
A Survey of Hands-on Assignments and Projects in
Undergraduate Computer Architecture Courses

Xuejun Liang

Department of Computer Science
Jackson State University
Jackson, MS 39217 USA
xuejun.liang@jsums.edu

Abstract - Computer Architecture and Organization is an
important area of the computer science body of knowledge. How
to teach and learn the subjects in this area effectively has been an
active research topic. This paper presents results and analyses
from a survey of hands-on assignments and projects from 35
undergraduate computer architecture and organization courses
which are either required or elective for the BS degree in CS.
These surveyed courses are selected from universities listed
among the 50 top Engineering Ph.D. granting schools by the US
News & World Report 2008 rankings, and their teaching
materials are publicly accessible via their course websites.

I. INTRODUCTION

Computer Architecture and Organization is an important
area in undergraduate computer science programs. According
to the Joint Task Force on Computing Curricula of IEEE
Computer Society and Association for Computing Machinery
[1], the subjects in this area include (1) Digital logic and
digital systems, (2) Machine level representation of data, (3)
Assembly level machine organization, (4) Memory system
organization and architecture, (5) Interfacing and
communication, (6) Functional organization, (7)
Multiprocessing and alternative architectures, (8) Performance
enhancements, and (9) Architecture for networks and
distributed systems. They are often taught in either a two-
course sequence or a three-course sequence in most of
undergraduate computer science programs. Some of these
subjects can be taught at both an introductory level and an
upper level.

Teaching the subjects in the computer architecture area can
be difficult; students sometimes have trouble getting the points
of the subjects under the traditional paper-pencil pedagogy.
Some topics in computer architecture area are difficult to
understand without proper intuitions. Hands-on assignments
and projects such as designing, programming, simulating, and
implementing a processor architecture would be able to
provide such learning intuitions and will certainly help
students learning the course subjects and engage their learning
interest.

But, there are so many distinct topics in the computer
architecture area and computer architectures can be
approached in several different levels. Subjects taught in
computer architecture and organization courses will vary from

institution to institution and between CS and CE majors in the
same institution. Therefore, there could be too many choices in
selecting hands-on assignments and projects for a computer
architecture and organization course.

It is certainly desirable to have an overall picture of these
possible hands-on assignments and projects by categorizing
them and then getting their distribution over different
categories. To this end, the author surveyed hands-on
assignments and projects collected from 35 undergraduate
computer architecture and organization courses which are
either required or elective for the BS degree in CS. These
surveyed courses are selected from universities listed among
the 50 top Engineering Ph.D. granting schools by the US News
& World Report 2008 rankings [2], and their teaching
materials are publicly accessible via their course websites.

There have been substantial research works on the computer
architecture education. Computer processor simulators are the
most useful tools in the computer architecture education and
research. There are several lists of processor simulators
available from the Internet, for example, the WWW Computer
Architecture Page [3]. Most simulators on these lists are for
the research purpose. A survey of simulators used in computer
architecture and organization courses can be found in [4]. In
order to make a simulator easier to use and suitable for the
teaching purpose, graphical interfaces to an existing simulator
were created in [5]. There are also many cache simulators [6,
7] to allow students to play with cache memory and memory
hierarchy. However, the usage of these tools is often limited to
a few individual institutions.

This survey will provide readers an overall picture of major
hands-on assignments and projects in the undergraduate
computer architecture education, their categorization and
distribution, as well as languages, tools, and platforms used in
these assignments and projects.

II. ASSIGNMENT CATEGORIES

Hands-on assignments and projects used for the computer
architecture and organization education can be categorized
based on their contents, programming languages used, and
tools used. In this survey, four main categories A, B, C and D
are given as shown in Table I. Several subcategories are also
listed within each category. There are totally twelve
subcategories.

TABLE I
CATEGORIES AND SUBCATEGORIES

Categories Subcategories
1. Basic Digital Logic Design
2. Scalar Processor Design
3. Cache Design

A. Digital Logic Design

4. Superscalar Processor Design
5. Basic Assembly Programming B. Assembly Language

Programming 6. Advanced Assembly Programming
7. Basic High-Level Programming
8. Processor Simulator
9. Cache Simulator

C. High-Level Language
Programming

10. Advanced High-Level Programming
11. Using simulators D. Exploiting Processor

Simulators 12. Modifying simulators

A. Digital Logic Design
Digital logic design plays an essential role in studying the

internal behalves of a computer hardware component.
Designing, simulating, and implementing a processor
architecture by using the digital logic approach is certainly a
valuable hands-on experience in computer architecture area.

Under this category, the first subcategory called basic digital
logic design includes the combinational circuits and major
components, the sequential circuits and finite state machines,
and the pipelined circuits. The knowledge from this
subcategory is necessary for students to move forward on the
remaining three subcategories. The scalar processor design
subcategory contains the single-cycle processor and the
pipelined processor. Note that the survey did not include a
course whose assignments and projects were solely on the first
subcategory.

B. Assembly Language Programming
The ISA (Instruction Set Architecture) level of computer

organizations is the interface between software and hardware.
A good ISA makes the computer hardware easy to be
implemented efficiently and makes the computer software
program easy to be translated into an efficient code. Assembly
language programming is the best way to study an ISA.

The basic assembly programming subcategory includes (1)
System I/O, ALU operations, and control flows, (2) Stacks,
subroutines, and recursions, and (3) Programmed I/O,
interrupts, and exceptions. One advanced assembly
programming example is writing a simple timesharing OS
kernel on a processor.

C. High-Level Language Programming
It is true that understanding computer processor and system

architectures will help students writing more efficient high-
level language programs. But, on the other hand, developing a
software program to simulate a computer processor or a
computer system will also help students understanding better
computer processor and system architectures.

Within the high-level language programming category are
listed four subcategories as shown in Table I. The basic high-
level programming subcategory deals with using strings,
pointers, memory allocation, and etc. The processor simulator
subcategory involves in developing and implementing

assemblers, functional processor simulators, cycle-accurate
processor simulators, and graphical interfaces of processor
simulators. Cache simulators are used to simulate the computer
cache memory. Two examples in the advance high-level
programming subcategory are the parallel programming on
clusters with MPI and the development of an interpreter to
simulate UNIX file system. Note that the survey did not
include a course whose assignments and projects were solely
on the basic high-level programming subcategory.

D. Exploiting Processor Simulators
Computer processor simulators are very useful tools in the

computer architecture education and research. A functional
processor simulator allows users to run an assembly language
program and to examine the contents either inside the
processor or inside the memory. Graphical computer
simulators which are able to visualize dynamic behaviors of a
computer will certainly help students learning the computer
architecture and engage their learning interest. Some processor
simulators allow user to study the processor performance and
cost and to compare the processor design tradeoffs before
building the processor.

Two subcategories are listed under the exploiting simulator
category as shown in Table I. The using simulator subcategory
deals with studying dynamic behaviors, performance, and cost
of a computer through using simulators. The other subcategory
is about modifying an existing processor simulator to add more
functions and features.”

III. SURVEY RESULTS AND ANALYSES

The survey was performed for 35 undergraduate computer
architecture and organization courses from universities among
the 50 top Engineering Ph.D. granting schools by the US News
& World Report 2008 rankings. The surveyed courses were
taught either during or before the summer of 2007. Among the
surveyed 35 courses, 27 courses are required and 8 courses are
elective for the Bachelor degree of Science in Computer
Science. Because the programming/lab assignments and
projects are the focus of this survey, courses without
programming/lab assignments or projects, or whose
programming/lab assignments and/or projects were not
publicly accessible via their course websites, were not
considered in this survey.

The survey content includes course descriptions, course
formats, student evaluation, textbooks, languages and tools
used, and programming/lab assignments and projects. A course
is selected in this survey is based on the course description and
the availability of programming/lab assignments and projects.
A surveyed course may, or may not, be associated with a lab,
or may be purely a lab. Among the 35 surveyed courses, 4
courses did not have required textbooks and 3 courses adopted
two required textbooks (one for computer architecture and the
other for digital logic). The famous textbook “Computer
Organization & Design: The Hardware/Software Interface” by
David Patterson and John Hennessey [8] was adopted by 17
required courses and 1 elective course. Another textbook

“Computer Architecture: A Quantitative Approach” by John
Hennessy and David Patterson [9] was adopted by 5 elective
courses.

A. Assignment and Project Distribution
Table II lists the categorization of hands-on assignments and

projects under the four categories and the twelve subcategories
described in Section 2 for each of the 35 surveyed courses. The
column # shows the course number and the column WT shows
the weight percentage that assignments and projects will
contribute to the final grade of students. The weight of 100%
indicates that this is a pure lab course; NA means that the
weight is not available. Take an example in Table II, the
course # 01 is a required course and its programming/lab
assignments and projects will take 35% of the final grade and
belong to categories A and B or subcategories 2, 5, and 6.
Take another example in Table II, the course # 03 is an
elective course and its programming/lab assignments and
projects will take 25% of the final grade and belong to
category C or subcategory 10.

Note that the number of assignments or projects in each
subcategory or category is not recorded in Table II because the
workload in each assignment or project may be very different.
It is also possible that a big project may be involved in several
subcategories or even several categories.

TABLE II
ASSIGNMENT AND PROJECT CATEGORIZATION

(* This is an elective course)

Assignment and Project Categories (Subcategories)
A B C D

WT
(%)

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

01 35 x x x
02 25 x x x x
03* 35 x
04 NA x x x x x x x
05* 50 x x x
06 30 x x x x
07 40 x x x
08* 30 x x x x
09 55 x x x
10 NA x x x x
11 50 x x
12 100 x x
13 20 x
14 30 x x x x
15 60 x x x
16 40 x x x
17 25 x
18* 50 x
19 50 x x x
20 60 x x
21* 50 x
22* 25 x x x
23 25 x x x
24* 30 x x
25* 10 x
26 40 x x
27 35 x x x
28 30 x x
29 15 x x
30 NA x x x x

31 55 x x x
32 20 x x
33 100 x x
34 NA x x
35 NA x

Based on the assignment and project categorization for each
course shown in Table II, the course distributions over the 12
subcategories and over the 4 categories are calculated and
shown in Fig. 1 and 2, respectively. Take an example in Fig. 1,
two required courses and three elective courses have
assignments or projects in Subcategory 3. Similarly, take an
example in Fig. 2, three required courses and three elective
courses have assignments or projects in Category D. From Fig.
1 and 2, it can be noticed that assignments and projects in the
assembly programming (Category B), in the basic high-level
programming (Subcategory 7), and in the cache simulator
(Subcategory 7) are all offered in a required course.
Assignments and projects in the scalar processor design
(Subcategory 2) and in the basic assembly programming
(Subcategory 5) are most popular, while there are relatively
few assignments and projects in the exploiting simulators
(Category D).

Fig. 1. Course Distribution over the 12 Subcategories

Fig. 2. Course Distribution over the 4 Categories

Based on the assignment and project categorization for each
course shown in Table II, the numbers of courses that cover
different numbers of subcategories (categories) are calculated
and shown in Fig. 3 (Fig. 4). There is only one required course
that has assignments and projects in 7 different subcategories
as shown in Fig. 3. Aside from this course, any other course
covers assignments and projects in less than 5 subcategories.

0

5
10

15
20

25

A B C D
Assignment and Project Category

N
u

m
b

er
 o

f
C

o
u

rs
es

Required Elective

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12
Assignment and Project Subcategory

N
u

m
b

er
 o

f
C

o
u

rs
es

Required Elective

From Fig. 3 and 4, it can be seen that elective courses tends to
focus on less subjects than required courses. Only one elective
course covers assignments and projects in two categories; the
rest elective courses give their assignments and projects in
only one category.

Fig. 3. Course Distribution over Subcategory Coverage

Fig. 4. Course Distribution over Category Coverage

B. Digital Logic Design
In the digital logic design category, the popular design entry

is using a hardware description language such as Verilog and
VHDL. There are six surveyed courses that use FPGA devices
in their assignments and/or projects. A brief overview of
FPGA platforms, Logic and FPGA design tools, and
processors selected to implement will be given in this section.

There are four FPGA boards used by six surveyed courses.
Three of them are commercial products. They are Xilinx’s
XUP Virtex-II Pro Development System [10], Altera’s
Development and Education Board [11], and XESS’s XSA
board [12]. Only one non-commercial FPGA board, called
Calinx [13], is from the UC Berkeley.

There are a large number of Logic and FPGA design tools
used by the surveyed courses. These tools include the logic
synthesis and simulation and the FPGA place & route. Among
these tools, many are commercial products, including
ModelSim [14], Synopsys VCS [15], Xilinx ISE [16], Altera
Quartus II [17], and Aldec Active-HDL [18]. Note that there is
generally a free education edition for each of the above
commercial tools, but it may be very slow for a large design.

There are also many educational logic design and simulation
tools used in the surveyed courses. JSIM is a CAD tool from
MIT [19]. It consists of a simple editor for entering a circuit

description, simulators to simulate a circuit at device-level,
transient analysis-level, and gate-level, and a waveform
browser to view the results of a simulation. VIRSIM is a
graphical user interface to Synopsys VCS for debugging and
viewing waveforms [20]. Logisim is an educational tool for
designing and simulating digital logic circuits [21]. Chipmunk
system software tools from UC Berkeley perform a wide
variety of tasks: electronic circuit simulation and schematic
capture, graphics editing, and curve plotting, to name a few
[22]. SMOK (pronounced smOk) and CEBOLLITA are tools
designed to improve the student design experience in an
undergraduate machine organization course [23] in the
University of Washington. Funsime/Timsim is a set of Verilog
tools used in a surveyed course at Cornell University [24].
Funsim is a functional simulator and Timsim is a timing
simulator.

The processors selected to implement in the surveyed
courses using the digital logic design is mainly a subset of a
well-known processor such as MIPS and Alpha. They may
also be a simple artificial processor architecture designed by
instructors or even students themselves. Moreover, they can be
an educational processor come with a course or a textbook. For
examples, Beta is an educational RISC processor used in
MIT’s Computation Structures course. PAW is a simple
architecture designed to be easy to implement in a semester
course by the Princeton University. Mic-1 is a
microarchitecture described in the textbook “Structured
Computer Organization”, 4/e, Andrew S. Tanenbaum,
Prentice-Hall, 1998. SRC (Simple RISC Computer) is used in
the textbook “Computer Systems Design and Architecture,”
2/e, Vincent P. Heuring and Harry F. Jordan, Prentice Hall,
2004.

C. Assembly Programming
In the assembly language programming category, the

majority of assignments and projects are in the basic assembly
programming subcategory. Only five projects are classified in
the advanced assembly programming subcategory. They are
(1) A simple timesharing OS kernel on the Beta processor at
MIT, (2) An interpreter that simulates a subset of the MIPS-I
ISA. at Stanford, (3) SPIMbot contest at University of
Illinois–Urbana-Champaign, (4) Implement a dynamic
memory allocator to study the way structured data types and
structures with bit fields supported in MIPS at Texas A&M
University, and (5) Create the SnakeOS Operating System on
LC-3 at Univ. of Pennsylvania. Note that LC-3 is an ISA used
in the textbook “Introduction to Computing Systems: From
Bits and Gates to C and Beyond,” 2/e, by Yale N. Patt and
Sanjay J. Patel, McGraw-Hill, 2003.

The processors that are targeted to the assembly language
programming include Beta, MIPS, LC-2K7 (an 8-register, 32-
bit computer with 65536 words of memory, designed and used
at the university of Michigan–Ann Arbor), PowerPC, IA-32,
PAW, LC-3, SRC, and x86. The functional simulator for
interpreting, executing, and debugging assembly programs are
BSIM for Beta, SPIM [25] and GMIPC [26] for MIPS, LC-3

0

5

10

15

20

1 2 3 4

Number of Assignment and Project Categories

N
u

m
b

er
 o

f
C

o
u

rs
es

Required Elective

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8 9 10 11 12
Number of Assignment and Project Subcategories

N
u

m
b

er
 o

f
C

o
u

rs
es

Required Elective

Simulator [27] and PennSim [28] for LC-3, and SRC
Assembler and Simulator [29].

D. High-Level Programming
In the high-level language programming category, the high-

level languages used are C, C++, and Java. The processors
simulated in the subcategory 8 include MIPS, LC-2K7, a
student-designed ISA, PAW, and LC-3. There are eight
assignments and/or projects in the advanced high-level
language programming subcategory. Five of them are (1)
Parallel programming on clusters with MPI at Stanford, (2) An
interpreter to simulate UNIX file system at Berkeley, (3) MIPS
Multicore Simulator, and Multiplayer Network Tetris Game at
Cornell, (4) Use shared memory (pthreads) and message
passing (MPI) to compute the Nth prime number at Duke, and
(5) Write a multiprocessor program to do Quicksort running on
the MulSim [30] shared-memory multiprocessor simulator at
UC-Davis.

E. Exploiting Processor Simulators
It can be seen from Table II, there are only a few courses

involved in this category. In the subcategory 11, one project at
Berkeley is to determine cache parameters using CAMERA
and study virtual memory using CAMERA and VMSIM,
where CAMERA is a simple cache simulator used in CS 61C
at Berkeley and VMSIM [31] is a simulator of a computer
system executing concurrent processes into which desired
CPU scheduling and memory management policies can be
plugged in with ease. There are also three SimpleScalar [32]
assignments in this subcategory to do benchmarking, branch
prediction algorithms, a cache memory system, chip
multiprocessors, and multithreaded processors. There are three
assignments in the subcategory 12: (1) MIC-1 microcode
modification, (2) The code modification of sim-outorder in
SimpleScalar to explore a micro-architectural issue, and (3)
Extend the Mac-1 instruction set by adding a MDN instruction.

IV. CONCLUSIONS AND FUTURE WORKS

This survey presents an overall picture of major hands-on
assignments and projects currently used in the undergraduate
computer architecture education at the top universities in USA.
This work is intended for helping educators to select and/or
create right hands-on assignments and projects as well as tools
for their computer architecture and organization courses based
on their expected course outcomes. A major future work will
be evaluating and comparing some of these hands-on
assignments and projects as well as tools. Meanwhile, how to
adopt these hands-on assignments and projects as well as tools
in computer architecture courses at an underrepresented
institution can be an interesting work.

REFERENCES

[1] The Joint Task Force on Computing Curricula of IEEE Computer
Society and Association for Computing Machinery, “Computing
Curricula 2001 Computer Science Final Report,” 2001

[2] U.S. News & World Report, “America’s Best Graduate Schools 2008:
Top Engineering Schools,” available from: http://grad-

schools.usnews.rankingsandreviews.com/usnews/edu/grad/rankings/eng/
brief/engrank_brief.php

[3] Luke Yen, Min Xu, Milo Martin, Doug Burger, and Mark Hill, “WWW
Computer Architecture Page,” available from:
http://pages.cs.wisc.edu/~arch/www/

[4] W. Yurcik, G. Wolffe, and M. Holliday, “A Survey of Simulators Used
in Computer Organization/Architecture Courses,” in the Proceedings of
the 2001 Summer Computer Simulation Conference (SCSC 2001),
Orlando FL. USA, July 2001

[5] C. Weaver, E. Larson, and T. Austin, “Effective Support of Simulation in
Computer Architecture Instruction,” in the Proceedings of the Workshop
on Computer Architecture Education (WCAE), Anchorage AK USA,
May 2002

[6] S. Petit, N. Tomás, J. Sahuquillo, and A. Pont, “An execution-driven
simulation tool for teaching cache memories in introductory computer
organization courses,” in the Proceedings of the Workshop on Computer
Architecture Education (WCAE), pp.18-24, Boston MA USA, June
2006.

[7] J. Mendes, L. Coutinho, and C. Martins, “Web Memory Hierarchy
Learning and Research Environment,” in the Proceedings of the
Workshop on Computer Architecture Education (WCAE), pp.25-32,
Boston MA USA, June 2006

[8] David Patterson and John Hennessey, “Computer Organization &
Design: The Hardware/Software Interface,” 3/e, Morgan Kaufmann,
2007

[9] John. Hennessy and David Patterson, “Computer Architecture: A
Quantitative Approach,” 4/e, Morgan Kaufmann, 2006

[10] Xilinx, “Xilinx XUP Virtex II Pro Development System,” available from
http://www.xilinx.com/univ/xupv2p.html

[11] Altera, “Altera's Development and Education Board,” available from
http://www.altera.com/education/univ/materials/boards/unv-de2-
board.html

[12] “XSA Board V1.1, V1.2 User Manual,” XESS Corporation, 2005
[13] “CALINX - EECS150 FPGA LAB BOARD,” University of California,

Berkeley, available from http://calinx.eecs.berkeley.edu/
[14] Mentor Graphics, “ModelSim,” available at http://www.model.com/
[15] Synopsys, “VCS,” available from http://www.synopsys.com/vcs/
[16] Xilinx, “Logic Design,” available from

http://www.xilinx.com/ise/logic_design_prod/index.htm
[17] Altera, “Quartus II Software,” available from

http://www.altera.com/products/software/products/quartus2/qts-
index.html

[18] Aldec, “Active-HDL Overview,” available from
http://www.aldec.com/products/active-hdl/

[19] MIT, “JSIM,” available from http://6004.lcs.mit.edu/
[20] Tutorial: VCS and VirSim, available from

http://users.ece.utexas.edu/~dghosh/vlsi1_lab3/web/lab3set2.html
[21] Logisim, available from http://ozark.hendrix.edu/~burch/logisim/
[22] UC Berkeley, “The Chipmunk System,” available from

http://www.cs.berkeley.edu/~lazzaro/chipmunk/
[23] SMOK/CEBOLLITA, available from

http://www.cs.washington.edu/homes/zahorjan/homepage/Tools/SMOK/
index.shtml

[24] Funsime/Timsim, available from
http://www.csl.cornell.edu/courses/ece314/projects/ece314p3sp07_files/
verilogtools.html

[25] SPIM: A MIPS32 Simulator, available from
http://pages.cs.wisc.edu/~larus/spim.html

[26] GMIPC – MIPS Simulator, available from
http://www.csl.cornell.edu/courses/ece314/gmipc/gmipc.html

[27] LC-3 Simulator, available from http://highered.mcgraw-
hill.com/sites/0072467509/student_view0/lc-3_simulator.html

[28] PennSim Simulator Manual, available from
http://www.seas.upenn.edu/~cse240/pennsim/pennsim-manual.html

[29] SRC Assembler and Simulator, available from
ftp://schof.colorado.edu/pub/CSDA/Simulators+Models/

[30] MulSim Multiprocessor Simulator, available from
http://heather.cs.ucdavis.edu/~matloff/mulsim.html

[31] VMSim - Virtual Memory Management Simulator, available from
http://lass.cs.umass.edu/~bhuvan/VMSim/

[32] SimpleScalar, available from http://www.simplescalar.com/

