
Initial Results of GOM (GTM Optimal Mapping)

Jack Jean*, Xuejun Liang**, Xinzhong Guo*, Hua Zhang*, and Fei Wang*
* Computer Science and Engineering Department, Wright State University, Dayton, Ohio 45435, USA

** Computer Science Department, Jackson State University, Jackson, MS39217, USA
 (jack.jean@wright.edu or xuejun.liang@ccaix.jsums.edu)

Abstract: The generalized template matching
(GTM) operations can be accelerated using
reconfigurable systems with field programmable
gate array (FPGA) hardware resources. Manually
design an optimal FPGA hardware for a GTM
operation is an iterative process that normally
takes weeks or even months. GOM (GTM
Optimal Mapping) is a software tool developed to
reduce the design time to days or even hours. The
tool design flow and its major components are
described in this paper. Several design examples
are used to evaluate the tool and to identify the
weakness of the tool.

Keywords: Generalized Template Matching,
Configurable Computing, Field Programmable
Gate Array (FPGA), Design Automation

1 Introduction

The generalized template matching (GTM)
operations include image-processing algorithms
for 2D digit filtering, morphologic operations,
motion estimation, and template matching [3, 4].
Mapping GTM operations on reconfigurable
computers automatically and optimally is
desirable.

The computation of a GTM operation is to move
a template pixel by pixel in scanning line order,
similar to the “Sliding Window-Based
Operations” (SWO) as in [7]. The GTM is more
general in that all the pixels in a SWO window
are involved in the window computation while in
GTM a template may be quite sparse and only a
low percentage of pixels in a window is involved
in the computation.

The GTM computation can be formulated as a
nested loop. The computation iterates through
image regions, templates, and pixel locations. The
loop body computation, called the Basic Function
(BF), involves applying one template window at
one image pixel location. For example, for a 2-D
convolution that uses a 3x3 window, the BF
consists of nine multiplication operations and the

summation of nine numbers. The image region is
a set of consecutive image rows. The image pixels
in the template window that are used for the BF
evaluation are called active points.

Figure 1 illustrates a typical GTM design on a
reconfigurable computer based on an FPGA co-
processor board. This paper assumes that only
one FPGA chip on the board is to be used for
GTM and there is only one memory port
connected to the FPGA chip. (The limitations
are imposed by the code generator part of the
current tool even though the optimization part of
the tool can handle more general cases.)
A typical GTM design includes three
components: a computation unit, an optional
buffer unit, and a memory interface controller.

The computation unit normally consists of
pipelined hardware that handles the parallel
evaluation of one or more copies of BFs at several
consecutive pixel locations. Using buffers to
store image pixels inside the FPGA chip serves
two purposes: (1) it can reduce redundant
memory accesses as the template window moves,
and (2) it can provide more data in parallel to the
computation unit than a limited memory port can.
However, they are achieved at the expense of
more FPGA area. The memory interface

Memory
Interface

Controller

FPGA Chip

Host

Memory

Buffer

Computation

FPGA Board

Figure 1: A typical GTM design

controller provides data to the right place at the
right time.

The GTM design process for human designers is
tedious because (1) there are many design options
for the computation unit and the buffer, (2) the
memory interface controller changes with design
options and its design is error-prone, and (3)
manual coding and evaluation of one design
normally take at least several hours, most
probably days, if not weeks. Those design
options need to be evaluated so as to maximize
the throughput subject to the FPGA board
resource constraints (such as the FPGA size and
the memory port width.) The software described
in this paper evaluates designs through an
optimization process and reduces the coding time
with a code generator. It therefore can drastically
improve a designer’s productivity.

Section 2 describes the tool design flow and its
major components. Section 3 presents several
test cases that were used to debug and evaluate
the tool performance. Section 4 concludes the
paper.

2 GTM Mapping Tool

This section describes the tool design flow and its
major components. The tool includes three major
components, an optimal mapping tool, a code
generator, and a library manager. These three
components are integrated together through a
graphical user interface (GUI), as roughly shown
above, that schematically guides a designer
through the design process.

The design flow of the tool is shown in Figure 2.

Application
Specification

FPGA board
Specification

Datapath, Buffer,
and Control Table

Library Component
Information

Optimal Mapping
Tool

VHDL Component
Library

Code Generator

VHDL Code Host C Program

Synplify and Foundation (Synthesis, P & R)

Configuration
File

Fit?

Modify
Utilization

Ratio

NO YES

Library Manager

Figure 2: GTM design flow

• To use the tool, a designer specifies the GTM
application using the GUI and a text editor.

• The optimal mapping tool can be invoked
through the GUI so as to produce an optimal
design subject to a hardware utilization ratio
constraint. Here the utilization ratio is the
percentage of FPGA CLBs (Configurable
Logic Blocks) that is to be used by the
design.

• The code generator can then be invoked,
again through the GUI, so as to produce the
VHDL files for the FPGA design and the C
files for the host program.

• Synplify, a commercial VHDL synthesis tool,
and Xilinx Foundation, a commercial FPGA
placement and routing tool, are then used to
produce the FPGA configuration file to be
used at run time.

• Because the area estimates used in the
optimization process may not be accurate
enough, the placed and routed design may
not fit into the targeted FPGA chip. In this
case, the utilization ratio needs to be reduced
through the GUI, and the design process
should be repeated.

• The library manager can be used to maintain
the VHDL operator components and the
corresponding area and timing information
required by the optimal mapping tool.

Each major component of the tool is described in
more detail as follows.

2.1 Design Optimization

The objective of the GTM optimal mapping tool
is to obtain a pipelined circuit design that
maximizes the throughput subject to the FPGA
CLB count constraint. Precise FPGA routing
resource requirements are not considered.
Building an optimal GTM design consists of two
steps.

Step 1: Enumerate all non-dominated memory
access patterns (MAPs)

The concept of MAP, as described in [5], is a key
to the optimization process because both the
computation unit and the buffer structure are
determined from a MAP. (Roughly speaking,
dominated MAPs are those that can be
disregarded in terms of optimization

consideration.) Efficient algorithms proposed in
[5] have been implemented for this step.
The throughput of each non-dominated MAP is
proportional to the ratio of its packing factor (PF)
over its data initiation interval (II) [5]. (The
computation unit can process PF copies of BFs in
parallel; but it takes II clock cycles for the
pipelined computation unit to “consume” the PF
copies of BF computation before it becomes
ready for the next set of PF copies.) The
enumerated non-dominated MAPs can therefore
be rank ordered based on their throughputs.

Step 2: Derive GTM designs based on MAPs

This step itself solves an optimization problem:

Given a non-dominated MAP, derive a
minimal-CLB-count design that satisfies
the MAP constraint.

The algorithm implemented in the tool involves
graph scheduling and hardware sharing [3].
(Each BF is described as a dataflow graph and PF
copies of DFGs are scheduled together.) The
algorithm is applied to MAPs according to their
throughputs, starting from the fastest one. The
process stops when the minimal-CLB-count
design is small enough to fit into the FPGA chip.
That design is considered optimal and a synthesis
process is applied to produce the corresponding
data path description, control schedule, and buffer
type.

2.2 Code Generation

The code generator receives design information
from the optimal mapping tool and produces
VHDL codes for the buffer, the computation part,
and the memory interface controller. In addition,
it produces a Synplify project file for the purpose
of FPGA synthesis and a C code for the host
program.

VHDL Code Generator

Given the data path from the optimal mapping
tool, the generation of the VHDL files for the
computation unit is straightforward, as long as the
corresponding operators have been implemented
and stored in the library. Generating the memory
interface controller codes from the control
schedule is more complicated mainly because
different buffers have different initial data filling
timing requirements.

The generation of the VHDL files for the buffers
is handled differently. No operator library is
used. Instead a C++ program was implemented
for the code generator that produces five different
buffers [3].

• A full buffer stores all the necessary pixels,
including several image rows, so that only
one new pixel needs to be read from memory
when a template window moves.

• A partial buffer stores only the pixels in the
current template window. As a result, when
a template window moves, there is a need to
read r new pixels, where r is the number of
rows in a template.

• A hybrid buffer is a partial buffer with the
ability to store some image rows.

• A null buffer means no pixel is buffered.

• An internal buffer is used only when a
template is sparse and huge, e.g., one that has
70 active points in a 50x50 window.

Figure 3 shows a hierarchy diagram of the buffer
generator. It illustrates the five buffers in terms of
class inheritance. Dual port RAM, shift register,
and crossbar are three base classes. Packing in
the figure refers to squeezing more than one
image pixels in a memory location and therefore a
single memory access brings in multiple pixels
into the buffer.

Host program The programming on a
reconfigurable computer includes the FPGA
hardware design and the writing of a host
program that controls the hardware. Four host
application programming interface (API)
functions have been implemented so as to reduce
the efforts involved in writing a host program.
The API functions are GTM_FPGA_Open(),
GTM_FPGA_LoadDesign(),
GTM_FPGA_Execution(), and
GTM_FPGA_Close().
The API implementation is board-specific and is
currently for the WildForce™ FPGA board. The
API functions provide controlled access to lower
level functions and isolate the users from future
changes in a low-level run time library. Based on
the API functions, the code generator can produce
a program skeleton that controls the FPGA board
loading, execution and the host-FPGA
communication. Some GTM specifications are
passed to API functions as their function
parameters. The skeleton strategy allows users to

call the API functions directly in their own C/C++
programs.

2.3 Library Management

The management of reusable VHDL components
is important for the GTM tool. The optimal
mapping tool needs a specification file of VHDL
component library as input to list the interface,
area and timing attributes of the components in
the library. The file influences the optimization
results. Because the optimization is always based
on certain FPGA board and chip, which decide
the area and timing attributes of a VHDL
component, the information of FPGA boards and
chips is also a reusable resource. A requirement
built in for future tool extension is the searching
of the different implementations of a certain
operator in order for the optimal tool to choose
the optimal one from multiple designs. The code
generator also needs the VHDL component
library to generate the final VHDL codes.

The current solution of the VHDL component
management system for GTM is the VCL (VHDL
Component Library) platform motivated by multi-
tier applications for information management
system. It is a three-tier architecture based on
Microsoft COM (Component Object Model)
technology. The details are omitted due to space.

General Buffer

Buffer Null Buffer

Hybrid Buffer

Partial Buffer Full Buffer

Full Buffer
with Packing

Internal
Buffer

FIFO

Dual Port RAM

Shift
Register

Crossbar

Partial Buffer
with Packing

Hybrid
Buffer

with Packing

Buffer Selector

Figure 3: Buffer hierarchy

3 Test Cases

The GOM tool has been tested with three test
applications: (1) An artificial application which
sums up all the active point values according to a
4 x 3 template. (2) A 2-D convolution with 3 x 3
and 5 x 5 template windows, and (3) a 2-D
morphologic operation with 3x3 and 5x5 template
windows. The first application was mainly used
to verify the correctness of the VHDL/C codes
generated, while the other two applications were
also used to check out the FPGA design quality.
The test platform is a WildForce™ FPGA board.
Only one FPGA chip, a Xilinx XC4085, and its
single memory port have been used. The memory
port width (to the FPGA) is 32 bits.

To verify the test results, computation results
from a software solution (without FPGA) and a
hardware solution (with FPGA) were compared.
For the cases tested the VHDL codes were
successfully synthesized, placed, and routed. The
host programs generated by the tool also proved
to be very valuable for the verification.

3.1 Convolution with a 3x3 Template

The 3x3 convolution was applied to an image of
320 rows and 256 columns (320x256). Each
pixel was 8 bits. To avoid the boundary problem,
the template was applied only to the internal
region of size 318x254, called processing region.

To specify the application, a DFG as shown in
Figure 4 is needed for the BF. The DFG contains
nine multiplication nodes and an adder tree. The
dark circles indicate memory data, including nine
inputs and one output. The nine inputs in white
circles are for the weights of the 3x3 template.
The DFG is specified as a text file to the tool.
Each DFG node has an attribute about which
library operator it needs. In the figure, some
nodes are labeled with numbers, from one to six.
Those numbers are the scheduled times for those
nodes, in one of the situation tested (PF=1 and
II=2). As a result, because nodes of the same
operator type but scheduled at different times may
share hardware, the tool produced a data path
design as shown in Figure 5. Basically, two
“sub-trees” in the DFG share the same hardware
that contains four multipliers and three adders,
while the bottom two DFG addition-nodes
(labeled with 5 and 6) share the same adder. The
input data are sent to the hardware in a pipelined
fashion and, every two clock cycles, the hardware

can take a new problem instance (i.e., a new BF).
That is the meaning of II=2.

To facilitate the generation of particular types of
optimal designs, the tool allows the specification
of design option restrictions in terms of PF and
buffer type. It was observed that PF=1, 2, or 4 for
this test case could be produced with correct
results. (Note that when PF=4, a graph
containing four copies of the DFG are scheduled
for hardware sharing consideration.) In the
process, different buffer types, such as full buffer
and hybrid buffer, have been tested successfully.

To evaluate the design quality, a particular case
(PF=1, II=2, full buffer) was used. The design
quality was evaluated by examining the produced
data path, the CLB count, and the FPGA
execution time.

In terms of the data path, it was found that, unlike
the data path in Figure 5, the data path produced
by the tool used several more “redundant”
multiplexers simply because no output register
sharing was considered when DFG nodes shared
the same hardware.

Figure 5: A data path design

X X X X

+

+

+

+

X

Figure 4: A DFG for 3x3 convolution

+

+

X X X X

+

+

+

XX X X

+

+ +

X1

2

3 4

3
2

5

6

As to the CLB count, for the memory interface
controller, it varied from 150 to 210 (or 5% to 7%
of the 4085 chip area) for various processing
region sizes, numbers of active points, and
template sizes. For the whole GTM design, the
CLB estimates produced by the tool was
compared to both the Synplify estimates after
synthesis and the Foundation results obtained
after placement and routing. The GOM tool
estimates were considered acceptable, although
much more data need to be collected.

For the FPGA execution time, note that the host
machine was a Pentium III 600-MHz machine
with 512 MB of memory while the particular
FPGA design ran at 40 MHz, even though the
Foundation’s estimate of the maximal frequency
was only 25.458 MHz. All the time obtained was
averaged over 100 execution loop iterations.

The Pentium program was compiled under the
Visual C++ release mode. The execution time
without FPGA was an average of 12.7 ms, which
includes a division computation for result
normalization. When the inner-most two-level
nested loops for the 3x3 template computation
were unrolled (as suggested in [2]), the average
became 10.0 ms.

The real FPGA computation time computed based
on the image size, the clock rate, and II (=2) was
4.1 ms. However when measured from the host
the FPGA execution time, including various
overheads, was an average of 23.4 ms. The
overheads included the image input/output buffer
formatting and normalization (9.92 ms), sending
image pixels to FPGA board memory (4.60 ms),
and reading results from the board memory (4.50
ms). The reason for the high overheads was
because while the host supported the 32-bit data
type and the PCI bus supported 32-bit data
transfer, the FPGA design used the 8-bit data
type. The overheads can potentially be reduced
by packing image pixels and results, and by
performing normalization on chip. In that case,
the data transfer time can theoretically be reduced
to one quarter of 9.10 ms, while the other
overhead of 9.92 ms can be totally removed. That
would greatly speed up the computation. Note
that there is no such overhead in embedded
applications.

For the convolution, a different version was tested
that used saturated outputs without normalization.
In that case, the software approach with loop-
unrolling took 5.6 ms while the hardware

approach (again measured from the host) took
21.93 ms. The data formatting time was 7.31ms.
Again the real FPGA computation time was
4.1ms at 40 MHz.

3.2 Convolution with a 5x5 Template

Going from a 3x3 template to a 5x5 template
mainly involves the modification of the DFG.
Because the DFG description is in a text file, the
input of a DFG is quite tedious. (Although a
graphic editor is included in the tool, drawing a
DFG is still not convenient.) Once the DFG was
modified and the processing region specified, the
GOM tool easily produced a design with PF=1.
Unfortunately the design could only run at 10
MHz (with a Foundation estimate of 3.708 MHz).
The reason was because the design used a large
buffer which slowed it down.

Because Virtex and Virtex II chips have internal
BlockRAMs that are more suitable for
implementing larger buffers, the code generator
was modified to produce designs that utilize
BlockRAMs when available. For the resulting
design, the Foundation estimates were 43.324
MHz and 62.861 MHz for XCV600-6 and
XC2V1000-6, respectively. It was noted that the
design automatically used the dedicated
multipliers when the Virtex II chip was the target.

3.3 Morphological Operation

Starting from the convolution case, a
morphological operation case was set up by
modifying the DFG in terms of replacing each
multiplication with an addition and replacing each
addition with a maximum operator. When each
pixel had 4 (or 8) bits, the output was checked
against 15 (255) to produce saturated results. The
FPGA results for the 4-bit case are summarized in
the following table where all times are in ms.

 PF II Clock
(MHz)

Total
Time

FPGA
Time

CLB
Count

5x5 8 9 3 37.2 31.6 1773

5x5 4 5 20 12.1 5.3 1152

5x5 2 3 47 11.9 2.6 792

3x3 8 9 16 11.6 6.1 937

3x3 4 5 45 9.3 2.4 543

3x3 2 3 50 11.8 2.5 423

The pure software approach with loop unrolling
took 9.2 ms and 19.6 ms for 3x3 and 5x5
templates, respectively. Two observations about
the results:
1. The II selected by the tool was equal to

PF+1. This is because result data were not
packed and therefore it took PF cycles to
output results to memory per window
location. With output data packing, the
minimal II would be two. (If two memory
ports are available, then II can be one.)

2. Higher PF lead to lower clock rate. This was
partly due to the higher II (more hardware
sharing) and partly due to the more
complicated buffer structures.

3.4 Current Limitations

Although the tool enumerates and evaluates many
design options before it picks a final design, the
optimality of the design is far from guaranteed
because of the following reasons.

1. The execution speeds of designs are

evaluated largely based on PF/II. A larger
PF/II is assumed to lead to a faster design.
This is over-simplified because different
designs have very different clock rates.
There is a need to characterize the design
clock rates for the purpose of design
evaluation without FPGA synthesis,
placement, and routing.

2. The data to/from the FPGA board should be
packed so as to fully utilize the data width of
the PCI bus. The lower bound of II should
depend of the data packing.

At this point, the FPGA design produced by the
tool is not very attractive compared to the pure
software approach. In addition the
implementation of data packing, further efforts
are needed to include the considerations of : (1)
output register sharing, (2) low level timing
constraints and floor planning, (3) better FPGA
chips, such as Virtex or Virtex II chips, and
(4) more memory ports per chip, which would
allow higher PF and II.

4 Conclusions

This paper presents GOM, a software tool
intended for optimally mapping generalized
template matching (GTM) operations on
reconfigurable computers. With the tool, the
design time can be greatly reduced. Some

weakness of the tool has been identified for
further improvement.

The GOM approach is very different from many
compiler development efforts for (C or C-like)
high-level languages on reconfigurable computers
[1, 6]. By restricting the target applications to
GTM, the approach can take into account various
data buffering structures and perform an in-depth
optimization that is formulated as a constrained
optimization problem.

Acknowledgements

This research was supported by a DAGSI/AFRL
grant and an Ohio State research challenge grant.

References

[1] W. Bohm, J. Hammes, B. Draper, M.
Chawathe, C. Ross, R. Rinker, and W. Najjar,
“Mapping a Single Assignement Programming
Language to Reconfigurable systems,”
Supercomputing, 21:117-130, 2002
[2] E. Jamro and K. Wiatr, “Implementation of
Convolution Operation on General Purpose
Processors,” in the Proc. Of the Euromicro
Conference on Multimedia and
Telecommunication 2001
[3] Xuejun Liang, Jack Jean and Karen Tomko,
"Data Buffering and Allocation in Mapping
Generalized Template Matching on
Reconfigurable Systems", Supercomputing,
Special issue on Engineering of Reconfigurable
Hardware/Software Objects, Vol. 19, No. 1, pp.
77-91, May 2001
[4] Xuejun Liang, “Mapping of Generalized
Template Matching on Reconfigurable
Computers”, Ph.D. Dissertation, Wright State
University, Nov. 2001
[5] Xuejun Liang and Jack Jean, “Memory Access
Pattern Enumeration in GTM Mapping on
Reconfigurable Computers,” in the Proc. of the
International Conference on Engineering of
Reconfigurable Systems and Algorithms, pp. 8-
14, June 2001
[6] T. Maruyama and T. Hoshino, “A C to HDL
Compiler for Pipeline Processing on FPGAs,”
IEEE Symposium on Field-Programmable
Custom Computing Machines, 2000.
[7] C. Thibeault and G. Begin, “A Scan-Based
Configurable, Programmable, and Scalable
Architecture for Sliding Window-Based
Operations”, in IEEE Transactions on Computers,
pp. 615-627, 1999

