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ABSTRACT: Balancing the use of FGPA resources 
such as FPGA slices, block RAMs, and block 
multipliers is desirable in many FPGA applications. 
This task can be carr ied out manually by experienced 
hardware designers with the use of hardware 
description languages, such as Verilog and VHDL. 
However, many users of reconfigurable computers are 
software developers who depend on hardware 
synthesis tools or even high-level synthesis tools to 
deal with the details beneath the application logic. In 
this paper, a motivating example of balancing FPGA 
resource utiliti es is given first. A module selection 
optimization problem is then formulated, in which, 
balancing FPGA resource utiliti es is treated as a 
constraint, so that the solution to the module selection 
problem is the balanced use of the FPGA resources. 
Several variations of the problem formulation are 
discussed. A naïve algorithm and an efficient greedy 
algorithm to solve the problem are provided and 
compared. Some experimental results are also 
presented. 

Keywords: FPGA, Reconfigurable Computing, High-
Level Synthesis, Module Selection 

1. Introduction 
Accelerating applications with reconfigurable 
computers has been successfully shown in many fields, 
such as digital signal processing, image processing, 
cryptography, and high-end scientific applications. 
However, the programming of reconfigurable 
computers is extremely cumbersome, demanding that 
software developers also assume the role of hardware 
designers. Thus, one of the keys to unlocking the full 
potential of these systems is developing truly automatic 
and optimal mapping tools. To this end, there have 
been many research projects on design environments 
for reconfigurable systems. 

The MAP complier for the SRC-6E reconfigurable 
computer [1], which is based on the Xili nx Virtex-II 
FPGA [2], can translate a user function in a high-level 
programming language (C or Fortran) into an FPGA 
hardware function unit in the Verilog hardware 
description language [3]. The MAP compiler always 
binds multiplications in a user function to multipliers 
that are built based on the FPGA block (built -in) 
multipliers. As a result, a user function that contains a 
large number of multiplications may not fit in an FPGA 
because it requires too many block multipliers, even 
though the FPGA still has plenty of slices. Since a 
multiplier can also be implemented with FPGA slices, 
it is possible that the user function would fit in the 
FPGA if some of the multiplications were bound to 
multipliers that are built based on the FPGA slices. 
Balancing the use of FPGA resources of a hardware 
function unit is also desirable when multiple copies of 
the function unit are needed on a single FPGA device. 

Motivated by the above observations, this paper 
intends to add the resource-balancing feature to the 
MAP compiler. So, a module selection optimization 
problem is formulated, in which, different types of 
multiplier implementations are selected, and balancing 
FPGA resource utiliti es is treated as a constraint, so 
that the solution to the module selection problem is the 
balanced use of the FPGA resources.  

There have been several studies that are related to 
balancing the FPGA resource usage. The authors [4] 
developed a methodology to optimize the usage of the 
different components in a heterogeneous FPGA 
specifically for 2D FIR filters, by using Singular Value 
Decomposition to approximate a 2D filter. A technique 
[5] was proposed to transfer FPGA resource usages 
between FPGA block RAMs and block multipliers, 
based on polynomial approximation. In [6] a new 
technique was proposed that makes use of FPGA block 
RAMs and maps variables to them rather than registers. 



 

This memory-binding technique resulted in large 
savings in FPGA slices at the expense of increasing 
FPGA block RAM utiliti es. In [7] the author proposed 
an algorithm that identifies part of the circuit that can 
be implemented in embedded RAMs.  

The rest of the paper is organized as follows. Section 2 
gives an overview of SRC-6E reconfigurable computer. 
Section 3 presents an example of mapping the forward 
complex FFT onto the SRC-6E reconfigurable 
computer, which motivates the study and serves as the 
test case. Section 4 describes the problem formulation 
and its variations. Section 5 provides two algorithms to 
solve the problem. Section 6 gives some experimental 
results. Section 7 concludes the paper. 

2. SRC-6E Platform Overview 
The SRC-6E reconfigurable computer consists of two 
dual-microprocessor boards and two MAP® processors, 
each with two user programmable Xili nx® Vertex II 
XC2V6000™ FPGA chips and six 4MB banks of on-
board memory (OBM). The microprocessors are 
connected to the MAP processors via SNAP® cards 
which plug into the DIMM slot on the microprocessor 
motherboard [1]. 

The programming model for the SRC-6E is similar to 
that for conventional microprocessor-based computers, 
with the additional task of producing logic for the MAP 
reconfigurable processor. Two types of application 
source files are needed to target the microprocessor 
and the MAP processor, respectively.  

There are two levels of source files for the MAP 
processor. At a high level, the user describes the 
function, called the MAP function designated for 
hardware, using a high-level programming language 
such as FORTRAN or C. The MAP complier [3] then 
converts this high-level language description into a 
Verilog description for the FPGA. Optimized macros 
for the hardware are included as a bundled library with 
the SRC system and can be called from the MAP 
function. This library includes functions such as DMA 
calls, accumulators, counters, etc. Additionally, at a 
low level, the MAP compiler allows users to integrate 
their own custom VHDL/Verilog functions or macros 
to extend the built -in set included with the SRC-6E 
platform. 

It is noticed that the MAP compiler will pipeline every 
innermost loop in a MAP function. Therefore, the user 
should try to avoid loop-carried dependencies and to 
reduce OBM accesses in an innermost loop in order to 
achieve optimum performance of a pipelined loop. 
Moreover, merging a nested loop into a single loop is 
certainly desirable since a larger loop is pipelined after 
merging. It is also noticed that the MAP compiler does 

not perform resource sharing. This is probably because 
the following fact. In case that a loop is fully pipelined, 
i.e. a new iteration of the loop is initiated every clock 
cycle, operations in the loop body cannot share the 
resource. 

3. Motivating Example 
A study [8] of porting the Parallel Spectral Transform 
Shallow Water Model (PSTSWM) parallel benchmark 
code [9] to the SRC-6E reconfigurable computer 
demonstrated a need to map the computation of in-
place forward FFT over an array of complex vectors 
onto the MAP processor. The inputs to the FFT 
computation are a one-dimensional array TRIG for 
storing the twiddle factors and a two-dimensional array 
Y (an array of complex vectors), which is also used as 
the output. Due to the inherent parallelism of the FFT 
computation, an FPGA function unit is designed that 
computes the FFT over one vector and then multiple 
copies of the function unit are placed on the FPGA. 
Initially, we only consider 32-bit integer operations. 

3.1 Designing the Function Unit 
The FPGA design for the SRC-6E reconfigurable 
computer is developed by simply writing the MAP 
function in either the C or FORTRAN programming 
language. The user decides whether to allocate arrays 
to the OBM banks or to the block RAMs inside the 
FPGA chip. The user also must take care to optimize 
the MAP function code as mentioned in Section 2. 

In the function unit design, one OBM bank is used for 
the array of complex vectors Y. Since both the real part 
and the imaginary part of a complex number are 
assumed to be 32-bits and the memory cell of the OBM 
is 64-bits, the real part and the imaginary part of a 
complex number are packed together into one memory 
cell . The array TRIG is allocated to block RAMs.  

The FPGA resource utiliti es of this design labeled as 
Design 1 are shown in Table 1. Note that the FPGA 
chip used on the MAP processor contains 33,792 
slices, 144 block RAMs, and 144 block multipliers 
(MULT18×18s). 

Table 1: FPGA Resource Utilities of MAP Function Designs 

FPGA Resources Design 1 Design 2 
Slices (33,792)  9,367 27% 8,846  26% 
Block RAMs (144)  6 4%  6 4% 
MULT18×18s (144) 56 38%  52 36% 

Design 1 is further optimized to create Design 2. First, 
a nested two inner loops are combined into a single 
loop. Second, an unnecessary loop is eliminated. Third, 
a multiplication operation is replaced by additions. 
Fourth, a code block is rewritten so as to avoid the data 
dependency and therefore reduce the latency. The 



 

FPGA resource utiliti es of this optimized design 
labeled as Design 2 are also shown in Table 1. 

3.2 Balancing the FPGA Resource Utiliti es 
From Table 1, it is expected that if three copies of 
Design 2, each consuming one OBM bank, could fit on 
a single FPGA chip, one MAP processor, with two 
FPGA chips and six OBM banks, could hold six copies 
of Design 2. The six hardware copies can work on 
different vectors in parallel. But, unfortunately, three 
copies of Design 2 consume more block multipliers 
than those available in the FPGA. So the three copies 
do not fit in the FPGA although there are many unused 
slices. Thus there is a need to balance the FPGA 
resources. By implementing a multiplier using FPGA 
slices rather than FPGA block multipliers, it is possible 
to fit more multiplication operations into a single 
FPGA and more eff iciently utili ze the FPGA resources. 

Since the SRC-6E computing environment allows users 
to use commercial hardware design tools to design 
their own macros, which can be called from within a 
MAP function, a slice-based multiplier macro is built 
using slices rather than block multipliers. In Design 3, 
four multiplication operations in the MAP function are 
bound to the slice-based multiplier macros. The FPGA 
resource utiliti es of Design 3 are shown in Table 2.  

Table 2: FPGA Resource Utilities of MAP Function Designs 

FPGA Resources Design 3 Design 4 
Slices (33,792) 9,816 29% 26,098 77% 
Block RAMs (144) 6 4% 18 12% 
MULT18×18s (144) 40 27% 120 83% 

Now, three hardware copies of Design 3 can fit on a 
single FPGA chip as shown in Design 4 in Table 2. 
Note that the interface design in Design 3 including the 
DMA data transfer from the host memory to the OBM 
banks remains the same in Design 4. That is, only the 
computation part of Design 3 is tripled in Design 4. 
Therefore, the number of slices used in Design 4 is less 
than the triple of that used in Design 3. 

Note that all hardware macros in the SRC-6E system 
must satisfy the 100 MHz system clock rate constraint. 
Both slice-based multipliers and block multiplier-based 
multipliers are fully pipelined, and the former needs 
few more pipeline stages than the latter. So the former 
will have a littl e longer latency than the latter. But they 
have the same throughput. Therefore, a pipelined loop 
design with either the former or the latter will have 
almost the same latency.  

4. Problem Formulation 

The FPGA resource-balancing problem discussed in 
this paper is actually a particular module selection 
problem [10] where a decision on which multiplier 

implementation should be selected for a given 
multiplication needs to be made. It will be formulated 
as a constrained optimization problem in this section. 
One of these constraints will balance the use of FPGA 
resources.  

FPGA resources considered in this paper include 
FPGA slices, block multipliers, and block RAMs. But, 
at this time, only FPGA slices and block multipliers 
will be considered to balance in the problem 
formulation. Note that some interconnect is shared 
between the block RAMs and the block multipliers [2] 
thus, the block RAM can be used only up to 18-bits 
wide when the block multiplier is used. In another 
words, the number of available block multipliers to a 
FPGA design will be decreased by one when a block 
RAM configured with 36-bits is used in the design. 

4.1 Enumerating Related Multiplier Macros 
Since up to 32-bit integer operations are considered in 
this paper, only three types of multipliers are relevant. 
Type A has two 32-bit inputs and one 32-bit output. 
Type B has one 32-bit input and one 16-bit input and 
one 32-bit output. Type C has two 16-bit inputs and 
one 32-bit output. 

A multiplier of Type A can be implemented using up to 
three block multipliers. Thus, four multiplier macros of 
Type A can be implemented using zero, one, two, or 
three block multipliers, respectively. The FPGA 
resource utiliti es of these macros are shown in Table 3. 

Table 3: FPGA Resource Utilities of Type A Multiplier Macros 

FPGA Resources  MA0 MA1 MA2 MA3 
Slices (33,792) 355 236 185 118 
MULT18×18s (144) 0 1 2 3 

A multiplier of type B can be implemented using up to 
two block multipliers. Thus, three multiplier macros of 
Type B can be implemented using zero, one, or two 
block multipliers, respectively. The FPGA resource 
utiliti es of these macros are shown in Table 4. 

Table 4: FPGA Resource Utilities of Type B Multiplier Macros 

FPGA Resources MB0 MB1 MB2 
Slices (33,792) 257 124 62 
MULT18×18s (144) 0 1 2 

Similarly, a multiplier of type C can be implemented 
using either zero or one block multiplier, respectively. 
The FPGA resource utiliti es of the two macros are 
shown in Table 5. 

Table 5: FPGA Resource Utilities of Type C Multiplier Macros 

FPGA Resources MC0 MC1 
Slices (33,792) 163 57 
MULT18×18s (144) 0 1 

Note that all these macros are fully pipelined and 
satisfy the 100 MHz system clock rate constraint. 



 

4.2 Notations and Initial Conditions 
Some notations used in the formulation are introduced 
as follows. Let TNS, TNBM, and TNBR denote the total 
number of FPGA slices, block multipliers, and block 
RAMs, respectively. Let SAn (n=0, 1, 2, 3), SBn (n=0, 
1, 2), and SCn (n=0, 1) denote the number of FPGA 
slices used for the multiplier macro of type A, B, and C 
using n block multipliers, respectively. Notice that the 
following inequaliti es hold. 

 

 

 

In an FPGA design, let NAn (n=0, 1, 2, 3), NBn (n=0, 1, 
2), and NCn (n=0, 1) stand for the number of multiplier 
macro calls of type A, B, and C using n block 
multipliers, respectively. Let NA, NB, and NC stand for 
the number of multiplications of type A, B, and C, 
respectively. Note that every multiplication should be 
bound to the same type multiplier. Therefore, the 
following conditions must be satisfied. 

 

 

 

 

 

 

Let NBM, NBR18, and NBR36 stand for the number of 
block multipliers, block RAMs configured with up to 
18-bits, and block RAMs configured with 36-bits, 
respectively. Let NS4I and NS4C stand for the number 
of FPGA slices used for the interface and FPGA slices 
used for the computation, respectively. 

The sum of NS4I and NS4C should be equal to the 
number of FPGA slices used for the whole FPGA 
design. It is assumed that NS4I is not going to change 
when multiple copies of the computation unit of the 
FPGA design are used. It is also assumed that all block 
multipliers and all block RAMs used in the FPGA 
design belong to the computation unit. Therefore, 
NS4C, NBM, NBR18, and NBR36 will be doubled 
when two copies of the computation unit of the FPGA 
design are used. 

It is assumed that every multiplication is initially bound 
to the same type multiplier that uses maximum number 
of block multipliers in an initial synthesis without 
considering the resource balancing like the current 
MAP compiler. This initial conditions are represented 
by equaliti es (10), (11), and (12). 

The values of NA, NB, NC, NS4I, NBR18, and NBR36 
are assumed known after the initial synthesis and 

unchanged during the process of balancing FPGA 
resources. The initial values of NS4C and NBM are 
also known after the initial synthesis and denoted by 
NS4C0 and NBM0 respectively. 

 

 

 

When the initial values for NAn (n=0, 1, 2, 3), NBn 
(n=0, 1, 2), and NCn (n=0, 1) are changed, the change 
of the number of block multipliers used for the 
computation (NBM-NBM0) and the change of the 
number of FPGA slices used for the computation 
(NS4C-NS4C0) can be calculated by the following two 
formulae, respectively. 

 

 

 

 

 

 

 

 

4.3 Formulating the Problem 

Now the module selection problem for balancing 
FPGA resources discussed in this paper is to determine 
proper values for NAn (n=0, 1, 2, 3), NBn (n=0, 1, 2), 
and NCn (n=0, 1) so as to have a balanced use of slices 
and block multipliers. We define 

 

 

 

 

 

 

In the above definition, TNS-NS4I is the slices 
available for the computation unit and NS4C is the 
slices actually used for the computation unit. TNBM is 
the block multipliers available for the computation unit 
and NBM+NBR36 is the equivalent block multipliers 
used actually for the computation unit, because if a 
block RAM is configured with 36-bits wide, then the 
corresponding block multiplier cannot be used any 
more. TNBR is the block RAMs available for the 
computation unit and NBR18+NBR36 is the block 
RAMs actually used for the computation unit. So it can 
be seen that the maximum number of copies of the 
computation unit that can fit on a single FPGA chip 
will be the minimum value of CComp(NS4C), 
CMult(NBM) and CRams. 
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Because CRams is fixed after the initial synthesis but 
CComp(NS4C) and CMult(NBM) are going to change 
during the process of the resource balancing, the 
maximum number of copies of the computation unit 
will be achieved when the following, called the balance 
constraint, holds.  

 

Proposition 1: The minimum value of NS4C is NS4C0 
and the maximum value of NBM is NBM0. The 
maximum value of CComp(NS4C) is CComp(NS4C0) 
and the minimum value of CMult(NBM) is 
CMult(NBM0). 

Proposition 2: Minimizing NS4C implies maximizing 
CComp(NS4C). Minimizing NBM implies maximizing 
CMult(NBM). 

Now the resource-balancing problem can be 
formulated as follows: Determine NAn (n=0, 1, 2, 3), 
NBn (n=0, 1, 2), and NCn (n=0, 1), to  

    minimize NS4C  
    subject to the constraints (4)-(9) and  
                    the balance constraint (18). 

Note that the balance constraint (18) is too strong. It is 
very likely that (P1) does not have a solution to some 
problems. Two released balance constraints: slice-
bound constraint (19) and block multiplier-bound 
constraint (20) are defined as follows.  

 

 

Then a released version of (P1) formulation can be  

    minimize NS4C  
    subject to the constraints (4)-(9) and  
                    the slice-bound constraint (19). 

Proposition 3: If (P1) has a solution to a problem, then 
it must be the solution of (P2) to the same problem. 

Moreover, a dual formulation of (P1) and a dual 
formulation of (P2) can be as follows.  

    minimize NBM  
    subject to the constraints (4)-(9) and  
                    the balance constraint (18). 

    minimize NBM  
    subject to the constraints (4)-(9) and  
                    the multiplier-bound constraint (20). 

Proposition 4: If (Q1) has a solution to a problem, then 
it must be the solution of (Q2) to the same problem. 

It can be noticed that either (P2) or (Q2) must have a 
solution for a common problem. If both (P2) and (Q2) 
have solutions to the same problem, then both solutions 
must satisfy the balance constraint, and then the 
solution of (P2) is also the solution of (P1) and the 
solution of (Q2) is also the solution of (Q1).  

A solution of (P2) for one problem may end up with 
CComp(NS4C) = 2 and CMult(NBM) = 3. This means 
that we can have two copies of computation unit, even 
though we have enough block multipliers for three. On 
the other hand, a solution of (Q2) for another distinct 
problem may end up with CComp(NS4C) = 3 and 
CMult(NBM) = 2. This means that we can have two 
copies of computation unit, even though we have 
enough slices for three. Please note that these two 
situations will not occur for the same problem.    

5. Two Algorithms 

5.1 A Naïve Algorithm 
The formulations (P1), (P2), (Q1), and (Q2) can be 
very easily solved by a naïve algorithm, which is 
described for the formulation (P1) as follows. 
Enumerate all possible values of NAn (n=0, 1, 2, 3), 
NBn (n=0, 1, 2), and NCn (n=0, 1). For those values 
that satisfy the constraints (4)-(9), compute NBM, 
NS4C, CMult(NBM) and CComp(NS4C) based on (13), 
(14), (16) and (15). If the balance constraint (18) is 
satisfied, keep track of those values that make NS4C 
smaller than before. 

Note that this naïve algorithm performs the exhaustive 
search and thus will produce an exact solution to the 
constrained optimization problem. However, the worst-
case complexity of the naïve algorithm is very high. It 
can be computed by (NA+1)3×(NB+1)2×(NC+1)1, 
where the exponents 3, 2, and 1 are the number of 
different macros of Type A, B, and C multipliers less 1, 
respectively. 

5.2 A Greedy Algorithm 
An eff icient greedy algorithm that solves (P2) is given 
in this section. A similar discussion may apply to (Q2), 
which is omitted in this paper owing to the space limit. 

From CMult(0) ≥ CMult(NBM) and CComp(NS4C0) ≥ 
CComp(NS4C) for any values of NAn (n=0, 1, 2, 3), 
NBn (n=0, 1, 2), and NCn (n=0, 1) that satisfy the 
constraints (4)-(9), the following condition is suff icient 
for (P2) to have a solution, and then is assumed true in 
this section. 

 

When CMult(NBM0) ≥ CComp(NS4C0), the initial 
settings of NAn, NBn, and NCn already provide an 
optimal solution, and, in this case, NS4C = NS4C0. 
Now, consider 

 

This condition indicates that there are relatively more 
block multipliers initially used in the function unit 
design than expected. 
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The basic idea of the greedy algorithm to solve (P2) is 
to decreased NBM by one at one step and to keep 
NS4C with a minimum increase at each step until 
CMult(NBM) ≥ CComp (NS4C). 

Note that there are six different schemes to reduce 
NBM by one as shown in Table 6. The action for each 
scheme is listed in the action column. Each scheme 
action must satisfy a condition so as to satisfy the 
problem constraints. The condition for each scheme is 
listed in the condition column. Note that when NBM is 
decreased, NS4C will i ncrease. The increase of NS4C 
for each scheme, called cost, is listed in the cost 
column.  

Table 6: Six Schemes to Reduce NBM by One 

Scheme Action Condition Cost 
0 NA1-- & NA0++ NA1>0 SA0-SA1 
1 NA2-- & NA1++ NA2>0 SA1-SA2 
2 NA3-- & NA2++ NA3>0 SA2-SA3 
3 NB1-- & NB0++ NB1>0 SB0-SB1 
4 NB2-- & NB1++ NB2>0 SB1-SB2 
5 NC1-- & NC0++ NC1>0 SC0-SC1 

A scheme with a smaller cost will have a higher 
priority to apply. For example, when the values of SAn 
(n=0, 1, 2, 3), SBn (n=0, 1, 2) and SCn (n=0, 1) are 
taken from Tables 3, 4, and 5, respectively, the costs of 
each scheme are listed in Table 7. It can be seen that 
Scheme 1 has the highest priority and Scheme 3 has the 
lowest priority. The six schemes sorted from the 
smallest cost to the largest cost form an array, called 
priority array.  

Table 7: An Example of Costs of Each Scheme 

Scheme 0 1 2 3 4 5 
Cost 119 51 67 133 62 106 

A pseudo code of the greedy algorithm in the C++ 
context is shown below. In each iteration NBM is 
decreased by one and NS4C is updated accordingly by 
taking one possible scheme action in Table 6 with the 
highest priority until CMult(NBM) ≥ CComp(NS4C). 
Note that the loop will t erminate because (21) is 
assumed true. 

while(CMult(NBM) < CComp(NS4C)) 
{ 
     index = 0; 
     update = 0; 
     while(update == 0) 
     { 

update = Update(Priority[index], &NS4C); 
 index++; 
     } 
     NBM--; 
} 

The worst-case complexity of the greedy algorithm is 
(NA×3+NB×2+NC)×6, where the factor 6 (=3+2+1) is 

the number of schemes that can reduce NBM by one, 
and the addends 3, 2, and 1 are the number of different 
macros of Type A, B, and C multipliers less 1, 
respectively. 

6. Experiments 
The naïve algorithm and the greedy algorithm are both 
implemented using C++. The data from the motivating 
example in Section 3 are used as the program inputs as 
listed in Table 8. 

Table 8: Program Inputs 

TNS 33792 NA 15 SB0 257 
TNBM 144 NB 3 SB1 124 
TNBR 144 NC 1 SB2 62 
NS4C0 8141 SA0 355 SC0 163 
NS4I 1675 SA1 236 SC1 57 
NBR18 0 SA2 185   
NBR36 6 SA3 118   

The results produced by both algorithms are listed in 
Table 9. In this example, (P1) and (P2) have the same 
solution, and (Q1) and (Q2) also have the same 
solution. They are solved by the naïve algorithm. (P2) 
is also solved by the greedy algorithm. It can be seen 
that the results from the greedy algorithm are very 
close to the exact results from the naïve algorithm. But 
the complexity of the naïve algorithm is much higher 
that that of the greedy algorithm. 

The last column of Table 9 shows results obtained 
manually from the motivating example. The NBM and 
NS4C are computed from (13) and (14) respectively. 
Note that NS4C +NS4I = 9089 + 1657 = 10746, which 
is greater than 9,816, which is obtained from the 
Xili nx’s Place and Routing tool for Design 3 in Section 
3. This is because the Xili nx’s tool simpli fies the user 
logic and prunes the unused user logic. 

Table 9: Experimental Results 

Naïve 
Parameter 

P1 or P2 Q1 or Q2 
Greedy 

P2 
Manual 

NA0 0 0 0 4 
NA1 5 1 3 0 
NA2 0 14 1 0 
NA3 10 0 11 11 
NB0 0 2 0 0 
NB1 0 1 3 0 
NB2 3 0 0 3 
NC0 0 0 0 0 
NC1 1 1 1 1 
NS4C 8731 9649 8748 9089 
NBM 42 31 42 40 
Max Copies 3 3 3 3 
Complexity 795906 795906 318 N/A 

Please notice that in order to plug the module selection 
algorithm into the SRC compilation environment, the 



 

MAP compiler must be able to estimate the FPGA 
utiliti es for a given MAP function. Otherwise, we have 
to use this algorithm off- line as follows. First, use the 
MAP compiler to translate a given MAP function from 
Fortran or C into Verilog. Second, use commercial 
tools to synthesize the Verilog file and to obtain the 
FPGA resource utiliti es. Third, use this algorithm to 
get the balanced use of FPGA slices and block RAMs, 
and then change the MAP function to allocate (call ) a 
proper multiplier macro for a given multiplication. 
Finally, the modified MAP function code needs to go 
through the MAP compiler and commercial synthesis 
tools again.   

7. Conclusion 
An FPGA module selection problem is formulated to 
deal with balancing FPGA resources. In the problem 
formulation a decision on which multiplier 
implementation should be bound to a given 
multiplication needs to be made. Several variations of 
the problem formulation are also studied. A naïve 
algorithm and an eff icient greedy algorithm to solve the 
problem are provided. The naïve algorithm is able to 
produce exact results and the greedy algorithm 
produces accurate results at a much lower cost. The 
worst-case complexities of the two algorithms are 
studied, and the complexity of the greedy algorithm is 
very low. The two algorithms are also implemented and 
tested. The results produced by the two algorithms are 
very close, and compared with results from a manual 
FGPA design. 

The FPGA resource-balancing problem studied in this 
paper is far from complete. The balancing of FPGA 
block RAMs with FPGA slices and FPGA block 
multipliers is not considered. Additionally, the block 
RAMs may be replaced with the distributed RAMs 
built from FPGA lookup tables inside FPGA slices 
freeing block RAMs and in the process, additional 
block multipliers. To accommodate more block 
multipliers, a block RAM configured with 36-bits can 
be replaced with two block RAMs configured with 18-
bits. Therefore, the FPGA resource-balancing problem 
becomes more challenging when block RAMs are also 
considered. 

Moreover, only three types of multipliers are 
considered in this paper. In general, a parameterized 
multiplier should be considered. The implementations 
of the multipliers should also be optimized. The FPGA 
slices required by the multiplier macros used in this 
research may be reduced. These macros are fully 
pipelined and can run at 100 MHz clock rate or above 
because the SRC reconfigurable computer demands 
100 MHz clock rate. 

8. Acknowledgments 
This research was supported in part by an appointment 
to the Oak Ridge National Laboratory/Oak Ridge 
Associated Universities Historically Black Colleges 
and Universities and Minority Education Institutes 
Summer Faculty Research Program at the Oak Ridge 
National Laboratory administered by the Oak Ridge 
Institute for Science and Education.  

Moreover, the SRC Computers, Inc. provided the 
authors with the remote accesses of its SRC-6E 
reconfigurable computer. All the FPGA designs 
including all the macros were developed under the 
SRC computing environment. 

9. References 
[1] SRC Computers, Inc., http://www.srccomp.com/, 

2004. 
[2] Xili nx, Inc., Virtex-II Platform FPGAs: Complete 

Data Sheet, June 2004. 
[3] SRC-6 Fortran Programming Environment v1.7 

Guide, SRC Computers, Inc. 2004.  
[4] Christos Bouganis, George Constantinides, and 

Peter Cheung, A Novel 2D Filter Design 
Methodology For Heterogeneous Devices, in IEEE 
Symposium on Field Programmable Custom 
Computing Machines, April 2005 

[5] Gareth Morris, George Constantinides, and Peter 
Cheung, Migrating Functionality From ROMs to 
Embedded Multipliers, in IEEE Symposium on 
Field Programmable Custom Computing 
Machines, p.287-288, April 2004 

[6] Hassan Al Atat and Iyad Ouaiss, Register Binding 
for FPGAs with Embedded Memory, in IEEE 
Symposium on Field Programmable Custom 
Computing Machines, p.167-175, 2004 

[7] S. Wilton, SMAP: Heterogeneous Technology 
Mapping for Area Reduction in FPGAs with 
Embedded Memory Arrays, ACM/SIGDN 
International Symposium on Field Programmable 
Arrays, February 1998  

[8] M. C. Smith, J. S. Vetter, and X. Liang, 
Accelerating Scientific Applications with the SRC-
6E Reconfigurable Computer: Methodologies and 
Analysis, The 12th Reconfigurable Architectures 
Workshop, Denver, Colorado, USA, April 2005 

[9] P. H. Worley and B. Toonen, A USERS’ GUIDE 
TO PSTAWM, ORNL Technical Report 
ORNL/TM-12779, July 1995 

[10] Giovanni de Micheli , Synthesis and Optimization 
of Digital Circuits, Mcgraw-Hill , Inc., 1994. 

 


