

Balancing FPGA Resource Utilities

Xuejun Liang*, Jeffrey S. Vetter** , Melissa C. Smith** , and Arthur S. Bland**
xuejun.liang@jsums.edu, vetterjs@ornl.gov, smithmc@ornl.gov, and blandas@ornl.gov
*Department of Computer Science, Jackson State University, Jackson, MS 39217, USA

** Oak Ridge National Laboratory, Oak Ridge, NT 37831, USA

ABSTRACT: Balancing the use of FGPA resources
such as FPGA slices, block RAMs, and block
multipliers is desirable in many FPGA applications.
This task can be carr ied out manually by experienced
hardware designers with the use of hardware
description languages, such as Verilog and VHDL.
However, many users of reconfigurable computers are
software developers who depend on hardware
synthesis tools or even high-level synthesis tools to
deal with the details beneath the application logic. In
this paper, a motivating example of balancing FPGA
resource utiliti es is given first. A module selection
optimization problem is then formulated, in which,
balancing FPGA resource utiliti es is treated as a
constraint, so that the solution to the module selection
problem is the balanced use of the FPGA resources.
Several variations of the problem formulation are
discussed. A naïve algorithm and an efficient greedy
algorithm to solve the problem are provided and
compared. Some experimental results are also
presented.

Keywords: FPGA, Reconfigurable Computing, High-
Level Synthesis, Module Selection

1. Introduction
Accelerating applications with reconfigurable
computers has been successfully shown in many fields,
such as digital signal processing, image processing,
cryptography, and high-end scientific applications.
However, the programming of reconfigurable
computers is extremely cumbersome, demanding that
software developers also assume the role of hardware
designers. Thus, one of the keys to unlocking the full
potential of these systems is developing truly automatic
and optimal mapping tools. To this end, there have
been many research projects on design environments
for reconfigurable systems.

The MAP complier for the SRC-6E reconfigurable
computer [1], which is based on the Xili nx Virtex-II
FPGA [2], can translate a user function in a high-level
programming language (C or Fortran) into an FPGA
hardware function unit in the Verilog hardware
description language [3]. The MAP compiler always
binds multiplications in a user function to multipliers
that are built based on the FPGA block (built -in)
multipliers. As a result, a user function that contains a
large number of multiplications may not fit in an FPGA
because it requires too many block multipliers, even
though the FPGA still has plenty of slices. Since a
multiplier can also be implemented with FPGA slices,
it is possible that the user function would fit in the
FPGA if some of the multiplications were bound to
multipliers that are built based on the FPGA slices.
Balancing the use of FPGA resources of a hardware
function unit is also desirable when multiple copies of
the function unit are needed on a single FPGA device.

Motivated by the above observations, this paper
intends to add the resource-balancing feature to the
MAP compiler. So, a module selection optimization
problem is formulated, in which, different types of
multiplier implementations are selected, and balancing
FPGA resource utiliti es is treated as a constraint, so
that the solution to the module selection problem is the
balanced use of the FPGA resources.

There have been several studies that are related to
balancing the FPGA resource usage. The authors [4]
developed a methodology to optimize the usage of the
different components in a heterogeneous FPGA
specifically for 2D FIR filters, by using Singular Value
Decomposition to approximate a 2D filter. A technique
[5] was proposed to transfer FPGA resource usages
between FPGA block RAMs and block multipliers,
based on polynomial approximation. In [6] a new
technique was proposed that makes use of FPGA block
RAMs and maps variables to them rather than registers.

This memory-binding technique resulted in large
savings in FPGA slices at the expense of increasing
FPGA block RAM utiliti es. In [7] the author proposed
an algorithm that identifies part of the circuit that can
be implemented in embedded RAMs.

The rest of the paper is organized as follows. Section 2
gives an overview of SRC-6E reconfigurable computer.
Section 3 presents an example of mapping the forward
complex FFT onto the SRC-6E reconfigurable
computer, which motivates the study and serves as the
test case. Section 4 describes the problem formulation
and its variations. Section 5 provides two algorithms to
solve the problem. Section 6 gives some experimental
results. Section 7 concludes the paper.

2. SRC-6E Platform Overview
The SRC-6E reconfigurable computer consists of two
dual-microprocessor boards and two MAP® processors,
each with two user programmable Xili nx® Vertex II
XC2V6000™ FPGA chips and six 4MB banks of on-
board memory (OBM). The microprocessors are
connected to the MAP processors via SNAP® cards
which plug into the DIMM slot on the microprocessor
motherboard [1].

The programming model for the SRC-6E is similar to
that for conventional microprocessor-based computers,
with the additional task of producing logic for the MAP
reconfigurable processor. Two types of application
source files are needed to target the microprocessor
and the MAP processor, respectively.

There are two levels of source files for the MAP
processor. At a high level, the user describes the
function, called the MAP function designated for
hardware, using a high-level programming language
such as FORTRAN or C. The MAP complier [3] then
converts this high-level language description into a
Verilog description for the FPGA. Optimized macros
for the hardware are included as a bundled library with
the SRC system and can be called from the MAP
function. This library includes functions such as DMA
calls, accumulators, counters, etc. Additionally, at a
low level, the MAP compiler allows users to integrate
their own custom VHDL/Verilog functions or macros
to extend the built -in set included with the SRC-6E
platform.

It is noticed that the MAP compiler will pipeline every
innermost loop in a MAP function. Therefore, the user
should try to avoid loop-carried dependencies and to
reduce OBM accesses in an innermost loop in order to
achieve optimum performance of a pipelined loop.
Moreover, merging a nested loop into a single loop is
certainly desirable since a larger loop is pipelined after
merging. It is also noticed that the MAP compiler does

not perform resource sharing. This is probably because
the following fact. In case that a loop is fully pipelined,
i.e. a new iteration of the loop is initiated every clock
cycle, operations in the loop body cannot share the
resource.

3. Motivating Example
A study [8] of porting the Parallel Spectral Transform
Shallow Water Model (PSTSWM) parallel benchmark
code [9] to the SRC-6E reconfigurable computer
demonstrated a need to map the computation of in-
place forward FFT over an array of complex vectors
onto the MAP processor. The inputs to the FFT
computation are a one-dimensional array TRIG for
storing the twiddle factors and a two-dimensional array
Y (an array of complex vectors), which is also used as
the output. Due to the inherent parallelism of the FFT
computation, an FPGA function unit is designed that
computes the FFT over one vector and then multiple
copies of the function unit are placed on the FPGA.
Initially, we only consider 32-bit integer operations.

3.1 Designing the Function Unit
The FPGA design for the SRC-6E reconfigurable
computer is developed by simply writing the MAP
function in either the C or FORTRAN programming
language. The user decides whether to allocate arrays
to the OBM banks or to the block RAMs inside the
FPGA chip. The user also must take care to optimize
the MAP function code as mentioned in Section 2.

In the function unit design, one OBM bank is used for
the array of complex vectors Y. Since both the real part
and the imaginary part of a complex number are
assumed to be 32-bits and the memory cell of the OBM
is 64-bits, the real part and the imaginary part of a
complex number are packed together into one memory
cell . The array TRIG is allocated to block RAMs.

The FPGA resource utiliti es of this design labeled as
Design 1 are shown in Table 1. Note that the FPGA
chip used on the MAP processor contains 33,792
slices, 144 block RAMs, and 144 block multipliers
(MULT18×18s).

Table 1: FPGA Resource Utilities of MAP Function Designs

FPGA Resources Design 1 Design 2
Slices (33,792) 9,367 27% 8,846 26%
Block RAMs (144) 6 4% 6 4%
MULT18×18s (144) 56 38% 52 36%

Design 1 is further optimized to create Design 2. First,
a nested two inner loops are combined into a single
loop. Second, an unnecessary loop is eliminated. Third,
a multiplication operation is replaced by additions.
Fourth, a code block is rewritten so as to avoid the data
dependency and therefore reduce the latency. The

FPGA resource utiliti es of this optimized design
labeled as Design 2 are also shown in Table 1.

3.2 Balancing the FPGA Resource Utiliti es
From Table 1, it is expected that if three copies of
Design 2, each consuming one OBM bank, could fit on
a single FPGA chip, one MAP processor, with two
FPGA chips and six OBM banks, could hold six copies
of Design 2. The six hardware copies can work on
different vectors in parallel. But, unfortunately, three
copies of Design 2 consume more block multipliers
than those available in the FPGA. So the three copies
do not fit in the FPGA although there are many unused
slices. Thus there is a need to balance the FPGA
resources. By implementing a multiplier using FPGA
slices rather than FPGA block multipliers, it is possible
to fit more multiplication operations into a single
FPGA and more eff iciently utili ze the FPGA resources.

Since the SRC-6E computing environment allows users
to use commercial hardware design tools to design
their own macros, which can be called from within a
MAP function, a slice-based multiplier macro is built
using slices rather than block multipliers. In Design 3,
four multiplication operations in the MAP function are
bound to the slice-based multiplier macros. The FPGA
resource utiliti es of Design 3 are shown in Table 2.

Table 2: FPGA Resource Utilities of MAP Function Designs

FPGA Resources Design 3 Design 4
Slices (33,792) 9,816 29% 26,098 77%
Block RAMs (144) 6 4% 18 12%
MULT18×18s (144) 40 27% 120 83%

Now, three hardware copies of Design 3 can fit on a
single FPGA chip as shown in Design 4 in Table 2.
Note that the interface design in Design 3 including the
DMA data transfer from the host memory to the OBM
banks remains the same in Design 4. That is, only the
computation part of Design 3 is tripled in Design 4.
Therefore, the number of slices used in Design 4 is less
than the triple of that used in Design 3.

Note that all hardware macros in the SRC-6E system
must satisfy the 100 MHz system clock rate constraint.
Both slice-based multipliers and block multiplier-based
multipliers are fully pipelined, and the former needs
few more pipeline stages than the latter. So the former
will have a littl e longer latency than the latter. But they
have the same throughput. Therefore, a pipelined loop
design with either the former or the latter will have
almost the same latency.

4. Problem Formulation

The FPGA resource-balancing problem discussed in
this paper is actually a particular module selection
problem [10] where a decision on which multiplier

implementation should be selected for a given
multiplication needs to be made. It will be formulated
as a constrained optimization problem in this section.
One of these constraints will balance the use of FPGA
resources.

FPGA resources considered in this paper include
FPGA slices, block multipliers, and block RAMs. But,
at this time, only FPGA slices and block multipliers
will be considered to balance in the problem
formulation. Note that some interconnect is shared
between the block RAMs and the block multipliers [2]
thus, the block RAM can be used only up to 18-bits
wide when the block multiplier is used. In another
words, the number of available block multipliers to a
FPGA design will be decreased by one when a block
RAM configured with 36-bits is used in the design.

4.1 Enumerating Related Multiplier Macros
Since up to 32-bit integer operations are considered in
this paper, only three types of multipliers are relevant.
Type A has two 32-bit inputs and one 32-bit output.
Type B has one 32-bit input and one 16-bit input and
one 32-bit output. Type C has two 16-bit inputs and
one 32-bit output.

A multiplier of Type A can be implemented using up to
three block multipliers. Thus, four multiplier macros of
Type A can be implemented using zero, one, two, or
three block multipliers, respectively. The FPGA
resource utiliti es of these macros are shown in Table 3.

Table 3: FPGA Resource Utilities of Type A Multiplier Macros

FPGA Resources MA0 MA1 MA2 MA3
Slices (33,792) 355 236 185 118
MULT18×18s (144) 0 1 2 3

A multiplier of type B can be implemented using up to
two block multipliers. Thus, three multiplier macros of
Type B can be implemented using zero, one, or two
block multipliers, respectively. The FPGA resource
utiliti es of these macros are shown in Table 4.

Table 4: FPGA Resource Utilities of Type B Multiplier Macros

FPGA Resources MB0 MB1 MB2
Slices (33,792) 257 124 62
MULT18×18s (144) 0 1 2

Similarly, a multiplier of type C can be implemented
using either zero or one block multiplier, respectively.
The FPGA resource utiliti es of the two macros are
shown in Table 5.

Table 5: FPGA Resource Utilities of Type C Multiplier Macros

FPGA Resources MC0 MC1
Slices (33,792) 163 57
MULT18×18s (144) 0 1

Note that all these macros are fully pipelined and
satisfy the 100 MHz system clock rate constraint.

4.2 Notations and Initial Conditions
Some notations used in the formulation are introduced
as follows. Let TNS, TNBM, and TNBR denote the total
number of FPGA slices, block multipliers, and block
RAMs, respectively. Let SAn (n=0, 1, 2, 3), SBn (n=0,
1, 2), and SCn (n=0, 1) denote the number of FPGA
slices used for the multiplier macro of type A, B, and C
using n block multipliers, respectively. Notice that the
following inequaliti es hold.

In an FPGA design, let NAn (n=0, 1, 2, 3), NBn (n=0, 1,
2), and NCn (n=0, 1) stand for the number of multiplier
macro calls of type A, B, and C using n block
multipliers, respectively. Let NA, NB, and NC stand for
the number of multiplications of type A, B, and C,
respectively. Note that every multiplication should be
bound to the same type multiplier. Therefore, the
following conditions must be satisfied.

Let NBM, NBR18, and NBR36 stand for the number of
block multipliers, block RAMs configured with up to
18-bits, and block RAMs configured with 36-bits,
respectively. Let NS4I and NS4C stand for the number
of FPGA slices used for the interface and FPGA slices
used for the computation, respectively.

The sum of NS4I and NS4C should be equal to the
number of FPGA slices used for the whole FPGA
design. It is assumed that NS4I is not going to change
when multiple copies of the computation unit of the
FPGA design are used. It is also assumed that all block
multipliers and all block RAMs used in the FPGA
design belong to the computation unit. Therefore,
NS4C, NBM, NBR18, and NBR36 will be doubled
when two copies of the computation unit of the FPGA
design are used.

It is assumed that every multiplication is initially bound
to the same type multiplier that uses maximum number
of block multipliers in an initial synthesis without
considering the resource balancing like the current
MAP compiler. This initial conditions are represented
by equaliti es (10), (11), and (12).

The values of NA, NB, NC, NS4I, NBR18, and NBR36
are assumed known after the initial synthesis and

unchanged during the process of balancing FPGA
resources. The initial values of NS4C and NBM are
also known after the initial synthesis and denoted by
NS4C0 and NBM0 respectively.

When the initial values for NAn (n=0, 1, 2, 3), NBn
(n=0, 1, 2), and NCn (n=0, 1) are changed, the change
of the number of block multipliers used for the
computation (NBM-NBM0) and the change of the
number of FPGA slices used for the computation
(NS4C-NS4C0) can be calculated by the following two
formulae, respectively.

4.3 Formulating the Problem

Now the module selection problem for balancing
FPGA resources discussed in this paper is to determine
proper values for NAn (n=0, 1, 2, 3), NBn (n=0, 1, 2),
and NCn (n=0, 1) so as to have a balanced use of slices
and block multipliers. We define

In the above definition, TNS-NS4I is the slices
available for the computation unit and NS4C is the
slices actually used for the computation unit. TNBM is
the block multipliers available for the computation unit
and NBM+NBR36 is the equivalent block multipliers
used actually for the computation unit, because if a
block RAM is configured with 36-bits wide, then the
corresponding block multiplier cannot be used any
more. TNBR is the block RAMs available for the
computation unit and NBR18+NBR36 is the block
RAMs actually used for the computation unit. So it can
be seen that the maximum number of copies of the
computation unit that can fit on a single FPGA chip
will be the minimum value of CComp(NS4C),
CMult(NBM) and CRams.

0

0

0

10

210

3210

≥>
≥>>

≥>>>

SCSC

SBSBSB

SASASASA

)3(

)2(

)1(

NCNCNC

NBNBNBNB

NANANANANA

==
===

====

10

210

3210

 and 0

 and 0

 and 0

)12(

)11(

)10(

))((

))((

))((

44

1100

221100

33221100

0

NCNCSCNCSC

NBNBSBNBSBNBSB

NANASANASANASANASA

CNSCNS

−×+×
+−×+×+×

+−×+×+×+×
=−

)(

))(2(

))(32(

1

21

3210

NCNC

NBNBNB

NANANANANBMNBM

−+
−×++

−×+×+=−

)13(






 −=

CNS

INSTNS
FloorCNSCComp

4

4
)4()15(

)16(

)17(

)9(

)8(

)7(

)6(

)5(

)4(

NCNCNC

NBNBNBNB

NANANANANA

, nNC

, , nNB

, , , nNA

n

n

n

=+
=++

=+++
=≥
=≥
=≥

10

210

3210

10 ,0

210 ,0

3210 ,0)14(








+
=

36
)(

NBRNBM

TNBM
FloorNBMCMult








+
=

3618 NBRNBR

TNBR
FloorCRams

Because CRams is fixed after the initial synthesis but
CComp(NS4C) and CMult(NBM) are going to change
during the process of the resource balancing, the
maximum number of copies of the computation unit
will be achieved when the following, called the balance
constraint, holds.

Proposition 1: The minimum value of NS4C is NS4C0
and the maximum value of NBM is NBM0. The
maximum value of CComp(NS4C) is CComp(NS4C0)
and the minimum value of CMult(NBM) is
CMult(NBM0).

Proposition 2: Minimizing NS4C implies maximizing
CComp(NS4C). Minimizing NBM implies maximizing
CMult(NBM).

Now the resource-balancing problem can be
formulated as follows: Determine NAn (n=0, 1, 2, 3),
NBn (n=0, 1, 2), and NCn (n=0, 1), to

 minimize NS4C
 subject to the constraints (4)-(9) and
 the balance constraint (18).

Note that the balance constraint (18) is too strong. It is
very likely that (P1) does not have a solution to some
problems. Two released balance constraints: slice-
bound constraint (19) and block multiplier-bound
constraint (20) are defined as follows.

Then a released version of (P1) formulation can be

 minimize NS4C
 subject to the constraints (4)-(9) and
 the slice-bound constraint (19).

Proposition 3: If (P1) has a solution to a problem, then
it must be the solution of (P2) to the same problem.

Moreover, a dual formulation of (P1) and a dual
formulation of (P2) can be as follows.

 minimize NBM
 subject to the constraints (4)-(9) and
 the balance constraint (18).

 minimize NBM
 subject to the constraints (4)-(9) and
 the multiplier-bound constraint (20).

Proposition 4: If (Q1) has a solution to a problem, then
it must be the solution of (Q2) to the same problem.

It can be noticed that either (P2) or (Q2) must have a
solution for a common problem. If both (P2) and (Q2)
have solutions to the same problem, then both solutions
must satisfy the balance constraint, and then the
solution of (P2) is also the solution of (P1) and the
solution of (Q2) is also the solution of (Q1).

A solution of (P2) for one problem may end up with
CComp(NS4C) = 2 and CMult(NBM) = 3. This means
that we can have two copies of computation unit, even
though we have enough block multipliers for three. On
the other hand, a solution of (Q2) for another distinct
problem may end up with CComp(NS4C) = 3 and
CMult(NBM) = 2. This means that we can have two
copies of computation unit, even though we have
enough slices for three. Please note that these two
situations will not occur for the same problem.

5. Two Algorithms

5.1 A Naïve Algorithm
The formulations (P1), (P2), (Q1), and (Q2) can be
very easily solved by a naïve algorithm, which is
described for the formulation (P1) as follows.
Enumerate all possible values of NAn (n=0, 1, 2, 3),
NBn (n=0, 1, 2), and NCn (n=0, 1). For those values
that satisfy the constraints (4)-(9), compute NBM,
NS4C, CMult(NBM) and CComp(NS4C) based on (13),
(14), (16) and (15). If the balance constraint (18) is
satisfied, keep track of those values that make NS4C
smaller than before.

Note that this naïve algorithm performs the exhaustive
search and thus will produce an exact solution to the
constrained optimization problem. However, the worst-
case complexity of the naïve algorithm is very high. It
can be computed by (NA+1)3×(NB+1)2×(NC+1)1,
where the exponents 3, 2, and 1 are the number of
different macros of Type A, B, and C multipliers less 1,
respectively.

5.2 A Greedy Algorithm
An eff icient greedy algorithm that solves (P2) is given
in this section. A similar discussion may apply to (Q2),
which is omitted in this paper owing to the space limit.

From CMult(0) ≥ CMult(NBM) and CComp(NS4C0) ≥
CComp(NS4C) for any values of NAn (n=0, 1, 2, 3),
NBn (n=0, 1, 2), and NCn (n=0, 1) that satisfy the
constraints (4)-(9), the following condition is suff icient
for (P2) to have a solution, and then is assumed true in
this section.

When CMult(NBM0) ≥ CComp(NS4C0), the initial
settings of NAn, NBn, and NCn already provide an
optimal solution, and, in this case, NS4C = NS4C0.
Now, consider

This condition indicates that there are relatively more
block multipliers initially used in the function unit
design than expected.

)19(

)4()(CNSCCompNBMCMult =

)22()4()(00 CNSCCompNBMCMult <

)18(

)4()(CNSCCompNBMCMult ≥
)4()(CNSCCompNBMCMult ≤)20(

)1(P

)2(P

)1(Q

)2(Q)4()0(0CNSCCompCMult ≥)21(

The basic idea of the greedy algorithm to solve (P2) is
to decreased NBM by one at one step and to keep
NS4C with a minimum increase at each step until
CMult(NBM) ≥ CComp (NS4C).

Note that there are six different schemes to reduce
NBM by one as shown in Table 6. The action for each
scheme is listed in the action column. Each scheme
action must satisfy a condition so as to satisfy the
problem constraints. The condition for each scheme is
listed in the condition column. Note that when NBM is
decreased, NS4C will i ncrease. The increase of NS4C
for each scheme, called cost, is listed in the cost
column.

Table 6: Six Schemes to Reduce NBM by One

Scheme Action Condition Cost
0 NA1-- & NA0++ NA1>0 SA0-SA1
1 NA2-- & NA1++ NA2>0 SA1-SA2
2 NA3-- & NA2++ NA3>0 SA2-SA3
3 NB1-- & NB0++ NB1>0 SB0-SB1
4 NB2-- & NB1++ NB2>0 SB1-SB2
5 NC1-- & NC0++ NC1>0 SC0-SC1

A scheme with a smaller cost will have a higher
priority to apply. For example, when the values of SAn
(n=0, 1, 2, 3), SBn (n=0, 1, 2) and SCn (n=0, 1) are
taken from Tables 3, 4, and 5, respectively, the costs of
each scheme are listed in Table 7. It can be seen that
Scheme 1 has the highest priority and Scheme 3 has the
lowest priority. The six schemes sorted from the
smallest cost to the largest cost form an array, called
priority array.

Table 7: An Example of Costs of Each Scheme

Scheme 0 1 2 3 4 5
Cost 119 51 67 133 62 106

A pseudo code of the greedy algorithm in the C++
context is shown below. In each iteration NBM is
decreased by one and NS4C is updated accordingly by
taking one possible scheme action in Table 6 with the
highest priority until CMult(NBM) ≥ CComp(NS4C).
Note that the loop will t erminate because (21) is
assumed true.

while(CMult(NBM) < CComp(NS4C))
{
 index = 0;
 update = 0;
 while(update == 0)
 {

update = Update(Priority[index], &NS4C);
 index++;
 }
 NBM--;
}

The worst-case complexity of the greedy algorithm is
(NA×3+NB×2+NC)×6, where the factor 6 (=3+2+1) is

the number of schemes that can reduce NBM by one,
and the addends 3, 2, and 1 are the number of different
macros of Type A, B, and C multipliers less 1,
respectively.

6. Experiments
The naïve algorithm and the greedy algorithm are both
implemented using C++. The data from the motivating
example in Section 3 are used as the program inputs as
listed in Table 8.

Table 8: Program Inputs

TNS 33792 NA 15 SB0 257
TNBM 144 NB 3 SB1 124
TNBR 144 NC 1 SB2 62
NS4C0 8141 SA0 355 SC0 163
NS4I 1675 SA1 236 SC1 57
NBR18 0 SA2 185
NBR36 6 SA3 118

The results produced by both algorithms are listed in
Table 9. In this example, (P1) and (P2) have the same
solution, and (Q1) and (Q2) also have the same
solution. They are solved by the naïve algorithm. (P2)
is also solved by the greedy algorithm. It can be seen
that the results from the greedy algorithm are very
close to the exact results from the naïve algorithm. But
the complexity of the naïve algorithm is much higher
that that of the greedy algorithm.

The last column of Table 9 shows results obtained
manually from the motivating example. The NBM and
NS4C are computed from (13) and (14) respectively.
Note that NS4C +NS4I = 9089 + 1657 = 10746, which
is greater than 9,816, which is obtained from the
Xili nx’s Place and Routing tool for Design 3 in Section
3. This is because the Xili nx’s tool simpli fies the user
logic and prunes the unused user logic.

Table 9: Experimental Results

Naïve
Parameter

P1 or P2 Q1 or Q2
Greedy

P2
Manual

NA0 0 0 0 4
NA1 5 1 3 0
NA2 0 14 1 0
NA3 10 0 11 11
NB0 0 2 0 0
NB1 0 1 3 0
NB2 3 0 0 3
NC0 0 0 0 0
NC1 1 1 1 1
NS4C 8731 9649 8748 9089
NBM 42 31 42 40
Max Copies 3 3 3 3
Complexity 795906 795906 318 N/A

Please notice that in order to plug the module selection
algorithm into the SRC compilation environment, the

MAP compiler must be able to estimate the FPGA
utiliti es for a given MAP function. Otherwise, we have
to use this algorithm off- line as follows. First, use the
MAP compiler to translate a given MAP function from
Fortran or C into Verilog. Second, use commercial
tools to synthesize the Verilog file and to obtain the
FPGA resource utiliti es. Third, use this algorithm to
get the balanced use of FPGA slices and block RAMs,
and then change the MAP function to allocate (call) a
proper multiplier macro for a given multiplication.
Finally, the modified MAP function code needs to go
through the MAP compiler and commercial synthesis
tools again.

7. Conclusion
An FPGA module selection problem is formulated to
deal with balancing FPGA resources. In the problem
formulation a decision on which multiplier
implementation should be bound to a given
multiplication needs to be made. Several variations of
the problem formulation are also studied. A naïve
algorithm and an eff icient greedy algorithm to solve the
problem are provided. The naïve algorithm is able to
produce exact results and the greedy algorithm
produces accurate results at a much lower cost. The
worst-case complexities of the two algorithms are
studied, and the complexity of the greedy algorithm is
very low. The two algorithms are also implemented and
tested. The results produced by the two algorithms are
very close, and compared with results from a manual
FGPA design.

The FPGA resource-balancing problem studied in this
paper is far from complete. The balancing of FPGA
block RAMs with FPGA slices and FPGA block
multipliers is not considered. Additionally, the block
RAMs may be replaced with the distributed RAMs
built from FPGA lookup tables inside FPGA slices
freeing block RAMs and in the process, additional
block multipliers. To accommodate more block
multipliers, a block RAM configured with 36-bits can
be replaced with two block RAMs configured with 18-
bits. Therefore, the FPGA resource-balancing problem
becomes more challenging when block RAMs are also
considered.

Moreover, only three types of multipliers are
considered in this paper. In general, a parameterized
multiplier should be considered. The implementations
of the multipliers should also be optimized. The FPGA
slices required by the multiplier macros used in this
research may be reduced. These macros are fully
pipelined and can run at 100 MHz clock rate or above
because the SRC reconfigurable computer demands
100 MHz clock rate.

8. Acknowledgments
This research was supported in part by an appointment
to the Oak Ridge National Laboratory/Oak Ridge
Associated Universities Historically Black Colleges
and Universities and Minority Education Institutes
Summer Faculty Research Program at the Oak Ridge
National Laboratory administered by the Oak Ridge
Institute for Science and Education.

Moreover, the SRC Computers, Inc. provided the
authors with the remote accesses of its SRC-6E
reconfigurable computer. All the FPGA designs
including all the macros were developed under the
SRC computing environment.

9. References
[1] SRC Computers, Inc., http://www.srccomp.com/,

2004.
[2] Xili nx, Inc., Virtex-II Platform FPGAs: Complete

Data Sheet, June 2004.
[3] SRC-6 Fortran Programming Environment v1.7

Guide, SRC Computers, Inc. 2004.
[4] Christos Bouganis, George Constantinides, and

Peter Cheung, A Novel 2D Filter Design
Methodology For Heterogeneous Devices, in IEEE
Symposium on Field Programmable Custom
Computing Machines, April 2005

[5] Gareth Morris, George Constantinides, and Peter
Cheung, Migrating Functionality From ROMs to
Embedded Multipliers, in IEEE Symposium on
Field Programmable Custom Computing
Machines, p.287-288, April 2004

[6] Hassan Al Atat and Iyad Ouaiss, Register Binding
for FPGAs with Embedded Memory, in IEEE
Symposium on Field Programmable Custom
Computing Machines, p.167-175, 2004

[7] S. Wilton, SMAP: Heterogeneous Technology
Mapping for Area Reduction in FPGAs with
Embedded Memory Arrays, ACM/SIGDN
International Symposium on Field Programmable
Arrays, February 1998

[8] M. C. Smith, J. S. Vetter, and X. Liang,
Accelerating Scientific Applications with the SRC-
6E Reconfigurable Computer: Methodologies and
Analysis, The 12th Reconfigurable Architectures
Workshop, Denver, Colorado, USA, April 2005

[9] P. H. Worley and B. Toonen, A USERS’ GUIDE
TO PSTAWM, ORNL Technical Report
ORNL/TM-12779, July 1995

[10] Giovanni de Micheli , Synthesis and Optimization
of Digital Circuits, Mcgraw-Hill , Inc., 1994.

