1.0 Introduction

Epidemiology: The branch of science that deals with the study of the control and spread of
diseases, viruses, ideas, etc., upon a population or system.

— Epi: Upon or on

— Demos: people

— Logy — study

Computational Epidemiology: is a field that focuses on the study and development of
computational techniques and tools for modeling, simulating, predicting and mitigating the spread
of diseases, viruses, etc.

Compartmental Models

SI
SIS

SIR
SIRS

The population is assigned to non-overlapping compartments, identified with labels: such as, S —
Susceptible, E — Exposed, I — Infected, R — Recovered, etc.

The order of the labels in a model name typically follows the flow patterns between the
compartments:

— For example: SIR model means an individual moves from susceptible state to infected
state and then to recovered state. This implies, a susceptible individual cannot directly
move to recovered state in unit time. Also, a recovered individual is no longer
susceptible.

— SIS model means an individual moves from susceptible state to infected state and then
moves back to susceptible state.

The models try to predict the spread of a disease, the total number of infected at any time, the
duration of an epidemic, etc.

All the models studied here do not take into consideration "vital dynamics" (also called "demographic
data"): i.e., birth rate and death rate



1.1 SI Model

S(t) - # susceptible individuals
I(t) - # infected individuals

N = 1000
S(t=0) =990
I(t=0)=10

S(t=1)=950
I(t=1)=50

S(t=2) =900
I(t = 2) = 100

At any time t, S(t) + I(t) = N, the total # individuals

The probability that an infected individual will come into contact with a susceptible individual at time t is
S(t)/N

The infected individual spreads the disease with probability B (measured as the probability for an
infection per time unit).

Let <k> be the "average" number of contacts per infected individual.

The probability that these contacts can be among the susceptible individuals is S(t)/N

* < k > is the number of contacts who are also susceptible for the infected individual

5@
N

Hence, the number of susceptible individuals (among the contacts) infected by an infected individual at

time t is &*<k>*ﬁ
N

<k>p is the number of contacts that can be infected by the infected individual and is also called the
transmissibility or transmission rate.

Considering that there at I(t) infected individuals at time t, the total number of susceptible individuals
infected by the I(t) infected individuals is I(t)* <k>p* S(t)/N




The change in the number of infected individuals, denoted as dI(t), occurring over a time period dt, is
given by:

From time t ... t+dt
Change in the number of infected individuals = dI(t) = I(t+dt) - I(t) = [(t)* <k>p* S(t)/N * dt

Rate of change in the number of infected individuals I(t) with respect to time
/[ differential equation

d;(tf):,(,)*<k>ﬁ*5(t)/N .............................. (1)

Let s(t) = S(t)/N and i(t) = I(t)/N be the fractions of susceptible and infected individuals at time t.
For simplicity, we can denote s(t) as s and i(t) as i.

Divide both sides of (1) by N, we get:

%:I(t)*<k>,6*5(t)/N

dl (1) _ I()*<k>p*St)IN

Ndt N

dl(t)
—>=It)IN*<k>p*St)/IN
N (1) B*S(@)

1)/ N=i(t) =1

ie., ﬂ:i>'<<l<>,6>"s
dt

Hence,

Dk k> BFU=1) oo )
dt

S(t) + I(t) = N // invariant - something that is maintained at all the time instants

SO +I(t)y N

In the SI model, s(t) + i(t) = 1 at any time t.

dt dt
ds __di

dt dt



£=—i*<k>,3*s
dt

Let the initial condition be that i =1p at t = 0.

Final equation for SI Model 1

i_ io >ke<k>ﬁt 08 /
(=i +iy FeA 07 [ |

.................................. (6) 06 / /
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transmission rate): the number of contacts 0% / /‘(
that can be infected by the infected 0.1
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For all practical purposes, iy is very small compared to 1. Hence 1- iy ~ 1.
O e<k>ﬁt

Iy
> g <k>prt
I+i,*e

Hence, i =

Observations:

(1) At the beginning, the fraction of infected individuals grows exponentially with time, as S(t)/N is close
to 1 in the beginning and everyone an infected individual encounters is most likely to be a susceptible
individual.

(2) Characteristic time is the time it takes for the fraction of infected individuals to be (1/e ~ 36% ) of the
entire population.

When ¢ is small:

. k
lo * €< > bt

=
(1=iy) +iy *e"

When t->0, the denominator tends to (1-ip) + i0%e*0 ~ 1-10+10*1 = 1
==> =i, ¥

Thus, at the beginning, the fraction of infected individuals grows exponentially with time, as S(t)/N is
close to 1 in the beginning and everyone an infected individual encounters is most likely to be a

susceptible individual.



To estimate the characteristic time, we need to evaluate ¢ for i = 0.36 (= 1/e).
e=2.7183
1/2.7183 =0.36

. k
lo * €< > bt

= 0.36
I+i,*e

i <k>pr 7
iy ¥e™ P =0.36 +0.36% i, * e#

iy *e*P[1-0.36] =0.36
0.64%i, ¥ " =036

If iy = 0.0001 and <k>B = 1.5,
0.64%0.0001*eM(1.5%t) = 0.36
eM(1.5%t) = 5625

5625 = e(1.5%)

1.5t =1n(5625) = 8.635
t =5.75 units

If i, = 0.000001 and <k>f = 1.5,
0.64*0.000001*e/(1.5*t) = 0.36
eN(1.5%) = 562500

1.5t = In(562500) = 13.24

t = 8.83 units

The SI model forms the basis for other epidemic models, but is however not realistic enough as most
infected individuals recover with the body's immune system or through medical treatment.

Practice Problems:
(1) Analyze the impact of the term <k>f (1.5 and 2.5) on the rate of increase in the fraction of infected

individuals with time for a given i, (0.0001)



1.2 SIS Model

The SIS model comprises of the same two states (Susceptible-S and Infected-I) of the SI model, but
considers the possibility of the infected individuals to recover (and thereby they again become

susceptible).
@ B ]

M

Diseases caused by bacteria are usually of SIS type.

The infected individual is assumed to spend an average of 1/p time units in the infected state, where p is
the probability that an infected individual will recover at any time unit (and will be considered
susceptible).

p = 0.2 is the probability that an infected individual will recover on a particular day
1/ u =15 is the number of days (on average) an infected individual will recover

1/ p = average time period for an infected individual to recover = 5 days

For example, if 1/p =5 ==>pu =0.2. This implies, if we generate 5 random numbers (one trial) in the
range of 0 to 1, we can expect to see one among the 5 random numbers to be less than or equal to 0.2. To
be more statistically thorough, we can repeat the trials a large number of times (say 100 trials) and obtain
a total of 5*100 = 500 random numbers and sort them, we can expect to see around 100 random numbers
out of the 500 random numbers (~100/500 = 0.2) to be less than or equal to 0.2.

As per the SI model, we have (eq. 2)

D po k> BFm0) o @)
d

We enhance this model to mimic the SIS model as follows:

If p is the probability with which an infected individual can recover at a particular time unit, the
probability that an infected individual will recover in dt time units is p*dt. There are I(t) infected
individuals at time t and the number of infected individuals who would have recovered by time t +dt is:
wkde * I(t).

Going from fundamentals, we can enhance and write the differential equation for I(t) as follows:



Dividing by 'N' on both sides, we get:

i(t) = I(t)/N
s(t) = S(t)/N

sti=1
S{t)+I(t) =N

.%:ﬁ<k>ﬁ*a—0—yw .................................. )

The term p*i captures the rate at which the infected individuals recover from the disease.

The solution for the differential equation of (7) is:

(4 U CelPk>=nl .
1= _ﬁ<k> 1+Ce(ﬂ<k>_ﬂ)t ........................... ( )

where C is an integration constant whose value (obtained by setting i = iy @ t = 0) is as follows:

l
C= . O [ D). 9
(1—i,—p/ B<k>) ®

For all practical purposes, C can be simplified as (considering that iy is much smaller than 1):

i
C= e e U 5. LK 10
(1—ulp<k>) IR

When t is closer to O:

u J CelPk>=uh

From equation (8), we have: i =| 1—
a ( B <k> )1+ CelPt>rh

(p<k>=#) _ C and C can be considered to be reasonably

(B<k>-p)r

1+ Ce#<*>=#¥ can be approximated to 1: as Ce

smaller than 1 (i.e., the term Ce\Psk>—n)

1 and not due to C).

becomes greater than 1, only if e becomes greater than

Hence, Equation (8) simplifies to,



. M (B<k>—p)t
=[1-——|C
: ( ,b’<k>} ¢

Substituting for C from equation (10) in the above equation, we get:

P T Iy B<ko=u)
B<k>)(1-ulB<k>)

ie, i=i* QPETIN (11) contributing to an exponential outbreak at the early stages.

When t is closer to oo:

(i n ColB<k-n)
B <k> )1+ CelPk>rh

CelP<k>=n)

will be much greater than 1 and hence,
Ce(ﬁ<k>—ﬂ)t
L+ cera !

Ce\Pk>=nh CelPk>=1

|+ CoP<to—rr — cB<ko=p ~

Therefore, i of equation (8) reduces to:
. U Ce(ﬁ<k>—,u)r
i=|1- (B<k>—u)t

P <k>)1+Ce “

i= (1 - ,BLICJ ....................... (12), the spread is considered to have reached an endemic state
<K>

(i.e., saturated: the fraction of infected individuals is a constant).

4



| ——p=1 —=-p=0.5 |

ol 1
ol
ol |

Ial
/

0 5 10 15 20 25 30 35 40
time, t

Figure: Simulation of the SIS Model, f<k>= 1.5

Fraction (i) of Infected Individuals
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Figure: Simulation of the SIS Model, p = 1.0

Basic Reproductive Number

. . : p<k> .
For the SIS model, we define the basic reproductive number as R, = ———— and define the

characteristic time as 7 = —— for diseases with RO > 1.

/‘(IQ)"I)
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infectious period (period for which an infection exists) = —

y7i

The basic reproductive number represents the average number of susceptible individuals infected by an
infected individual during its infectious period in a fully susceptible population. One important
assumption is that RO represents the number of individuals an infected individual can infect if all its
contacts are susceptible. In other words, Ry is the number of new infections each infected individual
causes under ideal circumstances.

If Ry > 1, it implies that each infected individual on average can infect more than one healthy/susceptible
person and/or the average infectious period per person is larger; the pathogen is predicted to exist and
eventually reach an endemic state where the fraction of infected individuals is 1-1/R,. The larger the Ry,
the faster the spread (i.e., the pathogen/epidemic quickly reaches the endemic state) and the larger the
fraction of infected individuals.

If Ry < 1, an infected individual on average can infect less than one susceptible person and/or the average
infectious period person is smaller, and the pathogen eventually disappears from the population. The
lower is the R < 1, the more sooner the pathogen/epidemic will disappear.

CoviD-13 COVID-19 .
(original strain) (delta strain) Chickenpox
3 people 6 people 10 people
R, |
1918 Flu HIV SARS Mumps Measles
Ebola 4 people 12 people 18 people
2 people y .

(adapted from [https://www.npr.org/sections/goatsandsoda/2021/08/11/1026190062/covid-delta-variant-
transmission-cdc-chickenpox])

Disease Transmission Ry
Measles Airborne 12-18
Pertussis Airborne droplet 12-17
Diptheria Saliva 6-7
Smallpox Social contact 5-7
Polio Fecal oral route 5-7
Rubella Airborne droplet 5-7
Mumps Airborne droplet 4-7
HIV/AIDS Sexual contact 2-5
SARS Airborne droplet 2-5
Influenza Airborne droplet 2-3
COVID-19 Airborne droplet, 2-3
(original strain) | Social contact, Saliva
COVID-19 Airborne droplet, 5-6
(delta variant) Social contact, Saliva




Practice Problems:

(1) Determine the value of the transmission rate (term <k>[) for a given RO, t, i0 and i. Also, determine
the value of p.

i0=0.0001,R0= 3,i=0.5,t=5

3

~.

- U ColB<k>—n) R <k>*f
B<k>)1+CeP<> "

1 Ceﬂ(%_l}
e
U +Ce

u(3-1)s5
05= =L Ce—_
3)1+ et

i=|1

i
C= 0 =0.0001 /[1 - 1/3] = 0.00015
(I—ul/B<k>) [ )

10u
05:@_1} 0.00015¢ 1
3)1+0.00015¢"“

_0.0001"
T 140.00015¢"

0.5 + 0.000075e~(10p) = 0.0001eM(10p)
0.5 = 0.000025eM(10p)

e*(10p) = 0.5/0.000025 = 20000

log, (') = In(20000)

10p = In(20000) = 9.9035
p=9.9035/10 = 0.99

k k
R0:<k> ,B=3=<k> o]
U 0.99
<k>p = 2.97

What happens when p > <k>
i.e., the recovery rate greater than the number of individuals who can get infected when in contact with
one infected individual




1=

U ColP<t>1)
1- xR — (8)
B <k>)1+Ce
— iO
(I—ul/B<k>)

the exponent in equation (8) becomes negative; the number of infected individuals decreases
exponentially and the disease soon dies out.
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Practice Problem 2:
Consider the spread of an epidemic under the SIS model. The RO and characteristic time for the epidemic
are 3 and 10 days respectively.

(a) What is the average duration of infection for a person?

(b) If the fraction of the people infected during the 30th day of the epidemic is 0.5, draw a plot that

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

presents the fraction of the people infected during each of the first 100 days of the epidemic.

Solution:

Characteristic Time: Is the time it takes for the disease to reach an Equilibrium state (steady-state)

Characteristic time for SIS model, 7 =

= 10 days
/‘(Ro - 1)

Fr. of infected individuals (u = 0.5)

12
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1. 10*2 =20

Y7

1 =10*(3—1) =20 days is the average duration of infection for a person.
Y7

p = 1/20 = 0.05 is the probability with which an infected person will recover on a particular day

RO =3 =<k>B/ pn; <k> is the average # of susceptible contacts per infected individual
B is the probability with which an infected individual can spread the disease to a
susceptible individual per unit time when comes into contact with the latter

<k>B = RO * p = 3%0.05 = 0.15.

RO =<k>B/
1/RO = p / <k>B
(B<k>=p)
N\, i Ce
Per the SIS model, i(¢) = (1 - Gk >j L Gl s (8)

Given that i(t = 30) = 0.5, we have:

C (0.15-0.05)30

it =30)=0.5=[1—1j

3 )1+ Ce 0150053

The value for e is 2.7183

1+C*20.086 1+C*20.086

3

5_[2} C*20.086 C*13.391

C*13.391
1+C*20.086

C*13.391 = 0.5*[1+C*20.086]

C*13.391 = 0.5 + C*10.043
C*[13.391-10.043] = 0.5

C=0.5/(13.391 - 10.043) = 0.1493
The epidemic becomes an endemic when the fraction of infected peoplei=1 - 1/R0. =1 - 1/3 = 0.6667.

Substituting back for C = 0.1493 in equation (8) for the SIS model



i =[1-# | cer
,B <k>]1+ Ce(ﬁ<k>—/t)t

~.

~
~

p—

1) 0.1493 % (0-15-005x
- (1 - gj 14 0.1493 % £(0-15-005)
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0.9

0.8
0.7

0.6
0.5 e

0.4
0.3 M,/
0.2

0.1 f’j

0 . | |

Fraction of the people infected (i)

0 20 40 60
Days

80

100

14



15

1.3 SIR Model

The infected people recover at rate 1 and enter to the Recovered (R) state. The dead people are also
considered to have moved to the R state.

Diseases caused by viruses are usually of SIR type.
Let R(t) represents the number of recovered people at time t out of a population of N.
If i(t) (simply represented as i) represents the fraction of infected people: I(t)/N at time t,

the rate at which the fraction of recovered people r(t) (simply represented as r) = R(t)/N changes in a time
period dt given by:

(t+dt) = 1(0) + it
r(t+dt) — r(t) = dr(t) = i*p*d

In time dt, the probability with which an infected person can recover is p*dt

i(t) is the fraction of infected people at time t
Fraction of infected people who will recover in time ‘dt’ is i(t) * p*dt

= PFudt
% SUFD e, 9)

Let S(t) represents the number of susceptible people at time t out of a population of N and s(t) = S(t)/N
represents the fraction of susceptible people at time t (simply represented as s).

Atany timet,s+i+r=1

s =1-i-r

An infected individual can infect its contacts (<k> in number) with a probability . The average fraction
of susceptible contacts that can get infected per infected individual is s*<k>*[. With i as the fraction of
infected people, the fraction of susceptible population getting infected at time dt is i*s*<k>*p, which is:

P#(1-i-r) *<k>*p.
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s(t+dt)

B is the probability with which a susceptible person can get infected by an infected individual per time
unit (per day)

fraction of susceptible contacts (people) who can get infected by an infected individual per time unit =
s*<k>*p

There are 'i' fraction of infected people

Fraction of susceptible people who can get infected by 'i' fraction of infected people per time unit
is i*s¥<k>*p

Fraction of susceptible people who can get infected by 'i' fraction of infected people for 'dt' time units
is i*s*<k>*B*dt

s(t) > s(t+dt)

s(t) - s(t+dt) = i*s*<k>*p*dt

ds(t) = s(t+dt) - s(t) = - i*s*<k>*p*dt

ds(t): change in the fraction of susceptible people

ds(t)/dt = - i*s*<k>*B

Note that i*(1-i-r) *<k>*p is the fraction of newly infected people in time dt and p*i is the fraction of the
infected people who have recovered in time dt.

i(t) is the fraction of infected people at time t

susceptible --> infected: i(t)*s(t) *<k>*p*dt
infected --> recovered: i(t)*p*dt

i(t+db) = i(0) + i(0)*s()*<k>*Bdt - i(t)*pdt
di(t) = i(t+dt) - i(t) = i()*s(t)*<k>*B*dt - i(H)**dt

di(t)/dt = i*s*<k>*p - i*p
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Hence,§=<k>,3*i*(l—i—r)—,u*i .................................. (11)
t

%:i*[<k>,6*(l—i—r)—,u]

Let sy and iy represent the fraction of susceptible people and infected people respectively at time 0.
At time 0, there are no recovered people. Hence, s + iy = 1.

At any time t > 0, the fraction of susceptible people can only decrease as they get infected. Hence,
s(t) <=s0
s<=s0

(l—i - r) (which is s) is always less than or equal to s,.

Hence, i*[<k>,3*(l—i—r)—,u] < i*[<k>,3*s0—,u]
di _ .

Therefore, d—S i*[<k>B%sy—m] (12)
t

Basic Reproductive Number

For the rate of infection to decrease over time, di/dt < 0

ﬁ:z‘>'<[<k>,6’*(1—i—r)—ﬂ]
dt

di .
E:l*[<k>,3*(l—l—r)—,u]<0

Sinceiis a fraction 0 <i< 1,

for di/dt < 0: [<k > B*(1—i—r)—u] <0
[<k>pB*(1-i-r)—u] <0

e, <k>pB*(1—i—r)<u
(I—i—r)<ul<k>p

s<ul<k>p

Note that Ry= <k > [/ i is the basic reproductive number for the SIS model (also applicable for the
SIR model).
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Hence, for the SIR model if s <1/ R, the rate of infection spread with time will decrease and will

eventually die down.
For any time t, if di/dt has to be less than 0, we need s(t) < 1/R0

i.e., if at any time, the fraction of susceptible people is < the inverse of the basic reproductive number, the
pathogen will NOT spread and die down eventually from the population.

Herd Immunity:
If the fraction of susceptible people, s(t) < 1/R0, then the epidemic will eventually die down on its own

Fraction of susceptible people + Fraction of non-susceptible people = 1

Fraction of susceptible people + Fraction of non-susceptible (vaccinated) people = 1
Fraction of vaccinated people = 1 - Fraction of susceptible people

0+s < 0+1/R0O

s < 1/R0O

-s >=-1/R0

1-s >=1-1/R0

v = fraction of vaccinated people

If v>=1 - 1/R0, then the epidemic will die down on its own
Achieving Herd Immunity

Determining a Closed Form Expression for the fraction of infected people i at any time

From equations (10) and (11), we have:

Z—‘;——<k>,6’*i*(1—z—r) .................................. (10)
di . .
E:l*[<k>,3*(l—l—r)—,u] .................................. (11)

We can write s as (1—i—7).

Hence, we can write equations (10) and (11) as:

A k> Bri*s e (12)
dt
%:z*[<k>,3*s—,u] ................................ (13)



Divide (13) by (12), we get:

di | <k>p*s—u
ds <k>pf*s

RO = <k>p/pn
1/R0 = p/<k>B

Integrating both sides of (14): the LHS with respect to i and the RHS with respect to s, we get:

idi:—ids+RLo*S%

So

; 1
‘f - _ N +_*1n N
i S,, R (s)SO
(=) =~(s=5)+—*(ins—ns;)

0

(i-i0)=—(s—so)+%*m(ij

0 So

1
Hence, i=i0+s0—s+F*m(iJ

0 So
But, i, +s5, =1

Therefore, i = 1—S+L*h{iJ .................. (15)
0 So

Equation (15) models the fraction of infected people (i) at any time on the basis of only the fraction of

suspected people at any time (s), even though there is another variable (r) in the SIR model.

Determining the Maximum Number of Infected People at any time per the SIR model

From equation (14),

di_ 1+ ad

ds <k>pf*s
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The maximum occurs when the slope of the curve (modeled by the equation (15)) given by equation 14
reaches 0.

e B
U ds <k>pB*s
- K
Sol for s, =
olving 1or s <k>ﬁ*s
we get: § = #o 1
<k>p R,

Hence, for i to be the maximum, the fraction of susceptible people s has to be 1/R,.

Substituting for s = 1/R, in equation (15), we get:

imale_i+i*ln 1
R, R, Ry *s,

1 1
i =1l——+—>*[In(1)—In(R, *s
o =1 D= IR %)
i =1—L+L*[O—ln(R *s)]
max RO RO 0 0
1 1
i =l————%*[In(R, *s
max RO RO [ ( 0 0)]
i =1—i>*<[1+1n(R0 N | I (16)
RO
s+Hi+r =1

Note that from equation (16), we can infer that the minimum number of people who are not infected at

any time (s+7)_ is 1—i_ = Ri*[1+1n(R0 *5,)]
0

ie, (s+7), . :Ri*[1+1n(R0*s0)] ................. (17)

0
Consider s,=1,

For Ry=1,i =1—%*[1+1n(1)]:O (s+r),, =1
For R,=5, i =1—%*[1+1n(5)]:0.4781 (s+7),, =0.5219

For R,=10, i :1—%*[1+1n(10)]=0.6697 (s+7),,,=0.3303
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1.4 Discrete Event Simulation of the SIR Model

We will start with s> 0, ip>0and ro=0. ie., sO+i0=1
we will proceed with discrete times, t =0, 1, 2, 3, ...

Let s(t), i(t) and r(t) be respectively the fractions of susceptible, infected and recovered people/nodes at
time t, and be simply represented as s, i anr. Note that s + 1 +r = 1 for any time instant t.

The infected individual spreads the disease with probability B (per time unit).
Let <k> be the average number of contacts per infected individual.

<k>p is the average number of contacts that can be infected by the infected individual and is also called
the transmissibility or transmission rate.

<k>p is the average number of susceptible contacts that can be infected by the infected individual.

Fraction of nodes that became newly infected at t+1 = <k > f*i*s

/I Note: To get infected, a contact node has to be currently susceptible
Fraction of nodes that became newly infected at t+1 can also be written as = <k > f*i*(1—i—r)

Fraction of nodes that specifically recover at t+1 = j* u
/I Note: To recover, a node has to be currently infected

Fraction of total nodes that are susceptible at the end of t+1 is: s—<k > f*i*s
Fraction of total nodes that are infected at the end of t+1 is: i+ <k > S*i*s—i*u
Fraction of total nodes that have recovered at the end of t+1is: r+i* u

Example 1: Let <k> =4, =0.3, 1 =0.5, 50 = 0.99, i = 0.01
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Time, t | Newly infected | Newly recovered | s i r Total fraction
0 - - 0.99 0.01 0 1
1 0.01188 0.005 0.97812 0.01688 0.005 1
2 0.019813 0.00844 0.958307 0.028253 0.01344 1
3 0.03249 0.014126 0.925817 0.046616 0.027566 1
4 0.05179 0.023308 0.874028 0.075098 0.050875 1
5 0.078765 0.037549 0.795263 0.116314 0.088423 1
6 0.111 0.058157 0.684262 0.169157 0.14658 1
7 0.138898 0.084579 0.545365 0.223476 0.231159 1
8 0.146251 0.111738 0.399114 0.257989 0.342897 1
9 0.12356 0.128995 0.275553 0.252555 0.471892 1
10 0.083511 0.126278 0.192042 0.209788 0.598169 1
11 0.048346 0.104894 0.143696 0.15324 0.703064 1
12 0.026424 0.07662 0.117272 0.103044 0.779684 1
13 0.014501 0.051522 0.102771 0.066023 0.831206 1
14 0.008142 0.033012 0.094629 0.041154 0.864217 1
15 0.004673 0.020577 0.089956 0.02525 0.884794 1
16 0.002726 0.012625 0.08723 0.015351 0.897419 1
17 0.001607 0.007675 0.085623 0.009282 0.905095 1
18 0.000954 0.004641 0.084669 0.005595 0.909736 1
19 0.000568 0.002797 0.084101 0.003366 0.912533 1
20 0.00034 0.001683 0.083761 0.002023 0.914216 1
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Sum 0.906239 0.914216 8.591581 1.830455 10.57796

Std Dev. | 0.050263 0.044342 0.369433 0.088612 0.380764

1.0 1.0 1.0 4

0.9 0.9 0.9 4

08 08 0.8 1

07 07 0.7 1

0.6 06 0.6 1

0.5 0.5 0.5 1

0.4 0.4 0.4 4

03 03 0.3 4

0.2 0.2 0.2 4

01 Time ---> 01 Time -—> 011 Time >

00+ o Tty 0O
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Frac. of total nodes that are susceptible Frac. of total nodes that are infected Frac. of total nodes that have recovered

SIR Model (Ex. 1): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status
<k>=4,$=0.3,u=0.5,5=0.99, i, =0.01

1.0 4 1.0 1.0 4
0.9 0.9 0.9 4
0.8 0.8 0.8
0.7 q 0.7 0.7
0.6 q 0.6 0.6
0.5 0.5 0.5
0.4 04 0.4
0.3 0.3 0.3
0.2 q 0.2 0.2
0.1 4 Time —-> 0.1 Time -—> 0.1 Time -—>
0.0 0.0 0.0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Frac. of total nodes that are susceptible Frac. of total nodes that are infected Frac. of total nodes that have recovered

SIR Model (Ex. 2): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status
<k>=4,=0.5n=0.5, s5=0.99, i, =0.01

1.0 q 1.0 1.0

0.9 4 0.9 0.9

0.8 0.8 0.8

0.7 4 0.7 0.7

0.6 4 0.6 0.6

0.5 4 0.5 0.5

0.4 4 04 0.4

0.3 4 0.3 0.3

0.2 4 0.2 0.2

ol N me L S T S e
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Frac. of total nodes that are susceptible Frac. of total nodes that are infected Frac. of total nodes that have recovered

SIR Model (Ex. 3): Fraction of the total nodes in the susceptible (s), infected (i) and recovered (r) status
<k>=4,$=0.7,u=0.5, 50 =0.99, i, = 0.01

Example 2: Let <k> =4, =0.5, 1=0.5, 50=0.99, i, = 0.01

Time, t | Newly infected | Newly recovered | s i r Total fraction
0 0.99 0.01 0 1
1 0.0198 0.005 0.9702 0.0248 0.005 1
2 0.048122 0.0124 0.922078 0.060522 0.0174 1
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3 0.111612 0.030261 0.810466 0.141873 0.047661 1
4 0.229966 0.070936 0.5805 0.300903 0.118597 1
5 0.349348 0.150451 0.231152 0.499799 0.269049 1
6 0.231059 0.2499 9.28E-05 0.480959 0.518948 1
7 8.92E-05 0.240479 3.53E-06 0.240569 0.759428 1
8 1.7E-06 0.120284 1.83E-06 0.120286 0.879712 1
9 4.41E-07 0.060143 1.39E-06 0.060143 0.939855 1
10 1.67E-07 0.030072 1.22E-06 0.030072 0.969927 1
11 7.37E-08 0.015036 1.15E-06 0.015036 0.984963 1
12 3.46E-08 0.007518 1.12E-06 0.007518 0.992481 1
13 1.68E-08 0.003759 1.1E-06 0.003759 0.99624 1
14 8.27E-09 0.00188 1.09E-06 0.00188 0.998119 1
15 4.1E-09 0.00094 1.09E-06 0.00094 0.999059 1
16 2.04E-09 0.00047 1.09E-06 0.00047 0.999529 1
17 1.02E-09 0.000235 1.08E-06 0.000235 0.999764 1
18 5.09E-10 0.000117 1.08E-06 0.000117 0.999881 1
19 2.55E-10 5.87E-05 1.08E-06 5.87E-05 0.99994 1
20 1.27E-10 2.94E-05 1.08E-06 2.94E-05 0.99997 1
Sum 0.989999 0.99997 4.504508 1.999968 14.49552
Std Dev. | 0.101171 0.078919 0.377668 0.155381 0.416386
Example 3: Let <k>=4,=0.7, u=0.5, 5= 0.99, i, = 0.01
Time, t | Newly infected | Newly recovered | s i r Total fraction
0 0.99 0.01 0 1
1 0.02772 0.005 0.96228 0.03272 0.005 1
2 0.08816 0.01636 0.87412 0.10452 0.02136 1
3 0.255817 0.05226 0.618303 0.308077 0.07362 1
4 0.533358 0.154039 0.084945 0.687396 0.227659 1
5 0.084945 (0.1634) | 0.343698 0 0.428643 0.571357 1
6 0 0.214322 0 0.214322 0.785678 1
7 0 0.107161 0 0.107161 0.892839 1
8 0 0.05358 0 0.05358 0.94642 1
9 0 0.02679 0 0.02679 0.97321 1
10 0 0.013395 0 0.013395 0.986605 1
11 0 0.006698 0 0.006698 0.993302 1
12 0 0.003349 0 0.003349 0.996651 1
13 0 0.001674 0 0.001674 0.998326 1
14 0 0.000837 0 0.000837 0.999163 1
15 0 0.000419 0 0.000419 0.999581 1
16 0 0.000209 0 0.000209 0.999791 1
17 0 0.000105 0 0.000105 0.999895 1
18 0 5.23E-05 0 5.23E-05 0.999948 1
19 0 2.62E-05 0 2.62E-05 0.999974 1
20 0 1.31E-05 0 1.31E-05 0.999987 1
Sum 0.99 0.999987 3.529647 1.999987 15.47037
Std Dev. | 0.129099 0.090649 0.351171 0.178049 0.399462

Note that if the fraction of total nodes that became newly infected at time instant t+1:
<k>pB*i*(1—i—r) exceeds the fraction of total nodes that are susceptible at the end of time instant t,

then the fraction of total nodes that became newly infected at time instant t+1 is set equal to the fraction
of total nodes that are susceptible at the end of time instant t, and the calculations are continued. If that is
the case, then the fraction of the total nodes that are susceptible at the end of time instant t+1 becomes 0.
In the above table (Example 3), such a situation arises at time instant t+1 = 5 where in the fraction of total
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nodes that could become newly infected (0.1634) at time instant 5 exceeds the fraction of total nodes that
are susceptible (0.084945) at the end of time instant 4.

Example 4: Consider the Rubella disease that lasts for 11 days. A city of 30,000 people is exposed to the
disease wherein a person is on average in contact with 6.8 other people. Let S(0) = 29,000 and 1(0) =
1,000. Assume RO for Rubella is 5.0. Assume Rubella follows a SIR model.

(1) Determine the number of people who are infected in the next two days.

(2) Determine the day when the maximum number of people will be infected. What is the maximum
number of infected people?

(3) Determine the day when less than 1% of the population remains infected with Rubella.

Given: <k>=6.8 R0O=5.0 /p=11=>p=1/11 =0.091

RO = <k>p/u ==> B = RO*/<k> = 5%0.091/6.8 = 0.067

Day new infec fr  newrecov fr newinfec newrec S | R Total 5 i r
0 29000 1000 0 30000 0.966667 0033333 0
1 0.01468044 0.003033333 4404133 N 2855959 1349413 N 30000 0.951986 0.04498 0.003033
2 0.01950914 0.00409322 5852742 1227966 2797431 1811.891 213.7966 30000 0.932477 0.060396 0.007127
3 0.02565658 0.005496069 769.7575 1648821 2720455 2416.766 378.6787 30000 0.906818 0.080559 0.012623
4 0.03328262 0.007330858 998.4786 2199257 26206.08 3195319 5£95.6044 30000 0.873536 0.106511 0.019953
5 0.04238942 0.009692468 1271.683 290774 2493439 4176228 B889.3785 30000 0.831146 0.139208 0.029646
6 0.05271378 0.012667891 1581.414 3800367 2335298 5377604 1269415 30000 0.778433 0179253 0.042314
7 0.06357295 0.016312067 1907.189 489362 2144579 6795431 1758.777 30000 0.71486 0226514 0.058626
8 0.07377348 0.020612807 2213205 618.3842 1923259 8390251 2377161 30000 0.641086 0279675 0.079239
9 0.08168718 0.025450429 2450615 7635129 16781.97 10077.35 3140.674 30000 0.559399 0.335912 0.104689
10 0.08561122 0.030567973 2566337 917.0392 1421364 1172865 4057.713 30000 0473788 0390955 0.135257
11 0.08439067 0.035576909 2531.72 1067307 11681.92 13193.06 5125.021 30000 0.389397 0439769 0.170834
12 0.0780191  0.040018961 2340573 1200569 9341.342 14333.07 632559 30000 0.311378 0477769 0.210853
13 0.06777614 0.043476974 2033.344 1304309 7307.998 150621 7629.899 30000 0.2436 050207 0.25433
'14 0.05572181 0.04568838 1671.654 1370651 5636.344 15363.11 9000.55 30000 0.187878 0.512104 0.300018
15 0.04383467 0.046601422 1315.04 1398043 4321.304 152801 1039859 30000 0144043 0509337 0.34662
16 0.03342584 0.046349648 1002.775 1390489 3318.528 14892.3% 11789.08 30000 0.110618 0496413 0.392969
17 0.02501792 0.045173581 7505375 1355207 2567.991 14287.72 1314429 30000 0.0856 0476257 0.438143
18 0.01857367 0.043339415 55721 1300182 2010.781 1354475 14444 47 30000 0.067026 0451492 0.481482
19 0.01378723 0.041085732 413.6168 1232572 1597.164 1272579 15677.04 30000 0.053239 0424193 0.522568
20 0.01028906 0.038601568 3086717 1158047 1288493 1187642 1683509 30000 0.04295 0395881 0.56117
21 0.00774655 0.036025129 2323966 1080754 1056.096 11028.06 1791585 30000 0.035203 0.367602 0.597195
22 0.00589581 0.033451779 176.8744 1003553 8792216 10201.38 189194 30000 0.029307 0.340046 0.630647
23 0.00454045 0.030944186 136.2134 9283256 743.0082 9409.2658 1984772 30000 0.024767 0313642 0.661591
24 0.00353908 0.028541446 106.1725 856.2434 636.8357 ©£659.197 20703.97 30000 0.021228 028864 0.690132
25 0.00279156 0.026266231 8374666 7879869 553.0891 7954.957 2149195 30000 0.018436 0265165 0.716398
26 0.00222728 0.024130035 6681829 7239011 4862708 7297874 2221586 30000 0.016209 0243262 0.740529
27 0.00179645 0.022136884 5389357 6641065 4323772 66B7.661 2287996 30000 0.014413 0222922 0.762665
28 0.00146379 0.020285905 4391365 6085771 3884636 6122997 2348854 30000 0.012949 02041 0.782951
29 0.00120408 0.018573092 3612242 557.1928 3523411 5601.927 2404573 30000 0.011745 0.186731 0.801524
30 0.00099918 0.016992512 2997528 509.7754 3223659 5122127 2455551 30000 0.010746 0170738 0.818517
31 0.00083587 0.015537119 2507621 466.1136 2972897 4681.09 2502162 30000 0.00991 0.156036 0.834054
32 0.00070448 0.014199305 2113437 4259792 2761553 4276245 254476 30000 0.009205 0.142541 0.848253
33 0.0005978  0.012971276 1793405 389.1383 2582212 3905.041 25836.74 30000 0.008607 0.130168 0.861225
34 0.00051046 0.01184529 1531369 355.3587 2429075 3564.996 261921 30000 0.008097 0.118833 0.87307
Answers:

(1) Determine the number of people who are infected in the next two days = 1811.891 ~ 1812

(2) Determine the day when the maximum number of people will be infected. What is the maximum
number of infected people? = 14, 15363.11 ~ 15363 = 15363/30000 = 51.21% of the population

(3) Determine the day when less than 1% of the population remains infected with Rubella. = 61



new infec fr

0.00043837
0.00037843
0.00032825
0.00028597
0.00025012
000021956
0.00019337
0.00017082
000015131
000013436
000011949
000010666
9.5303E-05
8.5305E-05
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6.8659E-05
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2 46BTE-05
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1.8398E-05
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1315111
11.35303
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8.579064
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5.801097
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4539232
4.03086
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2859085
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2.059766
1.851624
1.666487
150148
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1.222354
1.104293
0.998376
0.903228
0.817652
0.7406
0.671152
0.608499
0.551929
0.500812
0.454589
0.412765
0.374898
0.340596
0.309507
0.281318
0.255748

new rec

324.4146
296.0896
270.1786
246.4885
2248387
205.0612
187.0001
170.56109
1554608
141.7269
129.1966
117.7662
107.34086
97.83279
89.16289
§1.25785
74.05082
67.48069
61.4916
56.0325
51.08677
46.52184
42 38884
38.62231
35.18987
32.062
2921175
26.61456
24 24801
22.09166
20.1269
18.33672
16.70564
15.21954
13.86556
12.63196
11.50805

S

229.7564
218.4034
208.5558
199.9767
192.4731
185.8863
180.0852
174.9607
170.4214
166.3906
162.803

159.6034
156.7443
154.1851
151.8908
1498311
147.9794
146.3129
1448115
143.4573
142235

141.1307
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139229
138.4114
137.6708
136.9997
136.3912
135.8392
135.3384
134.8838
1344711
134.0962
133.7556
133.4461
133.1648
132.909

3263.732
2968.996
2708.665
2470.755
225342

2054.945
1873.747
1708.36

1557.439
1419.743
1294134
1179.567
1075.086
979812

5929434
513.7453
741.5461
675.7319
6157418
561.0634
511229

4658114
424421

386.7019
3523297
321.0083
2924677
2664616
242 7655
2211747
2015024
1835784
167 2477
1523687
1388127
126 4621
1152098

R

26516.51
268126
2708278
2732927
27554 11
2775917
2794617
28116.68
28272.14
2841387
28543.06
2866083
28768.17
28866
2895517
2503642
2911047
29177.96
2923945
2929543
29346 54
29393.06
2943545
2947407
2950926
2954132
2957053
29597 15
296214
2964349
29663 .61
29681.95
29698 .66
29713.88
2972774
2974037
2975188

Total
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30000
30000
30000
30000
30000
30000
30000
30000
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30000
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30000
30000
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30000
30000

s

0.007659
0.00728

0.006952
0.006666
0.006416
0.006196
0.006003
0.005832
0.005681
0.005546
0.005427
0.00532

0.005225
0.00514
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0.004877
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0.004589
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i
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0009749
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0.008092
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0.006717
0006119
0005575
0.005079
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0004215
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26

r

0.883884
0.893753
0.902759
0.910976
0.91847
0.925306
0.931539
0.937223
0.942405
0.947129
0.951435
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0.976516
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0.989398
0.989955
0.990463
0.990925
0.991346
0991729
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new infec fr
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new infec

0.232545
0.211482
0.192356
0.174984
0.159201
0.144858
0.131822
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0.099392
0.090477
0.082367
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0.056605
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0.013929
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0.011558
0.010528
0.00959

0.008736
0.007957

0.007249
0.006603
0.006015
0.005479
0.004991
0.004547
0.004142
0.003773
0.003437
0.003131
0.002852
0.002598

new rec

10.48409
9.551198
8.701283
7.926971
7.22154

6.578867
5993372
5459971
4974031
4531331
4.128024
3.760608
3425888
3.120956
2.843162
2590091
2.359544
2.149516
1.958182
1.783877
1.625086
148043

1.348649
1.228597
1.119232
1.019602
0.92884

0.346157
0.770834
0.702216
0.639706
0.58276

0.530884
0.483625
0.440573
0.401354
0.365625

0.333078
0.303427
0.276416
0.25181

0.229394
0.208973
0.19037

0173423
0.157985
0.143921
0.131109
0.119438

S

132.6765
132.465

132.2726
132.0976
131.9384
131.7936
131.6618
131.5418
131.4326
131.3332
131.2427
131.1604
131.0854
131.0171
130.9549
130.8983
130.5468
130.7998
130.7571
130.7182
130.6827
130.6504
130.621

130.5942
130.5699
130.5476
130.6274
130.509

130.4922
130.4769
130.463

130.4503
1304387
1304282
130.4186
130.4099
1304019

130.3947
130.3881
130.382

130.3766
130.3716
130367

130.3629
130.3591
130.3557
130.3525
1303497
1303471

104 9582
956185

87.10957
79.35758
72.29525
6586124
5999969
54 65968
49.79484
4536291
41.32536
3764712
3429622
31.24354
28.46254
25.92906
23.62106
21.51848
19.60304
17.85809
16.26846
14.82031
13.50107
12.29926
11.20442
10.20703
9.298428
8.470704
7.716658
7.029735
6.403959
5.833886
5.31456

4841463
4.41048

4.017862
3.660194

3.334364
3.03754

2767139
2.520808
2.296406
2.09198

1.905751
1.736101
1.581553
1.440762
1.312505
1.195665

R

29762.37
2977192
2978062
29788.54
2979577
29802.35
29808.34
298138

29818.77
298233

2982743
29831.19
29834 62
29837.74
2984058
2984317
2984553
29847 68
29849 64
2985142
29853.05
29854 53
2985588
2985711
2985823
2985925
2986017
29861.02
29861.79
2986249
29863.13
29863.72
29864 25
29864.73
2986517
29865.57
29865.94

2986627
29866 .57
2986685
29867 1

29867.33
29867 54
29867.73
298679

29868.06
2986821
29868 .34
29868 46

Total

30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

5

0.004423
0.004415
0.004409
0.004403
0.004398
0.004393
0.004389
0.004385
0.004381
0.004378
0.004375
0.004372
0.00437

0.004367
0.004365
0.004363
0.004362
0.00436

0.004359
0.004357
0.004356
0.004355
0.004354
0.004353
0.004352
0.004352
0.004351
0.00435

0.00435

0.004349
0.004349
0.004348
0.004348
0.004348
0.004347
0.004347
0.004347

0.004346
0.004346
0.004346
0.004346
0.004346
0.004346
0.004345
0.004345
0.004345
0.004345
0.004345
0.004345

i
0.003499
0.003187
0.002904
0.002645
0.00241
0.002195
0.002
0.001822
0.00166
0.001512
0.001378
0.001255
0.001143
0.001041
0.000949
0.000864
0.000787
0.000717
0.000653
0.000595
0.000542
0.000494
0.00045
0.00041
0.000373
0.00034
0.00031
0.000282
0.000257
0.000234
0.000213
0.000194
0.000177
0.000161
0.000147
0.000134
0.000122

0.000111
0.000101
922E-05
8 4E-05

7 B5E-05
697E-05
6.35E-05
5 T79E-05
527E-05
4 8E-05

4 38E-05
3 99E-05
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r

0.992079
0.992397
0.992687
0.992951
0.993192
0.993412
0.993611
0.993793
0.993959
0.99411

0.994243
0.994373
0.994487
0.99459
0.994686
0.994772
0.994851
0.994923
0.994988
0.995047
0.995102
0.995151
0.995196
0.995237
0.995274
0.995308
0.995339
0.995367
0.995393
0.995416
0.995438
0.995457
0.995475
0.99549
0.995506
0.995519
0.99553

0.995542
0.995552
0.995562
0.99557

0.995578
0.995585
0.995591
0.995597
0.995602
0.995607
0.995611
0.995615

Example 5: Consider an epidemic that makes a person stay infected for 6 days. A city of 30,000 people is
exposed to the disease wherein a person is on average in contact with 6.8 other people. Let S(0) = 29,000.
Find the maximum number of people who will be infected on any day. Assume the disease can spread

from an infected individual to anyone with whom he/she comes into contact.

Solution:
Since the disease can spread from an infected individual to anyone with whom he/she comes into contact,
the parameter B = 1.0
The disease makes a person infected for 1/u = 6 days ==>u=1/6
RO=<k>B/pn=6.8*6=40.8

N = 30,000
S(0) = 29,000
s0 =29000/30000 = 0.967
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. 1
i =1—R—*[1+1n(R0*s0)]

0

!

i *[1 +In(40.8 % 0.967)] = 0.8854
40.8

The maximum # people who can be infected in any day = 0.8854 * 30000 = 26562

Example 6: Consider a state of population 3 million and that 60% of this population is initially
susceptible to a disease that spreads per the SIR model. The rest of the population are immune to the
disease. Determine the basic reproduction number for the disease (which could be anywhere from 1 to
20).

Solution:
Since 60% of the population are only susceptible to the disease; the largest fraction of people who are
infected at any time can be at most 0.6. We will use ip,x = so = 0.6.

. 1
i =1—R—*[1+1n(R0*s0)]

0

0.6:1—Ri*[1+1n(R0*0.6)]

0
Simplifying,

Ri>l<[1+1n(le0 0.6)]=1-0.6

0

Ri>l<[1+1n(le0 #0.6)]=0.4

0
0.4*RO =1 + In(0.6 * RO)

Let LHS = 0.4*R0O and RHS =1 + In(0.6 * RO)

RO =1==>LHS =04, RHS =0.4891 LHS <RHS

RO =20 ==>LHS = 8.0, RHS = 3.4849 LHS > RHS.
So, the appropriate value for RO has to be between 1 and 20.

We will run binary search to determine the value of RO for which LHS ~ RHS, with a threshold difference
IRHS - LHSI < 0.01

Invariant: Left Index, LI will correspond to a case wherein LHS < RHS
Right Index, RI will correspond to a case wherein LHS > RHS

if LHS(MI) < RHS(MI) set LI = MI
if LHS(MI) > RHS(MI) set RI = MI



Search space

LI

RI

Mi
LHS(LI) LHS(RI)
<RHS(LI) > RHS(RI)

LHS(LI)
<RHS(LI)

L\I |

Ml RI
LHS(MI) LHS(RI)
< RHS(MI) > RHS(RI)

LI RI MI = (LI+RI)/2

1 20 10.5

1 10.5 5.75

1 5.75 3.375

3.375 5.75 4.5625

4.5625 5.75 5.1563

5.1563 5.75 5.4532

Search space
1
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Ll MI RI
LHS(LI) LHS(RI)
<RHS(LI) > RHS(RI)
LHS(RI)
> RHS(R)
|I_| M
LHS(LI) LHS(MI)
< RHS(LI) > RHS(MI)
LHS: 0.4*MI RHS: 1 + In(0.6*MI)
4.2 2.8405
2.3 2.2384
1.35 1.7055
1.825 2.0070
2.0625 2.1294
2.1813 2.1854

STOP! as IRHS-LHSI=12.1854 - 2.18131 < 0.01 for MI = 5.4532.

The value for RO ~ 5.4532

Example 7: Consider for the following real-time data obtained for the spread of the Influenza virus per
the SIR model in a community of 763 people wherein one person was initially infected (on day 0).
Assume the remaining 762 people are susceptible to the virus on day 0. Determine the RO for the virus.

Solution:

Infected People

25
75
228
297
259
235
192
126
71
28
9

7

s0 =762/763 =0.998689.
10 =1/763 = 0.001311
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We now compute the fraction i(t) for days 3...14.

fraction, i Infected

Days Infected people people / 763
3 25 0.032765
4 75 0.098296
5 228 0.29882
6 297 0.389253
7 259 0.33945
8 235 0.307995
9 192 0.251638
10 126 0.165138
11 71 0.093054
12 28 0.036697
13 9 0.011796
14 7 0.009174

1
i =1——*[1+In(R, *s,)]
R,
At t = 6, 1 1S maximum.
imax = 0.389253 =1 - 1/RO [1+ In(R0*0.998689)]

We can plot the above expression in Excel for RO values ranging from 1.01 to 5.0, in increments of 0.01.
We can see for what value of RO, the above expression value is close to 0.389253. Using Excel, we
observe RO = 3.84

0.50
0.45 _

040 -——- /
0.35 //’A:'
0.30 :
e '
0.25 > :
0.20 -
0.15 //
0.10

0.05
0.00 /

1. 1. 1. 1. 1.
0 2 4 6 8

N

Corresponding Values for the imax Expression

BN 4

2, 2 22,3, 3. 3. 3. 3.4 4, 4, 4. 4. 5.
0 2 6 8 0 2 46 802 46 80

=

Possible Values for RO
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1.5 SIRS Model and its Endemic State Analysis

The SIR model lets the recovered individual to stay immune to the disease after the first and only
infection. Per the SIRS model, the recovered individual returns the susceptible state at the rate (&; i.e., the
average duration an individual stays in the recovered state is 1/£). Accordingly, the differential equations
for the SIRS model are as follows:

90
X 3

B RS BEFS4ERE it (18)
dt

£=<k>,3*i*s—,u*l ..................................... (11)
dt

D JFPmEF P (19)

dt

Atany timet,s+i+r=1

Endemic Analysis
Endemic analysis of the SIRS model is feasible only if RO > 1. If RO <=1, the disease is considered to die
down on its own.

ds di dr

In the endemic state, each of the three derivatives —,—,— become 0.
dr dt dt

We can then evaluate what will be the values for s, iand r (representing respectively the values of s, i
and r in the endemic state) as a function of the parameters <k>, f3, i and &.

Let us first use: ﬂ =0
dt

ﬂ:<l<>,6>"i>"s—/1>"i:0
dt

i*¥[<k>pB*s—ul=0
So, eitheri=0o0r <k >f*s—u =0

Note that the SIRS model (due to its looping characteristic) keeps each of the three fractions non-zero in
the endemic state. This is because: RO > 1: there is always a non-zero fraction of the people who remain
susceptible and they will get infected, who will then recover and again become susceptible.



So, at the endemic state of a disease for which RO > 1, 1 cannot be 0.

Hence, <k > f*s—u=0
<k>p

Now, let us use §:—<k > pFi*s+&E*r=0
1
as well as replace r with 1-i-s

<k>frits=Er(l—i—s)=E—ExioExg

4 1
Substituting for s ={s = £ __Lr,
<k>p R,

We get,

<k>ﬁﬁ*<;iﬁ:§—§ﬁ—§%

ifp=g—gri=g*s

Collecting all the i terms on the left hand side

P Exi= EoExg

i+ &= EX[1-—E

<k>p
wl1_ M
i:§ P <k>ﬁ}
[ +¢]
i)
<k>p

e

Substituting for s =s andi= i as derived aboveins+i+r=1



= | —

3
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Discrete Event Simulations of the SIRS Model and the Differential Equations

’ 3

s(t+1) = s(t) - <k>P*s()*i(t) + r(t)* &
(1) = i) + <kSBESOM(D) - i(OF . & e (20)
r(t+1) =r(t) + i()* p - r(t) * &
At any time t, s(t) +1i(t) + r(t) =1
ds(t)=—<k>,3*s*i+r*§ )
dt
di(t)=<k>,3*s*i—i*,u > .................. 2n
dt
ar®) _ iy
” H—r*& Y

Example 1:

Let the parameter values for the SIRS model be f = 0.9, p =0.5, £ =0.7 and <k> = 1.0. Simulate the
execution of the SIRS model with these parameter values for 100 time units (by which time the endemic
state is expected to have reached) and compare the fractions for the susceptible, infected and recovered
nodes in the endemic state obtained in the simulations with those using the theoretical formulae.

RO = <k>* B/ p=1%0.9/0.5 = 1.8

10 s(t) 1.0 it) 1.0 rft)
0.9 0.9
0.9
08 |\ 0.8 08
07 \ 0.7 07
' \
06 - 0.6 06
05 0.5 05
04 04 04
0.3
0.3 0.3
0.2 -
0.2 0.2
0.1 A 04 7
0.0 . . . . . . . . . . 0.0 T T T T T T T T T 1 0.0 : . i . . . . . . .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Susceptible Infected Recovered
s = =0.5556

T<k>f 10709
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- H
P <k>p] 1-0.5556

= 0 05 =0.2592
1+ 1+ —
£ 0.7
- y7j 1 1
r={1- 1= =(1-0.5556)*|1- =0.1852
<k>p U 0.5
1+ 1+—
£ 0.7

Comparison of Results in the Endemic State

Fraction of Nodes Theory Simulations

Susceptible 0.5556 0.5556

Infected 0.2592 0.2592

Recovered 0.1852 0.1852
Example 2:

Let =0.9, 0 =0.3, £=0.9 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered
nodes in the endemic state per the SIRS model.

RO = <k>* B / = 1.0%0.9/0.3 = 3.0

10 s(t) 1.0 it) 1.0 r(t)
. 0.9
g:: ! g: 0.8
o7 % 07 07
06 ** 0.6 0s
0.5 f
gi \‘ 0.4 f[ gi
0.3 0.3 I 0.3
0.2 0.2 / 0.2
01 0.1 %1 i
0.0 T T T T T T T T T 1 0.0 T T T T 4 T T T T ! 0.0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Susceptible Infected Recovered
- 0.3
s=—H = =0.3333
<k>p 1.0%09
- <k> 1-0.3333
= P = =0.50
L 03
1+ 2 1+—
£ 0.9
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- 1 1
r:(l—ij* l-——=[=(1-0.3333)*%|1— 03 =0.1667
<Kk> 'B 1+ ek 1+ —
§ 0.9
Comparison of Results in the Endemic State
Fraction of Nodes Theory Simulations
Susceptible 0.3333 0.3333
Infected 0.5000 0.5000
Recovered 0.1667 0.1667

Comparison of Examples 1 and 2: As RO (3.0) for Example 2 is greater than the RO (1.8) for Example
1, a larger fraction of the susceptible nodes get infected. Also, with 1 + ¢ of Example 2 (1.3333) being
lower than that of Example 1 (1.7143) < &, a larger fraction of the recovered nodes return to susceptible
state and get infected as well. We thus observe a large fraction of the nodes to be eventually (in the
endemic state) infected for larger values of RO.

What can be inferred? For a fixed R0, the more smaller is p compared to & (i.e., more smaller the value

1+#

3

1- —j decreases (resulting in the eventual decrease of r ). The magnitude of the increase in i and

(1+ﬂ
S

the decrease in r influences the relative magnitudes of the values for s in the two scenarios.

for 1 + p/é), the value for ( j increases (resulting in the eventual increase of Z) and the value for

In summary, as p gets increasingly lower than &, relatively fewer fraction of infected nodes recover from
infected state, and whoever has recovered are more likely to reach the susceptible state (and may enter the
infected state if B is high).

If p<< & (e., WE << 1 ==> 1+ WE ~ 1), the rate at which people enter the Recovered state is lower than
the rate at which people leave the recovered state to become susceptible again. There is bound to be
eventually nobody in the Recovered state. ==> SIRS model becomes the SIS model and eventually to
the SI model as f gets increasingly larger than & as well.

s e f.\ s R B A0 v
& —p : S
a CR u<<t 9 e N Q
SIS
SI
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Example 3:
Let p=0.9, 0 =0.5,&=0.1 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered
nodes in the endemic state per the SIRS model (using theoretical formulations and simulations).

RO = <k>* B/ pu=1.0%0.9/0.5 = 1.8

= = =0.5556
<k>p 1.0%09

- H
P <k>p]| 1-0.5556

= =0.0741
U 0.5
1+ 1+—

éf 0.1
- y7; 1 1
r= l—k— *1— =(1-0.5556)*|1— 03 =0.3703

<Kk¥ 'B 1+ '] 1+—
§ 0.1
10 s(t) 1.0 i(t) 1.0 f
oo |\ oL o8
07 1 0.7 07
06 \\ P 0.6 06
05 0.5 0.5
] — e e
o1 01 A o1 7
0.0 - . : : . . . . : . 0.0 T T p : T T T T 0 ! 0.0 T T - - . . . . . .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Susceptible Infected Recovered

Comparison of Results in the Endemic State

Fraction of Nodes Theory Simulations

Susceptible 0.5556 0.5560

Infected 0.0741 0.0740

Recovered 0.3703 0.3699

Example 4:
Let =0.9, n=0.5,&=0.05 and <k> = 1.0. Compute the fraction of susceptible, infected and recovered
nodes in the endemic state per the SIRS model (using theoretical formulations and simulations).

RO = <k>* B/ p=1.0%0.9/0.5 = 1.8



= = =0.5556
<k>p 1.0%0.9

- H
s <k>p]| 1-0.5556

) H 1409
{“ J 0.05

0.0404
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- 1 1
r:(l— klu j* l1-—=[=(1-0.5556) * 1_T =0.4040
h e 'B 1+ H 1+—
£ 0.05
10 0 1.0 it) 1.0 1)
0.9 .
os ] \ 038 o
07 A 0.7 07
0.6 \\ /m 0.6 0.6 A~
T 0.5
zi N/ 0.4 Zi TN ——
03 - 0.3 03 / e
0.2 0.2 8 0.2 I
0.1 0.1 . 0.1 /
0.0 . : - - : T T T T , 00 T T y T T T T T T ! 0.0 . . : T T T T T T |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Susceptible Infected Recovered

Comparison of Results in the Endemic State

Fraction of Nodes Theory Simulations

Susceptible 0.5556 0.5570

Infected 0.0404 0.0433

Recovered 0.4040 0.3997
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Comparison of Examples 3 and 4

Example 3: $=0.9, 1 =0.5,£=0.1 and <k>=1.0

10 ) 1.0 it) 10 )
0.9 0.9

0.9

0.8 \ 0.8 0.8

o7l \ 07 07

01\ 06 06

05 N 0.5 05

04 \vd 04 04 PN

; 0.3 7 S

03 o 03 7

0.2 - 0.2

o 0.1 N o £

ol Y g
0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Susceptible Infected Recovered

Example 4: f =0.9, n.=0.5, { =0.05 and <k> = 1.0

1o s 10 it) 10 @

o 0.9 0.9

08 \ 0.8 0.8

07 i 0.7 07

0.6 \ . 0.6 0.6

05 A / s — 0 & 05 N

BN 04 N

03 0.3 03 f{ e

0.2

02 0.2

0.1 0.1 A\ 0.1 /

D N X I e e
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Susceptible Infected Recovered

As the /€ ratio gets larger than 1, there are more instances of the epidemic showing a noticeable increase
followed by a decrease in the fraction of infected nodes as well as in the fraction of recovered nodes,
albeit with a reduced peak (and likewise a decrease followed by an increase in the fraction of susceptible
nodes, with ups an downs in the peak). Nevertheless, the epidemic eventually reaches an endemic state
with the same value for the fraction of nodes in the susceptible state (for a fixed RO, irrespective of the
value of the W¢ ratio). However, if p >> € (i.e., W& >> 1 ==> 1+ pw/& ~ we), the rate at which people enter
the Recovered state is greater than the rate at which people leave the recovered state to become
susceptible again. There is bound to be people accumulated in the R state over time. ==> SIRS model
becomes the SIR model.
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