0, we need s(t) < 1/R0 
 

i.e., if at any time, the fraction of susceptible people is < the inverse of the basic reproductive number, the 

pathogen will NOT spread and die down eventually from the population. 

 
Herd Immunity:  

If the fraction of susceptible people, s(t) < 1/R0, then the epidemic will eventually die down on its own 

 
Fraction of susceptible people + Fraction of non-susceptible people = 1 

Fraction of susceptible people + Fraction of non-susceptible (vaccinated) people = 1 

Fraction of vaccinated people = 1 - Fraction of susceptible people 
 

0+s < 0+1/R0 

 

s < 1/R0 
 

-s >= -1/R0 

1-s >= 1-1/R0 
v = fraction of vaccinated people  

 

If v >= 1 - 1/R0, then the epidemic will die down on its own 
Achieving Herd Immunity 

 

 

 
 

 

Determining a Closed Form Expression for the fraction of infected people i at any time   
 

From equations (10) and (11), we have: 

 

( )riik
dt

ds
−−><−= 1**β            .................................. (10) 

 

( )[ ]µβ −−−><= riki
dt

di
1**             .................................. (11) 

 

We can write s as ( )ri −−1 . 

 

Hence, we can write equations (10) and (11) as: 

 

sik
dt

ds
**β><−=                 ................................ (12) 

 

[ ]µβ −><= ski
dt

di
**       ................................ (13) 
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Divide (13) by (12), we get: 
 










><

−><
−=

sk

sk

ds

di

*

*

β

µβ
 

 

i.e., 
skds

di

*
1

β

µ

><
+−=             .................... (14)          

 

R0  = <k>β/µ 

1/R0 = µ/<k>β 
 

s

ds

R
dsdi *

1

0

+−=          ...................... (14) 

Integrating both sides of (14): the LHS with respect to i and the RHS with respect to s, we get: 

 

∫∫∫ +−=
s

s

s

s

i

i
s

ds

R
dsdi

000

*
1

0

 

 

s

s

s

s

i

i
s

R
si

000
)ln(*

1

0

+−=  

( ) ( ) ( )0

0

00 lnln*
1

ss
R

ssii −+−−=−  

 

( ) ( ) 







+−−=−

00

00 ln*
1

s

s

R
ssii  

Hence, 







+−+=

00

00 ln*
1

s

s

R
ssii  

But, 100 =+ si  

Therefore, 







+−=

00

ln*
1

1
s

s

R
si                  .................. (15) 

Equation (15) models the fraction of infected people (i) at any time on the basis of only the fraction of 

suspected people at any time (s), even though there is another variable (r) in the SIR model. 

 

 
 

Determining the Maximum Number of Infected People at any time per the SIR model 

 
From equation (14), 

skds

di

*
1

β

µ

><
+−=  
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The maximum occurs when the slope of the curve (modeled by the equation (15)) given by equation 14 

reaches 0. 
 

i.e., 0
*

1 =
><

+−=
skds

di

β

µ
 

Solving for s,   1
*

=
>< sk β

µ
 

we get: 
0

1

Rk
s =

><
=

β

µ
 

Hence, for i to be the maximum, the fraction of susceptible people s has to be 1/R0. 
 

Substituting for s = 1/R0 in equation (15), we get: 









+−=

0000

max
*

1
ln*

11
1

sRRR
i  

[ ])*ln()1ln(*
11

1 00

00

max sR
RR

i −+−=  

[ ])*ln(0*
11

1 00

00

max sR
RR

i −+−=  

 [ ])*ln(*
11

1 00

00

max sR
RR

i −−=  

[ ])*ln(1*
1

1 00

0

max sR
R

i +−=                .................................... (16) 

 

s+i+r = 1 
 

Note that from equation (16), we can infer that the minimum number of people who are not infected at 

any time min)( rs + is max1 i−  = [ ])*ln(1*
1

00

0

sR
R

+  

i.e., [ ])*ln(1*
1

)( 00

0

min sR
R

rs +=+                    ................. (17)           

Consider 0s = 1,  

For 0R = 1, [ ] 0)1ln(1*
1

1
1max =+−=i         min)( rs + = 1 

For 0R = 5, [ ] 4781.0)5ln(1*
5

1
1max =+−=i      min)( rs +  = 0.5219   

For 0R = 10, [ ] 6697.0)10ln(1*
10

1
1max =+−=i     min)( rs + =0.3303 
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s0 = 1 
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1.4   Discrete Event Simulation of the SIR Model 
 

We will start with s0 > 0, i0 > 0 and r0 = 0.  i.e., s0+i0 = 1 
 

we will proceed with discrete times, t = 0, 1, 2, 3, ... 
 

Let s(t), i(t) and r(t) be respectively the fractions of susceptible, infected and recovered people/nodes at 

time t, and be simply represented as s, i an r. Note that s + i + r = 1 for any time instant t. 
 

The infected individual spreads the disease with probability β (per time unit).  
 

Let <k> be the average number of contacts per infected individual. 
 

<k>β is the average number of contacts that can be infected by the infected individual and is also called 
the transmissibility or transmission rate.  

 

<k>β is the average number of susceptible contacts that can be infected by the infected individual. 

 

Fraction of nodes that became newly infected at t+1 = sik **β><   

// Note: To get infected, a contact node has to be currently susceptible 

Fraction of nodes that became newly infected at t+1 can also be written as = )1(** riik −−>< β  

 

Fraction of nodes that specifically recover at t+1 =  µ*i  

// Note: To recover, a node has to be currently infected 
 

Fraction of total nodes that are susceptible at the end of t+1 is: siks **β><−  

Fraction of total nodes that are infected at the end of t+1 is: µβ *** isiki −><+  

Fraction of total nodes that have recovered at the end of t+1 is: µ*ir +  

 

Example 1: Let <k> = 4, β = 0.3, µ = 0.5, s0 = 0.99, i0 = 0.01 
 

Time, t Newly infected Newly recovered s i r Total fraction 
0 - - 0.99 0.01 0 1 

1 0.01188 0.005 0.97812 0.01688 0.005 1 

2 0.019813 0.00844 0.958307 0.028253 0.01344 1 

3 0.03249 0.014126 0.925817 0.046616 0.027566 1 

4 0.05179 0.023308 0.874028 0.075098 0.050875 1 

5 0.078765 0.037549 0.795263 0.116314 0.088423 1 

6 0.111 0.058157 0.684262 0.169157 0.14658 1 

7 0.138898 0.084579 0.545365 0.223476 0.231159 1 

8 0.146251 0.111738 0.399114 0.257989 0.342897 1 

9 0.12356 0.128995 0.275553 0.252555 0.471892 1 

10 0.083511 0.126278 0.192042 0.209788 0.598169 1 

11 0.048346 0.104894 0.143696 0.15324 0.703064 1 

12 0.026424 0.07662 0.117272 0.103044 0.779684 1 

13 0.014501 0.051522 0.102771 0.066023 0.831206 1 

14 0.008142 0.033012 0.094629 0.041154 0.864217 1 

15 0.004673 0.020577 0.089956 0.02525 0.884794 1 

16 0.002726 0.012625 0.08723 0.015351 0.897419 1 

17 0.001607 0.007675 0.085623 0.009282 0.905095 1 

18 0.000954 0.004641 0.084669 0.005595 0.909736 1 

19 0.000568 0.002797 0.084101 0.003366 0.912533 1 

20 0.00034 0.001683 0.083761 0.002023 0.914216 1 
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Sum 0.906239 0.914216 8.591581 1.830455 10.57796  

Std Dev. 0.050263 0.044342 0.369433 0.088612 0.380764  

 

      
 Frac. of total nodes that are susceptible          Frac. of total nodes that are infected            Frac. of total nodes that have recovered 

 

SIR Model (Ex. 1): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status 

<k> = 4, β = 0.3, µ = 0.5, s0 = 0.99, i0 = 0.01 

 
 

      
 

Frac. of total nodes that are susceptible          Frac. of total nodes that are infected            Frac. of total nodes that have recovered 
 

SIR Model (Ex. 2): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status 

<k> = 4, β = 0.5, µ = 0.5, s0 = 0.99, i0 = 0.01 

 

 

      
 

Frac. of total nodes that are susceptible          Frac. of total nodes that are infected            Frac. of total nodes that have recovered 
 

SIR Model (Ex. 3): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status 

<k> = 4, β = 0.7, µ = 0.5, s0 = 0.99, i0 = 0.01 

 
 

Example 2: Let <k> = 4, β = 0.5, µ = 0.5, s0 = 0.99, i0 = 0.01 
 

Time, t Newly infected Newly recovered s i r Total fraction 
0   0.99 0.01 0 1 

1 0.0198 0.005 0.9702 0.0248 0.005 1 

2 0.048122 0.0124 0.922078 0.060522 0.0174 1 
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3 0.111612 0.030261 0.810466 0.141873 0.047661 1 

4 0.229966 0.070936 0.5805 0.300903 0.118597 1 

5 0.349348 0.150451 0.231152 0.499799 0.269049 1 

6 0.231059 0.2499 9.28E-05 0.480959 0.518948 1 

7 8.92E-05 0.240479 3.53E-06 0.240569 0.759428 1 

8 1.7E-06 0.120284 1.83E-06 0.120286 0.879712 1 

9 4.41E-07 0.060143 1.39E-06 0.060143 0.939855 1 

10 1.67E-07 0.030072 1.22E-06 0.030072 0.969927 1 

11 7.37E-08 0.015036 1.15E-06 0.015036 0.984963 1 

12 3.46E-08 0.007518 1.12E-06 0.007518 0.992481 1 

13 1.68E-08 0.003759 1.1E-06 0.003759 0.99624 1 

14 8.27E-09 0.00188 1.09E-06 0.00188 0.998119 1 

15 4.1E-09 0.00094 1.09E-06 0.00094 0.999059 1 

16 2.04E-09 0.00047 1.09E-06 0.00047 0.999529 1 

17 1.02E-09 0.000235 1.08E-06 0.000235 0.999764 1 

18 5.09E-10 0.000117 1.08E-06 0.000117 0.999881 1 

19 2.55E-10 5.87E-05 1.08E-06 5.87E-05 0.99994 1 

20 1.27E-10 2.94E-05 1.08E-06 2.94E-05 0.99997 1 

Sum 0.989999 0.99997 4.504508 1.999968 14.49552  

Std Dev. 0.101171 0.078919 0.377668 0.155381 0.416386  

 

 
Example 3: Let <k> = 4, β = 0.7, µ = 0.5, s0 = 0.99, i0 = 0.01 
 

Time, t Newly infected Newly recovered s i r Total fraction 
0   0.99 0.01 0 1 

1 0.02772 0.005 0.96228 0.03272 0.005 1 

2 0.08816 0.01636 0.87412 0.10452 0.02136 1 

3 0.255817 0.05226 0.618303 0.308077 0.07362 1 

4 0.533358 0.154039 0.084945 0.687396 0.227659 1 

5 0.084945 (0.1634) 0.343698 0 0.428643 0.571357 1 

6 0 0.214322 0 0.214322 0.785678 1 

7 0 0.107161 0 0.107161 0.892839 1 

8 0 0.05358 0 0.05358 0.94642 1 

9 0 0.02679 0 0.02679 0.97321 1 

10 0 0.013395 0 0.013395 0.986605 1 

11 0 0.006698 0 0.006698 0.993302 1 

12 0 0.003349 0 0.003349 0.996651 1 

13 0 0.001674 0 0.001674 0.998326 1 

14 0 0.000837 0 0.000837 0.999163 1 

15 0 0.000419 0 0.000419 0.999581 1 

16 0 0.000209 0 0.000209 0.999791 1 

17 0 0.000105 0 0.000105 0.999895 1 

18 0 5.23E-05 0 5.23E-05 0.999948 1 

19 0 2.62E-05 0 2.62E-05 0.999974 1 

20 0 1.31E-05 0 1.31E-05 0.999987 1 

Sum 0.99 0.999987 3.529647 1.999987 15.47037  

Std Dev. 0.129099 0.090649 0.351171 0.178049 0.399462  

 

Note that if the fraction of total nodes that became newly infected at time instant t+1: 

)1(** riik −−>< β  exceeds the fraction of total nodes that are susceptible at the end of time instant t, 

then the fraction of total nodes that became newly infected at time instant t+1 is set equal to the fraction 

of total nodes that are susceptible at the end of time instant t, and the calculations are continued. If that is 
the case, then the fraction of the total nodes that are susceptible at the end of time instant t+1 becomes 0. 

In the above table (Example 3), such a situation arises at time instant t+1 = 5 where in the fraction of total 
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nodes that could become newly infected (0.1634) at time instant 5 exceeds the fraction of total nodes that 

are susceptible (0.084945) at the end of time instant 4.   
 

Example 4: Consider the Rubella disease that lasts for 11 days. A city of 30,000 people is exposed to the 

disease wherein a person is on average in contact with 6.8 other people. Let S(0) = 29,000 and I(0) = 

1,000. Assume R0 for Rubella is 5.0. Assume Rubella follows a SIR model. 
(1) Determine the number of people who are infected in the next two days. 

(2) Determine the day when the maximum number of people will be infected. What is the maximum 

number of infected people? 
(3) Determine the day when less than 1% of the population remains infected with Rubella. 

 

 
Given: <k> = 6.8  R0 = 5.0  1/µ = 11 ==> µ = 1/11 = 0.091   

 

R0 = <k>β/µ  ==> β = R0*µ/<k> = 5*0.091/6.8 = 0.067 

 
 

 
 

Answers:  

(1) Determine the number of people who are infected in the next two days = 1811.891 ~ 1812 

(2) Determine the day when the maximum number of people will be infected. What is the maximum 
number of infected people? = 14, 15363.11 ~ 15363 = 15363/30000 = 51.21% of the population 

(3) Determine the day when less than 1% of the population remains infected with Rubella. = 61 

 

All Copyrights 

Dr. Natarajan Meghanathan 

natarajan.meghanathan@
jsums.edu 

Jackson State University



 26 

 

All Copyrights 

Dr. Natarajan Meghanathan 

natarajan.meghanathan@
jsums.edu 

Jackson State University



 27 

 

 
 
Example 5: Consider an epidemic that makes a person stay infected for 6 days. A city of 30,000 people is 

exposed to the disease wherein a person is on average in contact with 6.8 other people. Let S(0) = 29,000. 

Find the maximum number of people who will be infected on any day. Assume the disease can spread 

from an infected individual to anyone with whom he/she comes into contact. 
 

Solution: 

Since the disease can spread from an infected individual to anyone with whom he/she comes into contact, 
the parameter β = 1.0 

The disease makes a person infected for 1/µ = 6 days ==> µ = 1/6  

R0 = <k>β / µ = 6.8 * 6 = 40.8 
 

N = 30,000 

S(0) = 29,000 

s0 = 29000/30000 = 0.967 

All Copyrights 

Dr. Natarajan Meghanathan 

natarajan.meghanathan@
jsums.edu 

Jackson State University



 28 

[ ])*ln(1*
1

1 00

0

max sR
R

i +−=  

 

[ ])967.0*8.40ln(1*
8.40

1
1max +−=i  = 0.8854 

 
The maximum # people who can be infected in any day = 0.8854 * 30000 = 26562 

 

 
Example 6: Consider a state of population 3 million and that 60% of this population is initially 

susceptible to a disease that spreads per the SIR model. The rest of the population are immune to the 

disease. Determine the basic reproduction number for the disease (which could be anywhere from 1 to 
20). 

 

Solution: 

Since 60% of the population are only susceptible to the disease; the largest fraction of people who are 
infected at any time can be at most 0.6. We will use imax = s0 = 0.6. 

 

[ ])*ln(1*
1

1 00

0

max sR
R

i +−=  

 

[ ])6.0*ln(1*
1

16.0 0

0

R
R

+−=  

 
Simplifying, 

 

[ ]

[ ] 4.0)6.0*ln(1*
1

6.01)6.0*ln(1*
1

0

0

0

0

=+

−=+

R
R

R
R

 

 
0.4*R0 = 1 + ln(0.6 * R0) 

 

Let LHS = 0.4*R0 and  RHS = 1 + ln(0.6 * R0) 
 

R0 = 1 ==> LHS = 0.4, RHS = 0.4891  LHS < RHS 

R0 = 20 ==> LHS = 8.0, RHS = 3.4849  LHS > RHS.  
So, the appropriate value for R0 has to be between 1 and 20. 

 

We will run binary search to determine the value of R0 for which LHS ~ RHS, with a threshold difference 

|RHS - LHS| < 0.01 
 

Invariant: Left Index, LI will correspond to a case wherein LHS < RHS 

    Right Index, RI will correspond to a case wherein LHS > RHS 
 

if LHS(MI) < RHS(MI) set LI = MI 

if LHS(MI) > RHS(MI) set RI = MI 
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LI  RI  MI = (LI+RI)/2  LHS: 0.4*MI  RHS: 1 + ln(0.6*MI) 
1  20  10.5   4.2   2.8405 

1  10.5  5.75   2.3   2.2384 

1  5.75  3.375   1.35   1.7055 
3.375  5.75  4.5625   1.825   2.0070 

4.5625  5.75  5.1563   2.0625   2.1294 

5.1563  5.75  5.4532   2.1813   2.1854 
STOP!  as |RHS-LHS| = |2.1854 - 2.1813| < 0.01 for MI = 5.4532. 

 

The value for R0 ~ 5.4532 

 
 

----------------- 

 
Example 7: Consider for the following real-time data obtained for the spread of the Influenza virus per 

the SIR model in a community of 763 people wherein one person was initially infected (on day 0). 

Assume the remaining 762 people are susceptible to the virus on day 0. Determine the R0 for the virus. 

 

Days Infected People 

3 25 

4 75 

5 228 

6 297 

7 259 

8 235 

9 192 

10 126 

11 71 

12 28 

13 9 

14 7 

 

Solution: 
 

s0 = 762/763 = 0.998689. 

i0 = 1/763 = 0.001311 
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We now compute the fraction i(t) for days 3...14. 

 

Days Infected people 
fraction, i Infected 
people / 763 

3 25 0.032765 

4 75 0.098296 

5 228 0.29882 

6 297 0.389253 

7 259 0.33945 

8 235 0.307995 

9 192 0.251638 

10 126 0.165138 

11 71 0.093054 

12 28 0.036697 

13 9 0.011796 

14 7 0.009174 

  
 

 

[ ])*ln(1*
1

1 00

0

max sR
R

i +−=  

At t = 6, i is maximum. 
imax = 0.389253 = 1 - 1/R0 [1+ ln(R0*0.998689)] 

 

We can plot the above expression in Excel for R0 values ranging from 1.01 to 5.0, in increments of 0.01. 
We can see for what value of R0, the above expression value is close to 0.389253. Using Excel, we 

observe R0 = 3.84 

 

 
 

 

------------------------- 
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1.5   SIRS Model and its Endemic State Analysis 

 
The SIR model lets the recovered individual to stay immune to the disease after the first and only 

infection. Per the SIRS model, the recovered individual returns the susceptible state at the rate (ξ; i.e., the 

average duration an individual stays in the recovered state is 1/ξ). Accordingly, the differential equations 

for the SIRS model are as follows: 
 

 

 

rsik
dt

ds
*** ξβ +><−=          ................................... (18) 

 

isik
dt

di
*** µβ −>=<       ..................................... (11) 

 

ri
dt

dr
** ξµ −=           ................................ (19) 

 
At any time t, s + i + r = 1 

 

 

Endemic Analysis 

Endemic analysis of the SIRS model is feasible only if R0 > 1. If R0 <= 1, the disease is considered to die 

down on its own. 

 

In the endemic state, each of the three derivatives 
dt

dr

dt

di

dt

ds
,, become 0. 

 

We can then evaluate what will be the values for s , i and r  (representing respectively the values of s, i 

and r in the endemic state) as a function of the parameters <k>, β, µ and ξ. 

 

Let us first use: 0=
dt

di
 

0*** =−>=< isik
dt

di
µβ  

0]*[* =−>< µβ ski  

 

So, either i = 0 or µβ −>< sk *  = 0 

 
Note that the SIRS model (due to its looping characteristic) keeps each of the three fractions non-zero in 

the endemic state. This is because: R0 > 1: there is always a non-zero fraction of the people who remain 

susceptible and they will get infected, who will then recover and again become susceptible. 
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So, at the endemic state of a disease for which R0 > 1, i cannot be 0. 
 

Hence, µβ −>< sk * =0 

==> 
β

µ

><
=

k
s  

Now, let us use 0*** =+><−= rsik
dt

ds
ξβ  

as well as replace r with 1-i-s 

 

sisisik **)1(*** ξξξξβ −−=−−=><  

Substituting for s = 
0

1

Rk
s =

><
=

β

µ
 

We get, 

 

si
k

ik **** ξξξ
β

µ
β −−=

><
><  

 

sii *** ξξξµ −−=  

Collecting all the i terms on the left hand side 

 

sii *** ξξξµ −=+  

 

]1[*][*
β

µ
ξξµ

><
−=+

k
i  

 

][

1*

ξµ

β

µ
ξ

+










><
−

=
k

i  

 








 +










><
−

=

ξ

ξµ

β

µ

k
i

1

 

 









+










><
−

=

ξ

µ

β

µ

1

1
k

i    









+









−

=

ξ

µ
1

1
1

0R
i  

 

Substituting for s = s  and i = i  as derived above in s + i + r = 1 
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isr −−= 1   
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Discrete Event Simulations of the SIRS Model and the Differential Equations 

 

 
 

s(t+1) = s(t) - <k>β*s(t)*i(t) + r(t)* ξ 

i(t+1) = i(t) + <k>β*s(t)*i(t) - i(t)* µ 
r(t+1) = r(t) + i(t)* µ - r(t) * ξ 

At any time t, s(t) + i(t) + r(t) = 1 

 

 

ξβ ***
)(

risk
dt

tds
+><−=  

 

µβ ***
)(

iisk
dt

tdi
−>=<  

 

ξµ **
)(

ri
dt

tdr
−=  

 

 

Example 1: 
Let the parameter values for the SIRS model be β = 0.9, µ = 0.5, ξ = 0.7 and <k> = 1.0. Simulate the 

execution of the SIRS model with these parameter values for 100 time units (by which time the endemic 

state is expected to have reached) and compare the fractions for the susceptible, infected and recovered 
nodes in the endemic state obtained in the simulations with those using the theoretical formulae. 

 

R0 = <k>* β / µ = 1*0.9/0.5 = 1.8 

 

     
    Susceptible                Infected        Recovered 
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Comparison of Results in the Endemic State 

 

Fraction of Nodes Theory Simulations 

Susceptible 0.5556 0.5556 

Infected 0.2592 0.2592 

Recovered 0.1852 0.1852 

 

 

Example 2: 

Let β = 0.9, µ = 0.3, ξ = 0.9 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered 

nodes in the endemic state per the SIRS model. 
 

R0 = <k>* β / µ = 1.0*0.9/0.3 = 3.0 
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Comparison of Results in the Endemic State 

 

Fraction of Nodes Theory Simulations 

Susceptible 0.3333 0.3333 

Infected 0.5000 0.5000 

Recovered 0.1667 0.1667 

 
Comparison of Examples 1 and 2: As R0 (3.0) for Example 2 is greater than the R0 (1.8) for Example 

1, a larger fraction of the susceptible nodes get infected. Also, with 1 + µ/ξ of Example 2 (1.3333) being 

lower than that of Example 1 (1.7143) < ξ, a larger fraction of the recovered nodes return to susceptible 
state and get infected as well. We thus observe a large fraction of the nodes to be eventually (in the 

endemic state) infected for larger values of R0.  

 
What can be inferred? For a fixed R0, the more smaller is µ compared to ξ (i.e., more smaller the value 

for 1 + µ/ξ), the value for 









+

ξ

µ
1

1
 increases (resulting in the eventual increase of i ) and the value for 









+

−

ξ

µ
1

1
1  decreases (resulting in the eventual decrease of r ). The magnitude of the increase in i  and 

the decrease in r  influences the relative magnitudes of the values for s  in the two scenarios.  

 

In summary, as µ gets increasingly lower than ξ, relatively fewer fraction of infected nodes recover from 
infected state, and whoever has recovered are more likely to reach the susceptible state (and may enter the 

infected state if β is high).  

If µ << ξ (i.e., µ/ξ << 1 ==> 1+ µ/ξ ~ 1), the rate at which people enter the Recovered state is lower than 
the rate at which people leave the recovered state to become susceptible again. There is bound to be 

eventually nobody in the Recovered state. ==> SIRS model becomes the SIS model and eventually to 

the SI model as β gets increasingly larger than ξ as well. 

 
 

                        
 

                                                                          

                                                                                

µ<<ξ 

β >> ξ >> µ SIS 

SI 
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Example 3: 

Let β = 0.9, µ = 0.5, ξ = 0.1 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered 
nodes in the endemic state per the SIRS model (using theoretical formulations and simulations). 

 

R0 = <k>* β / µ = 1.0*0.9/0.5 = 1.8 
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    Susceptible                Infected        Recovered 

 

Comparison of Results in the Endemic State 
 

Fraction of Nodes Theory Simulations 

Susceptible 0.5556 0.5560 

Infected 0.0741 0.0740 

Recovered 0.3703 0.3699 

 

 

Example 4: 
Let β = 0.9, µ = 0.5, ξ = 0.05 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered 

nodes in the endemic state per the SIRS model (using theoretical formulations and simulations). 

 

R0 = <k>* β / µ = 1.0*0.9/0.5 = 1.8 
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    Susceptible                Infected        Recovered 
 

Comparison of Results in the Endemic State 

 

Fraction of Nodes Theory Simulations 

Susceptible 0.5556 0.5570 

Infected 0.0404 0.0433 

Recovered 0.4040 0.3997 
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Comparison of Examples 3 and 4 

 
Example 3: β = 0.9, µ = 0.5, ξ = 0.1 and <k> = 1.0 

     
    Susceptible                Infected        Recovered 

 

Example 4: β = 0.9, µ = 0.5, ξ = 0.05 and <k> = 1.0 

     
    Susceptible                Infected        Recovered 

    
As the µ/ξ ratio gets larger than 1, there are more instances of the epidemic showing a noticeable increase 

followed by a decrease in the fraction of infected nodes as well as in the fraction of recovered nodes, 

albeit with a reduced peak (and likewise a decrease followed by an increase in the fraction of susceptible 
nodes, with ups an downs in the peak). Nevertheless, the epidemic eventually reaches an endemic state 

with the same value for the fraction of nodes in the susceptible state (for a fixed R0, irrespective of the 

value of the µ/ξ ratio). However, if µ >> ξ (i.e., µ/ξ >> 1 ==> 1+ µ/ξ ~ µ/ξ), the rate at which people enter 

the Recovered state is greater than the rate at which people leave the recovered state to become 
susceptible again. There is bound to be people accumulated in the R state over time. ==> SIRS model 

becomes the SIR model. 

 
 

 

                        
 

 

µ/ξ >>> 1 
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