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Abstract: The generalized template matching 
(GTM) operations can be accelerated using 
reconfigurable systems with field programmable 
gate array (FPGA) hardware resources.  Manually 
design an optimal FPGA hardware for a GTM 
operation is an iterative process that normally 
takes weeks or even months.  GOM (GTM 
Optimal Mapping) is a software tool developed to 
reduce the design time to days or even hours.  The 
tool design flow and its major components are 
described in this paper.  Several design examples 
are used to evaluate the tool and to identify the 
weakness of the tool. 
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1 Introduction  
 
The generalized template matching (GTM) 
operations include image-processing algorithms 
for 2D digit filtering, morphologic operations, 
motion estimation, and template matching [3, 4]. 
Mapping GTM operations on reconfigurable 
computers automatically and optimally is 
desirable.  
 
The computation of a GTM operation is to move 
a template pixel by pixel in scanning line order, 
similar to the “Sliding Window-Based 
Operations” (SWO) as in [7]. The GTM is more 
general in that all the pixels in a SWO window 
are involved in the window computation while in 
GTM a template may be quite sparse and only a 
low percentage of pixels in a window is involved 
in the computation.  
 
The GTM computation can be formulated as a 
nested loop. The computation iterates through 
image regions, templates, and pixel locations. The 
loop body computation, called the Basic Function 
(BF), involves applying one template window at 
one image pixel location.   For example, for a 2-D 
convolution that uses a 3x3 window, the BF 
consists of nine multiplication operations and the 

summation of nine numbers.  The image region is 
a set of consecutive image rows. The image pixels 
in the template window that are used for the BF 
evaluation are called active points.  
 
Figure 1 illustrates a typical GTM design on a 
reconfigurable computer based on an FPGA co-
processor board.  This paper assumes that only 
one FPGA chip on the board is to be used for 
GTM and there is only one memory port 
connected to the FPGA chip.    (The limitations 
are imposed by the code generator part of the 
current tool even though the optimization part of 
the tool can handle more general cases.) 
A typical GTM design includes three 
components: a computation unit, an optional 
buffer unit, and a memory interface controller. 
 

The computation unit normally consists of 
pipelined hardware that handles the parallel 
evaluation of one or more copies of BFs at several 
consecutive pixel locations.  Using buffers to 
store image pixels inside the FPGA chip serves 
two purposes: (1) it can reduce redundant 
memory accesses as the template window moves, 
and (2) it can provide more data in parallel to the 
computation unit than a limited memory port can.  
However, they are achieved at the expense of 
more FPGA area.  The memory interface 
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Figure 1: A typical GTM design 



  

controller provides data to the right place at the 
right time. 
 
The GTM design process for human designers is 
tedious because (1) there are many design options 
for the computation unit and the buffer, (2) the 
memory interface controller changes with design 
options and its design is error-prone, and (3) 
manual coding and evaluation of one design 
normally take at least several hours, most 
probably days, if not weeks.  Those design 
options need to be evaluated so as to maximize 
the throughput subject to the FPGA board 
resource constraints (such as the FPGA size and 
the memory port width.)   The software described 
in this paper evaluates designs through an 
optimization process and reduces the coding time 
with a code generator.  It therefore can drastically 
improve a designer’s productivity. 
 
Section 2 describes the tool design flow and its 
major components.  Section 3 presents several 
test cases that were used to debug and evaluate 
the tool performance.  Section 4 concludes the 
paper. 
 
2 GTM Mapping Tool 
 

This section describes the tool design flow and its 
major components.  The tool includes three major 
components, an optimal mapping tool, a code 
generator, and a library manager.  These three 
components are integrated together through a 
graphical user interface (GUI), as roughly shown 
above, that schematically guides a designer 
through the design process. 
 
The design flow of the tool is shown in Figure 2.   
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Figure 2: GTM design flow 



  

• To use the tool, a designer specifies the GTM 
application using the GUI and a text editor.   

• The optimal mapping tool can be invoked 
through the GUI so as to produce an optimal 
design subject to a hardware utilization ratio 
constraint.  Here the utilization ratio is the 
percentage of FPGA CLBs (Configurable 
Logic Blocks) that is to be used by the 
design. 

• The code generator can then be invoked, 
again through the GUI, so as to produce the 
VHDL files for the FPGA design and the C 
files for the host program. 

• Synplify, a commercial VHDL synthesis tool, 
and Xilinx Foundation, a commercial FPGA 
placement and routing tool, are then used to 
produce the FPGA configuration file to be 
used at run time. 

• Because the area estimates used in the 
optimization process may not be accurate 
enough, the placed and routed design may 
not fit into the targeted FPGA chip.  In this 
case, the utilization ratio needs to be reduced 
through the GUI, and the design process 
should be repeated. 

• The library manager can be used to maintain 
the VHDL operator components and the 
corresponding area and timing information 
required by the optimal mapping tool. 

 
Each major component of the tool is described in 
more detail as follows. 
 
2.1 Design Optimization 
 
The objective of the GTM optimal mapping tool 
is to obtain a pipelined circuit design that 
maximizes the throughput subject to the FPGA 
CLB count constraint.  Precise FPGA routing 
resource requirements are not considered. 
Building an optimal GTM design consists of two 
steps. 
 
Step 1: Enumerate all non-dominated memory 
access patterns (MAPs) 
 
The concept of MAP, as described in [5], is a key 
to the optimization process because both the 
computation unit and the buffer structure are 
determined from a MAP.  (Roughly speaking, 
dominated MAPs are those that can be 
disregarded in terms of optimization 

consideration.)  Efficient algorithms proposed in 
[5] have been implemented for this step. 
The throughput of each non-dominated MAP is 
proportional to the ratio of its packing factor (PF) 
over its data initiation interval (II) [5].  (The 
computation unit can process PF copies of BFs in 
parallel; but it takes II clock cycles for the 
pipelined computation unit to “consume” the PF 
copies of BF computation before it becomes 
ready for the next set of PF copies.)  The 
enumerated non-dominated MAPs can therefore 
be rank ordered based on their throughputs. 
 
Step 2: Derive GTM designs based on MAPs  
 
This step itself solves an optimization problem: 
 

Given a non-dominated MAP, derive a 
minimal-CLB-count design that satisfies 
the MAP constraint. 
   

The algorithm implemented in the tool involves 
graph scheduling and hardware sharing [3].  
(Each BF is described as a dataflow graph and PF 
copies of DFGs are scheduled together.)  The 
algorithm is applied to MAPs according to their 
throughputs, starting from the fastest one.  The 
process stops when the minimal-CLB-count 
design is small enough to fit into the FPGA chip. 
That design is considered optimal and a synthesis 
process is applied to produce the corresponding 
data path description, control schedule, and buffer 
type. 
  
2.2 Code Generation 
  
The code generator receives design information 
from the optimal mapping tool and produces 
VHDL codes for the buffer, the computation part, 
and the memory interface controller.  In addition, 
it produces a Synplify project file for the purpose 
of FPGA synthesis and a C code for the host 
program. 
 
VHDL Code Generator     
 
Given the data path from the optimal mapping 
tool, the generation of the VHDL files for the 
computation unit is straightforward, as long as the 
corresponding operators have been implemented 
and stored in the library.  Generating the memory 
interface controller codes from the control 
schedule is more complicated mainly because 
different buffers have different initial data filling 
timing requirements.  



  

The generation of the VHDL files for the buffers 
is handled differently.  No operator library is 
used.  Instead a C++ program was implemented 
for the code generator that produces five different 
buffers [3]. 

• A full buffer stores all the necessary pixels, 
including several image rows, so that only 
one new pixel needs to be read from memory 
when a template window moves. 

• A partial buffer stores only the pixels in the 
current template window.  As a result, when 
a template window moves, there is a need to 
read r new pixels, where r is the number of 
rows in a template.  

• A hybrid buffer is a partial buffer with the 
ability to store some image rows. 

• A null buffer means no pixel is buffered.   

• An internal buffer is used only when a 
template is sparse and huge, e.g., one that has 
70 active points in a 50x50 window.  

 
Figure 3 shows a hierarchy diagram of the buffer 
generator. It illustrates the five buffers in terms of 
class inheritance. Dual port RAM, shift register, 
and crossbar are three base classes.  Packing in 
the figure refers to squeezing more than one 
image pixels in a memory location and therefore a 
single memory access brings in multiple pixels 
into the buffer. 
 
Host program       The programming on a 
reconfigurable computer includes the FPGA 
hardware design and the writing of a host 
program that controls the hardware. Four host 
application programming interface (API) 
functions have been implemented so as to reduce 
the efforts involved in writing a host program. 
The API functions are GTM_FPGA_Open(), 
GTM_FPGA_LoadDesign(), 
GTM_FPGA_Execution(), and 
GTM_FPGA_Close(). 
The API implementation is board-specific and is 
currently for the WildForce™ FPGA board. The 
API functions provide controlled access to lower 
level functions and isolate the users from future 
changes in a low-level run time library. Based on 
the API functions, the code generator can produce 
a program skeleton that controls the FPGA board 
loading, execution and the host-FPGA 
communication. Some GTM specifications are 
passed to API functions as their function 
parameters. The skeleton strategy allows users to 

call the API functions directly in their own C/C++ 
programs. 
 
2.3 Library Management 
 
The management of reusable VHDL components 
is important for the GTM tool.  The optimal 
mapping tool needs a specification file of VHDL 
component library as input to list the interface, 
area and timing attributes of the components in 
the library.  The file influences the optimization 
results. Because the optimization is always based 
on certain FPGA board and chip, which decide 
the area and timing attributes of a VHDL 
component, the information of FPGA boards and 
chips is also a reusable resource. A requirement 
built in for future tool extension is the searching 
of the different implementations of a certain 
operator in order for the optimal tool to choose 
the optimal one from multiple designs. The code 
generator also needs the VHDL component 
library to generate the final VHDL codes. 
 
The current solution of the VHDL component 
management system for GTM is the VCL (VHDL 
Component Library) platform motivated by multi-
tier applications for information management 
system. It is a three-tier architecture based on 
Microsoft COM (Component Object Model) 
technology.  The details are omitted due to space. 
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3 Test Cases 
 
The GOM tool has been tested with three test 
applications: (1) An artificial application which 
sums up all the active point values according to a 
4 x 3 template. (2) A 2-D convolution with 3 x 3 
and 5 x 5 template windows, and (3) a 2-D 
morphologic operation with 3x3 and 5x5 template 
windows.  The first application was mainly used 
to verify the correctness of the VHDL/C codes 
generated, while the other two applications were 
also used to check out the FPGA design quality. 
The test platform is a WildForce™ FPGA board.  
Only one FPGA chip, a Xilinx XC4085, and its 
single memory port have been used.  The memory 
port width (to the FPGA) is 32 bits. 
 
To verify the test results, computation results 
from a software solution (without FPGA) and a 
hardware solution (with FPGA) were compared.   
For the cases tested the VHDL codes were 
successfully synthesized, placed, and routed.  The 
host programs generated by the tool also proved 
to be very valuable for the verification. 
  
3.1 Convolution with a 3x3 Template 
 
The 3x3 convolution was applied to an image of 
320 rows and 256 columns (320x256).  Each 
pixel was 8 bits.  To avoid the boundary problem, 
the template was applied only to the internal 
region of size 318x254, called processing region. 
 
To specify the application, a DFG as shown in 
Figure 4 is needed for the BF.  The DFG contains 
nine multiplication nodes and an adder tree.  The 
dark circles indicate memory data, including nine 
inputs and one output.  The nine inputs in white 
circles are for the weights of the 3x3 template.  
The DFG is specified as a text file to the tool.  
Each DFG node has an attribute about which 
library operator it needs.  In the figure, some 
nodes are labeled with numbers, from one to six.  
Those numbers are the scheduled times for those 
nodes, in one of the situation tested (PF=1 and 
II=2).  As a result, because nodes of the same 
operator type but scheduled at different times may 
share hardware, the tool produced a data path 
design as shown in Figure 5.  Basically, two  
“sub-trees” in the DFG share the same hardware 
that contains four multipliers and three adders, 
while the bottom two DFG addition-nodes 
(labeled with 5 and 6) share the same adder.  The 
input data are sent to the hardware in a pipelined 
fashion and, every two clock cycles, the hardware 

can take a new problem instance (i.e., a new BF).  
That is the meaning of II=2. 
 
To facilitate the generation of particular types of  
optimal designs, the tool allows the specification 
of  design option restrictions in terms of PF and 
buffer type.  It was observed that PF=1, 2, or 4 for 
this test case could be produced with correct 
results.  (Note that when PF=4, a graph 
containing four copies of the DFG are scheduled 
for hardware sharing consideration.)  In the 
process, different buffer types, such as full buffer 
and hybrid buffer, have been tested successfully. 
 
To evaluate the design quality, a particular case 
(PF=1, II=2, full buffer) was used.   The design 
quality was evaluated by examining the produced 
data path, the CLB count, and the FPGA 
execution time. 
 
In terms of the data path, it was found that, unlike 
the data path in Figure 5, the data path produced 
by the tool used several more “redundant” 
multiplexers simply because no output register 
sharing was considered when DFG nodes shared 
the same hardware. 

Figure 5: A data path design 
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As to the CLB count, for the memory interface 
controller, it varied from 150 to 210 (or 5% to 7% 
of the 4085 chip area) for various processing 
region sizes, numbers of active points, and 
template sizes.  For the whole GTM design, the 
CLB estimates produced by the tool was 
compared to both the Synplify estimates after 
synthesis and the Foundation results obtained 
after placement and routing.  The GOM tool 
estimates were considered acceptable, although 
much more data need to be collected. 
 
For the FPGA execution time, note that the host 
machine was a Pentium III 600-MHz machine 
with 512 MB of memory while the particular 
FPGA design ran at 40 MHz, even though the 
Foundation’s estimate of the maximal frequency 
was only 25.458 MHz.  All the time obtained was 
averaged over 100 execution loop iterations.  
 
The Pentium program was compiled under the 
Visual C++ release mode.   The execution time 
without FPGA was an average of  12.7 ms, which 
includes a division computation for result 
normalization.   When the inner-most two-level 
nested loops for the 3x3 template computation 
were unrolled (as suggested in [2]), the average 
became 10.0 ms. 
 
The real FPGA computation time computed based 
on the image size, the clock rate, and II (=2) was 
4.1 ms.  However when measured from the host 
the FPGA execution time, including various 
overheads, was an average of  23.4 ms.  The 
overheads included the image input/output buffer 
formatting and normalization (9.92 ms), sending 
image pixels to FPGA board memory (4.60 ms), 
and reading results from the board memory (4.50 
ms).  The reason for the high overheads was 
because while the host supported the 32-bit data 
type and the PCI bus supported 32-bit data 
transfer, the FPGA design used the 8-bit data 
type.  The overheads can potentially be reduced 
by packing image pixels and results, and by 
performing normalization on chip. In that case, 
the data transfer time can theoretically be reduced 
to one quarter of 9.10 ms, while the other 
overhead of 9.92 ms can be totally removed. That 
would greatly speed up the computation.  Note 
that there is no such overhead in embedded 
applications. 
 
For the convolution, a different version was tested 
that used saturated outputs without normalization.  
In that case, the software approach with loop-
unrolling took 5.6 ms while the hardware 

approach (again measured from the host) took 
21.93 ms.  The data formatting time was 7.31ms.  
Again the real FPGA computation time was 
4.1ms at 40 MHz. 
 
3.2 Convolution with a 5x5 Template 
 
Going from a 3x3 template to a 5x5 template 
mainly involves the modification of the DFG.   
Because the DFG description is in a text file, the 
input of a DFG is quite tedious.  (Although a 
graphic editor is included in the tool, drawing a 
DFG is still not convenient.)  Once the DFG was 
modified and the processing region specified, the 
GOM tool easily produced a design with PF=1. 
Unfortunately the design could only run at 10 
MHz (with a Foundation estimate of 3.708 MHz).  
The reason was because the design used a large 
buffer which slowed it down.  
 
Because Virtex and Virtex II chips have internal 
BlockRAMs that are more suitable for 
implementing larger buffers, the code generator 
was modified to produce designs that utilize 
BlockRAMs when available.  For the resulting 
design, the Foundation estimates were 43.324 
MHz and 62.861 MHz for XCV600-6 and 
XC2V1000-6, respectively.  It was noted that the 
design automatically used the dedicated 
multipliers when the Virtex II chip was the target. 
 
3.3 Morphological Operation 
 
Starting from the convolution case, a 
morphological operation case was set up by 
modifying the DFG in terms of replacing each 
multiplication with an addition and replacing each 
addition with a maximum operator. When each 
pixel had 4 (or 8) bits, the output was checked 
against 15 (255) to produce saturated results.  The 
FPGA results for the 4-bit case are summarized in 
the following table where all times are in ms. 

 PF II Clock 
(MHz) 

Total 
Time 

FPGA 
Time 

CLB 
Count 

5x5 8 9 3 37.2 31.6 1773 

5x5 4 5 20 12.1 5.3 1152 

5x5 2 3 47 11.9 2.6 792 

3x3 8 9 16 11.6 6.1 937 

3x3 4 5 45 9.3 2.4 543 

3x3 2 3 50 11.8 2.5 423 



  

The pure software approach with loop unrolling 
took 9.2 ms and 19.6 ms for 3x3 and 5x5 
templates, respectively.  Two observations about 
the results: 
1. The II selected by the tool was equal to 

PF+1.  This is because result data were not 
packed and therefore it took PF cycles to 
output results to memory per window 
location.  With output data packing, the 
minimal II would be two.  (If two memory 
ports are available, then II can be one.) 

2. Higher PF lead to lower clock rate.  This was 
partly due to the higher II (more hardware 
sharing) and partly due to the more 
complicated buffer structures. 

 
3.4 Current Limitations 
 
Although the tool enumerates and evaluates many 
design options before it picks a final design, the 
optimality of the design is far from guaranteed 
because of  the following reasons. 
 
1. The execution speeds of designs are 

evaluated largely based on PF/II.  A larger 
PF/II is assumed to lead to a faster design.  
This is over-simplified because different 
designs have very different clock rates.  
There is a need to characterize the design 
clock rates for the purpose of design 
evaluation without FPGA synthesis, 
placement, and routing. 

2. The data to/from the FPGA board should be 
packed so as to fully utilize the data width of 
the PCI bus.  The lower bound of II should 
depend of the data packing. 

 
At this point, the FPGA design produced by the 
tool is not very attractive compared to the pure 
software approach.  In addition the 
implementation of data packing, further efforts 
are needed to include the considerations of : (1)  
output register sharing, (2) low level timing 
constraints and floor planning, (3) better FPGA 
chips, such as Virtex or Virtex II chips, and  
(4) more memory ports per chip, which would 
allow higher PF and II. 
 
4 Conclusions 
 
This paper presents GOM, a software tool  
intended for optimally mapping generalized 
template matching (GTM) operations on 
reconfigurable computers.  With the tool, the 
design time can be greatly reduced.  Some 

weakness of the tool has been identified for 
further improvement. 
 
The GOM approach is very different from many 
compiler development efforts for (C or C-like) 
high-level languages on reconfigurable computers 
[1, 6].  By restricting the target applications to 
GTM, the approach can take into account various 
data buffering structures and perform an in-depth 
optimization that is formulated as a constrained 
optimization problem. 
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