Balancing FPGA Resource Utilities

XuegjunLiang', Jeffrey S. Vetter , MelissaC. Smith™, and Arthur S. Bland”
xuejun.liang@jsums.edu, vetterjs@ornl.gov, smithmc@ornl.gov, and blandas@ornl.gov

*Department of Computer Science, Jadkson State University, Jadkson, MS 39217 USA
** Oak Ridge National Laboratory, Oak Ridge, NT 37831 USA

ABSTRACT: Balancing the use of FGPA resources
such as FPGA dices, block RAMs, and Hock
multipliers is desirable in many FPGA apgications.
This task can be arried ou manudly by experienced
hardware designers with the use of hardware
description languages, such as Verilog and VHDL.
Howeve, many users of recnfigurable computers are
software devdopers who depend on hadware
synthesis tools or even high-levd synthesis todls to
deal with the detail s beneath the apgication logic. In
this paper, a motivating example of balancing FPGA
resource utilities is given first. A modue seledion
optimization poblem is then formulated, in which,
balancing FPGA resource utilities is treated as a
constraint, so that the solution to the modue seledion
problem is the balanced use of the FPGA resources.
Seveal variations of the problem formulation ae
discused. A naive algorithm and anefficient greedy
algorithm to solve the problem are provided and
compared. Same eyerimental results are also
presented.

Keywords: FPGA, Rewmnfigurable Computing, High-
Level Synthesis, Module Seledion

1. Introduction

Accderating applications with remnfigurable
computers has been succesgully shown in many fields,
such as digital signal processng, image processng,
cryptography, and high-end scientific goplications.
However, the programming of remnfigurable
computers is extremely cumbersome, demanding that
software developers also asaume the role of hardware
designers. Thus, one of the keys to unlocking the full
potential of these systems is developing truly automatic
and optima mapping tods. To this end, there have
been many research projeds on design environments
for reconfigurable systems.

The MAP complier for the SRC-6E remnfigurable
computer [1], which is based on the Xilinx Virtex-II

FPGA [2], can trandate auser function in a high-level
programming language (C or Fortran) into an FPGA
hardware function urt in the Verilog hardware
description language [3]. The MAP compiler always
binds multiplications in a user function to multipliers
that are built based on the FPGA block (built-in)
multipliers. As a result, a user function that contains a
large number of multipli cations may not fit in an FPGA
becaise it reguires too many block multipliers, even
though the FPGA sdtill has plenty of dlices. Since a
multiplier can also be implemented with FPGA dlices,
it is posdble that the user function would fit in the
FPGA if some of the multiplicaions were bound to
multipliers that are built based on the FPGA dlices.
Balancing the use of FPGA resources of a hardware
function urit is aso desirable when multiple mpies of
the function unt are neaded on asingle FPGA device

Motivated by the @ove observations, this paper
intends to add the resource-balancing fedure to the
MAP compiler. So, a module seledion optimization
problem is formulated, in which, different types of
multi plier implementations are seleded, and balancing
FPGA resource utiliti es is treged as a cnstraint, so
that the solution to the module seledion problem is the
balanced use of the FPGA resources.

There have been several studies that are related to
balancing the FPGA resource usage. The authors [4]
developed a methoddogy to optimize the usage of the
different components in a heterogeneous FPGA
spedficdly for 2D FIR filters, by using Singuar Value
Demmpaosition to approximate a2D filter. A technique
[5] was proposed to transfer FPGA resource usages
between FPGA block RAMs and block multipliers,
based on polynomial approximation. In [6] a new
technique was proposed that makes use of FPGA block
RAMs and maps variables to them rather than registers.

This memory-binding tednique resulted in large
savings in FPGA dlices at the expense of increasing
FPGA block RAM utiliti es. In [7] the author proposed
an algorithm that identifies part of the drcuit that can
be implemented in embedded RAMSs.

The rest of the paper is organized as foll ows. Sedion 2
gives an overview of SRC-6E reconfigurable computer.
Sedion 3 presents an example of mapping the forward
complex FFT onto the SRC-6E reonfigurable
computer, which motivates the study and serves as the
test case. Sedion 4 describes the problem formulation
and its variations. Sedion 5 provides two algorithms to
solve the problem. Sedion 6 gives ©me experimental
results. Sedion 7 concludes the paper.

2. SRC-6E Platform Overview

The SRC-6E remnfigurable computer consists of two
dual-microprocessor boards and two MAP® processors,
eah with two user programmable Xilinx® Vertex I
XC2V6000" FPGA chips and six 4MB banks of on-
board memory (OBM). The microprocesors are
conneded to the MAP processrs via SNAP® cards
which plug into the DIMM dlot on the microprocesor
motherboard [1].

The programming model for the SRC-6E is smilar to
that for conventional microprocessor-based computers,
with the alditional task of producinglogic for the MAP
reconfigurable processor. Two types of applicaion
source files are needed to target the microprocessor
and the MAP processor, respedively.

There ae two levels of source files for the MAP
procesor. At a high level, the user describes the
function, cdled the MAP function designated for
hardware, using a high-level programming language
such as FORTRAN or C. The MAP complier [3] then
converts this high-level language description into a
Verilog description for the FPGA. Optimized maaos
for the hardware ae included as a bundled library with
the SRC system and can be cdled from the MAP
function. This library includes functions sich as DMA
cdls, acaimulators, counters, etc. Additionaly, at a
low level, the MAP compil er allows users to integrate
their own custom VHDL/Verilog functions or maaos
to extend the built-in set included with the SRC-6E
platform.

It is noticed that the MAP compil er will pipeline every
innermost loopin a MAP function. Therefore, the user
should try to avoid loop-caried dependencies and to
reduce OBM accesses in an innermost loopin order to
adhieve optimum performance of a pipelined loop.
Moreover, merging a nested loop into a singe loopis
certainly desirable since alarger loopis pipelined after
merging. It is also noticed that the MAP compil er does

not perform resource sharing. This is probably becaise
the following fad. In case that aloopis fully pipelined,
i.e. a new iteration of the loopis initiated every clock
cycle, operations in the loop bo@ cannot share the
resource

3. Motivating Example

A study [8] of porting the Parallel Spedral Transform
Shallow Water Model (PSTSWM) parallel benchmark
code [9] to the SRC-6E remnfigurable computer
demonstrated a need to map the computation of in-
place forward FFT over an array of complex vedors
onto the MAP procesor. The inputs to the FFT
computation are a one-dimensional array TRIG for
storing the twiddle fadors and a two-dimensional array
Y (an array of complex vedaors), which is also used as
the output. Due to the inherent parall elism of the FFT
computation, an FPGA function urit is designed that
computes the FFT over one vedor and then multiple
copies of the function unt are placal on the FPGA.
Initially, we only consider 32-bit integer operations.

3.1 Designing the Function Unit

The FPGA design for the SRC-6E reconfigurable
computer is developed by simply writing the MAP
function in either the C or FORTRAN programming
language. The user deddes whether to alocae arays
to the OBM banks or to the block RAMs inside the
FPGA chip. The user also must take cae to ogimize
the MAP function code a mentioned in Sedion 2.

In the function unt design, one OBM bank is used for
the aray of complex vedors Y. Sincebath the red part
and the imaginary part of a complex number are
asaumed to be 32-bits and the memory cdl of the OBM
is 64-bits, the red part and the imaginary part of a
complex number are padked together into one memory
cdl. The aray TRIG isall ocated to block RAMSs.

The FPGA resource utiliti es of this design labeled as
Design 1 are shown in Table 1. Note that the FPGA
chip used on the MAP procesor contains 33,792
dices, 144 Hock RAMs, and 144 bock multipliers
(MULT18x18s).

Table 1: FPGA Resour ce Utilities of MAP Function Designs

FPGA Resources Design 1 Design 2
Slices (33,792 9,367 | 27% | 8,846 | 26%
Block RAMs (144 6 4% 6 4%
MULT18x18s(144) | 56 38% | 52 36%

Design 1 is further optimized to creae Design 2. Firgt,
a nested two inner loops are wmbined into a singe
loop Semnd, an unrecessary loopis eliminated. Third,
a multiplicaion operation is replaced by additions.
Fourth, a ade block is rewritten so as to avoid the data
dependency and therefore reduce the latency. The

FPGA resource utilities of this optimized design
labeled as Design 2 are dso shown in Table 1.

3.2 Balancing the FPGA Resource Utiliti es

From Table 1, it is expeded that if three ©pies of
Design 2, ead consuming one OBM bank, could fit on
a single FPGA chip, one MAP processor, with two
FPGA chips and six OBM banks, could hold six copies
of Design 2. The six hardware cpies can work on
different vedors in parallel. But, unfortunately, three
copies of Design 2 consume more block multipliers
than those available in the FPGA. So the three @pies
do not fit in the FPGA althoughthere ae many unused
dices. Thus there is a neal to balance the FPGA
resources. By implementing a multiplier using FPGA
dlices rather than FPGA block multipliers, it is posshble
to fit more multiplicaion operations into a singe
FPGA and more dficiently utili ze the FPGA resources.

Since the SRC-6E computing environment all ows users
to use commercial hardware design todls to design
their own maaos, which can be cdled from within a
MAP function, a dlice-based multiplier maao is built
using slices rather than block multipliers. In Design 3,
four multi pli cation operations in the MAP function are
bound to the slice-based multiplier maaos. The FPGA
resource utiliti es of Design 3 are shown in Table 2.

Table 2: FPGA Resource Utilities of MAP Function Designs

FPGA Resources Design 3 Design 4
Slices (33,792 9,816 | 2% | 26,098 | 77%
Block RAMs(144) | 6 4% |18 12%
MULT18x18s(144) | 40 27% | 120 83%

Now, three hardware cpies of Design 3 can fit on a
single FPGA chip as sown in Design 4 in Table 2.
Note that the interfacedesign in Design 3 including the
DMA data transfer from the host memory to the OBM
banks remains the same in Design 4. That is, only the
computation part of Design 3 is tripled in Design 4.
Therefore, the number of dlicesused in Design 4 isless
than the triple of that used in Design 3.

Note that al hardware maaos in the SRC-6E system
must satisfy the 100 MHz system clock rate constraint.
Both slice-based multi pliers and block multi pli er-based
multipliers are fully pipelined, and the former neels
few more pipeline stages than the latter. So the former
will have alittl e longer latency than the latter. But they
have the same throughput. Therefore, a pipelined loop
design with either the former or the latter will have
almost the same latency.

4. Problem Formulation

The FPGA resource-balancing problem discussed in
this paper is adualy a particular module seledion
problem [10] where a dedsion on which multiplier

implementation should be seleded for a given
multiplicaion reads to be made. It will be formulated
as a onstrained ogimization problem in this sdion.
One of these mnstraints will balance the use of FPGA
resources.

FPGA resources considered in this paper include
FPGA dlices, block multipliers, and block RAMs. But,
at this time, only FPGA dlices and block multipliers
will be onsidered to balance in the problem
formulation. Note that some interconned is dared
between the block RAMs and the block multipliers [2]
thus, the block RAM can be used only up to 18hits
wide when the block multiplier is used. In another
words, the number of available block multipliers to a
FPGA design will be deaeased by one when a block
RAM configured with 36-bitsis used in the design.

4.1 Enumerating Related Multi plier Maaos

Since up to 32bit integer operations are mnsidered in
this paper, only threetypes of multipliers are relevant.
Type A has two 32bit inputs and one 32-bit outpuit.
Type B has one 32-bit input and one 16-bit input and
one 32-bit output. Type C has two 16-bit inputs and
one 32-bit output.

A multiplier of Type A can be implemented using p to
threeblock multipliers. Thus, four multi plier maaos of
Type A can be implemented using zero, one, two, or
three block multipliers, respedively. The FPGA
resource utiliti es of these maaos are shown in Table 3.

Table 3: FPGA Resource Utilities of Type A Multiplier Macros

FPGA Resources MAO | MA1 | MA2 | MA3
Slices (33,792 355 236 185 118
MULT18x18s (144 0 1 2 3

A multiplier of type B can be implemented using wp to
two block multipliers. Thus, three multiplier maaos of
Type B can be implemented using zero, one, or two
block multipliers, respedively. The FPGA resource
utiliti es of these maaos are shown in Table 4.

Table 4: FPGA Resource Utilitiesof Type B Multiplier Macros

FPGA Resources MBO | MB1 | MB2
Slices (33,792 257 124 62
MULT18x18s (144) 0 1 2

Similarly, a multiplier of type C can be implemented
using either zero or one block multiplier, respedively.
The FPGA resource utilities of the two maaos are
shownin Table5.

Table 5: FPGA Resour ce Utilities of Type C Multiplier Macros

FPGA Resources MCO MC1
Slices (33,792 163 57
MULT18x18s (144) 0 1

Note that al these maaos are fully pipelined and
satisfy the 100MHz system clock rate @nstraint.

4.2 Notations and Initial Condtions

Some notations used in the formulation are introduced
asfollows. Let TNS, TNBM, and TNBR denote the total
number of FPGA dlices, block multipliers, and block
RAMs, respedively. Let SA, (n=0, 1, 2, 3), B, (n=0,
1, 2), and SC, (n=0, 1) denote the number of FPGA
slices used for the multi plier maao of type A, B, and C
using n block multipliers, respedively. Notice that the
foll owing inequaliti es hold.

SA>SA>SA>SA>0 ™
SB >SB >SB >0 @)
SG >SC 20 ©)

In an FPGA design, let NA, (n=0, 1, 2, 3), NB,, (h=0, 1,
2), and NG, (n=0, 1) stand for the number of muiltiplier
maao cdls of type A, B, and C using n block
multi pliers, respedively. Let NA, NB, and NC stand for
the number of multiplicaions of type A, B, and C,
respedively. Note that every muiltiplicaion should be
bound to the same type multiplier. Therefore, the
foll owing conditions must be satisfied.

NA,20,n=0,1,2,3 (4)
NB,=0,n=0,1, 2 (5)
NC,=20,n=0,1 (6)
NA, + NA + NA, + NA; = NA @)
NB, + NB, + NB, = NB (8)
NC, + NC, = NC 9)

Let NBM, NBRL8, and NBR36 stand for the number of
block multipliers, block RAMs configured with up to
18-bits, and bock RAMs configured with 36-bits,
respedively. Let NS4 and NS4C stand for the number
of FPGA dlices used for the interface ad FPGA dlices
used for the cmputation, respedively.

The sum of NS4 and NSAC should be egual to the
number of FPGA dlices used for the whole FPGA
design. It is assumed that NS4 is not going to change
when multiple mpies of the computation urit of the
FPGA design are used. It is al'so assumed that all block
multipliers and al block RAMs used in the FPGA
design belong to the computation unt. Therefore,
NS4C, NBM, NBRL8, and NBR36 will be doubled
when two copies of the mmputation urit of the FPGA
design are used.

It is assumed that every multiplication isinitially bound
to the same type multi plier that uses maximum number
of block multipliers in an initial synthesis without
considering the resource balancing like the arrent
MAP compiler. This initial conditions are represented
by equaliti es (10), (11), and (12).

The values of NA, NB, NC, NS4, NBR18, and NBR36
are aumed known after the initial synthesis and

unchanged during the process of balancing FPGA
resources. The initial values of NS4AC and NBM are
also known after the initial synthesis and denoted by
NS4C, and NBM, respedively.

NA, = NA = NA =0andNA, = NA 10
NB, = NB, = 0andNB, = NB 1y
NC, = 0andNC, = NC (12)

When the initial values for NA, (n=0, 1, 2, 3), NB,
(n=0, 1, 2), and NC, (n=0, 1) are changed, the dhange
of the number of block multipliers used for the
computation (NBM-NBMg) and the dange of the
number of FPGA dlices used for the @mputation
(NS4C-NSAC,) can be cdculated by the following two
formulag respedively.

NBM — NBM, = (NA +2x NA, +3x(NA, - NA))
+(NB, +2x(NB, - NB))
+(NC, - NC) 13
NSAC - NSAC, =

(SA X NA, + SAXNA +SAxNA, +SA x (NA, - NA) +
(SB xNB, + SB xNB, + SB, x (NB, - NB)) +

(SG x NG, +SG x(NC, - NC)) 14

4.3 Formulating the Problem

Now the module seledion problem for baancing
FPGA resources discussd in this paper isto determine
proper values for NA, (n=0, 1, 2, 3), NB, (n=0, 1, 2),
and NG, (n=0, 1) so asto have abalanced use of dlices
and block multi pliers. We define

NS—- NS4l
CComp(Ns4C :FloorBTiE 1
o) D Nsac - (19

CMult(NBM) = Floord—NBM [(16)

ONBM + NBR36

CRams= Floor TNBR E @17

ONBRL8+ NBR36[

In the &ove definition, TNSNS4 is the dices
available for the cmputation urit and NSAC is the
slices adually used for the cmputation urit. TNBM is
the block multipliers avail able for the computation urit
and NBM+NBR36 is the equivalent block multipliers
used adualy for the computation urit, because if a
block RAM is configured with 36-bits wide, then the
corresponding block multiplier cannot be used any
more. TNBR is the block RAMs available for the
computation urit and NBR18+NBR36 is the block
RAMs adually used for the computation urit. So it can
be seen that the maximum number of copies of the
computation urit that can fit on a single FPGA chip
will be the minimum value of CComp(NSAC),
CMult(NBM) and CRams.

Because CRams is fixed after the initial synthesis but
CComp(NS4C) and CMult(NBM) are going to change
during the process of the resource balancing, the
maximum number of copies of the cmputation urit
will be adieved when the following, cdled the balance
constraint, holds.

CMult(NBM) = CComgNSAC) 19

Propasition I The minimum value of NS4C is NS4C,
and the maximum vaue of NBM is NBM,. The
maximum value of CComp(NSAC) is CComp(NSAC,)
and the minimum value of CMult(NBM) is
CMult(NBMy).

Propgasition 2 Minimizing NS4C implies maximizing
CComp(NS4C). Minimizing NBM implies maximizing
CMUult(NBM).

Now the resource-balancing problem can be
formulated as follows: Determine NA, (n=0, 1, 2, 3),
NB;, (n=0, 1, 2), and NG, (n=0, 1), to

minimize NS4C
subject to the constraints (4)-(9) and (P1)
the balance constraint (18).

Note that the balance ®nstraint (18) istoo strong. It is
very likely that (P1) does not have asolution to some
problems. Two relessed balance mngtraints: dice
bound constraint (19) and block multiplier-bound
constraint (20) are defined as foll ows.

CMult(NBM) = CComgNSAC) 19
CMult(NBM) < CCom{NS4C) (20)

Then areleased version of (P1) formulation can be
minimize NS4C

subject to the constraints (4)-(9) and (P2)
the slice-bound constraint (19).

Propgsition 3 If (P1) has a solution to a problem, then
it must be the solution of (P2) to the same problem.

Moreover, a dua formulation of (P1) and a dual
formulation of (P2) can be asfollows.

minimize NBM
subject to the constraints (4)-(9) and (QY
the balance constraint (18).

minimize NBM
subject to the constraints (4)-(9) and (Q2)
the multiplier-bound constraint (20).

Propgsition 4 If (Q1) has a solution to a problem, then
it must be the solution of (Q2) to the same problem.

It can be noticed that either (P2) or (Q2) must have a
solution for a cmmon problem. If both (P2) and (Q2)
have solutions to the same problem, then both solutions
must satisfy the balance onstraint, and then the
solution of (P2) is also the solution of (P1) and the
solution of (Q2) is also the solution of (Q1).

A solution of (P2) for one problem may end up with
CComp(NSAC) = 2 and CMult(NBM) = 3. This means
that we can have two copies of computation urit, even
thoughwe have enough block multipliers for three On
the other hand, a solution of (Q2) for another distinct
problem may end up with CComp(NS4AC) = 3 and
CMult(NBM) = 2. This means that we can have two
copies of computation urit, even though we have
enough dices for three Plesse note that these two
situations will not occur for the same problem.

5. Two Algorithms

5.1 A Naive Algorithm

The formulations (P1), (P2), (Q1), and (Q2) can be
very eaily solved by a naive dgorithm, which is
described for the formulation (P1) as follows.
Enumerate dl possble values of NA, (n=0, 1, 2, 3),
NB, (n=0, 1, 2), and NG, (n=0, 1). For those values
that satisfy the onstraints (4)-(9), compute NBM,
NSAC, CMult(NBM) and CComp(NSA4C) based on (13),
(14), (16) and (15). If the balance ®nstraint (18) is
satisfied, ke track of those values that make NS4C
small er than before.

Note that this naive dgorithm performs the exhaustive
seach and thus will produce a exad solution to the
constrained optimization problem. However, the worst-
case omplexity of the naive dgorithm is very high. It
can be omputed by (NA+1)*x(NB+1)x(NC+1)*,
where the exponents 3, 2, and 1 are the number of
different maaos of Type A, B, and C multipliersless1,
respedively.

5.2 A Grealy Algorithm

An efficient greedy algorithm that solves (P2) is given
in this edion. A similar discusson may apply to (Q2),
which is omitted in this paper owing to the spaceli mit.

From CMult(0) = CMult(NBM) and CComp(NS4C,) =
CComp(NSAC) for any values of NA, (n=0, 1, 2, 3),
NB, (n=0, 1, 2), and NC, (n=0, 1) that satisfy the
congtraints (4)-(9), the following condition is sufficient
for (P2) to have asolution, and then is asaumed true in
this sdion.

CMult(0) = CComgNSAC,) (29
When CMUult(NBMg) = CComp(NS4C,), the initial
settings of NA,, NB, and NG, arealy provide an
optimal solution, and, in this case, NSAC = NSAC,.
Now, consider

CMult(NBM,) < CComgNSAC,) (22
This condition indicates that there ae relatively more

block multipliers initialy used in the function unt
design than expeded.

The basic ideaof the grealy algorithm to solve (P2) is
to deaeased NBM by one & one step and to keep
NS4AC with a minimum incresse & ead step urtil
CMult(NBM) = CComp (NSAC).

Note that there ae six different schemes to reduce
NBM by one & down in Table 6. The adion for eah
scheme is listed in the adion column. Each scheme
adion must satisfy a mndition so as to satisfy the
problem constraints. The andition for ead scheme is
listed in the condition column. Note that when NBM is
deaeased, NSAC will i ncrease. The increase of NS4C
for eat scheme, cdled cost, is listed in the st
column.

Table 6: Six Schemesto Reduce NBM by One

Scheme Action Condtion Cost
0 NA;-- & NAg++ NA;>0 SA-SA
1 NA,-- & NA;++ NA>0 SA-SA,
2 NAz-- & NA++ NAz>0 SA-SA;
3 NB;-- & NBg++ NB>0 SBo-SB;
4 NB,-- & NB;++ NB,>0 SB;-SB,
5 NC-- & NCyt+ | NC>0 SCo-SCy

A scheme with a smaller cost will have a higher
priority to apply. For example, when the values of SA,
(n=0, 1, 2, 3), B, (n=0, 1, 2) and SC, (n=0, 1) are
taken from Tables 3, 4, and 5, respedively, the sts of
ead scheme ae listed in Table 7. It can be seen that
Scheme 1 has the highest priority and Scheme 3 has the
lowest priority. The six schemes rted from the
smallest cost to the largest cost form an array, cdled
priority array.
Table 7: An Example of Costs of Each Scheme

Scheme | 0 1 2 3 4 5

Cost 119 | 51 67 | 133 | 62 106

A pseudo code of the gready agorithm in the C++
context is down below. In ead iteration NBM is
deaeased by one and NSAC is updated acrdingly by
taking one posshble scheme adion in Table 6 with the
highest priority untii CMult(NBM) = CComp(NS4C).
Note that the loop will terminate becaise (21) is
asaimed true.

while(CMult(NBM) < CComp(NS4C))
{

index = 0;
update = 0;
while(update == 0)

update = Update(Priority[index], &NS4C);
index++;

}
NBM--;

}

The worst-case aomplexity of the greedy algorithm is
(NAx3+NBx2+NC)x6, where the fador 6 (=3+2+1) is

the number of schemes that can reduce NBM by one,
and the addends 3, 2, and 1 are the number of different
macaos of Type A, B, and C multipliers less 1,
respedively.

6. Experiments

The naive dgorithm and the greedy algorithm are both
implemented using C++. The data from the motivating
example in Sedion 3 are used as the program inputs as
listedin Table 8.

Table 8: Program Inputs

TNS 33792] NA 15 | SB, | 257
TNBM 144 | NB 3|8, | 124
TNBR 144 | NC 18, | 62
NSAC, | 8141| SA, | 355| SC, | 163
NS4 1675| SA, | 236 C, | 57
NBRLS 0| SsA | 185

NBR36 6| SA, | 118

The results produced by both agorithms are listed in
Table 9. In this example, (P1) and (P2) have the same
solution, and (Ql) and (Q2) adso have the same
solution. They are solved by the naive dgorithm. (P2)
is also solved by the greedy algorithm. It can be seen
that the results from the greedy algorithm are very
close to the exad results from the naive dgorithm. But
the complexity of the naive dgorithm is much higher
that that of the greedy algorithm.

The last column of Table 9 shows results obtained
manually from the motivating example. The NBM and
NSAC are computed from (13) and (14) respedively.
Note that NSAC +NS4 = 9089+ 1657 = 10746 which
is greaer than 9,816, which is obtained from the
Xilinx's Place &ad Routing todl for Design 3 in Sedion
3. Thisis becaise the Xilinx's tod simplifies the user
logic and prunes the unused user logic.

Table 9: Experimental Results
Naive Greedy

Parameter o Totooz| P2 | MAA
NA, 0 0 0 4
NA; 5 1 3 0
NA, 0 14 1 0
NA; 10 0 11 11
NB, 0 2 0 0
NB, 0 1 3 0
NB, 3 0 0 3
NG, 0 0 0 0
NC, 1 1 1 1
NSAC 8731 | 9649 8748 | 9089
NBM 42 31 42 40
Max Copies | 3 3 3 3
Complexity | 795906 | 795906 | 318 | N/A

Please notice that in order to plug the module seledion
algorithm into the SRC compilation environment, the

MAP compiler must be a@le to estimate the FPGA
utiliti es for a given MAP function. Otherwise, we have
to use this algorithm off-line & follows. First, use the
MAP compiler to translate agiven MAP function from
Fortran or C into Verilog. Semnd, use cmmmercial
tools to synthesize the Verilog file and to obtain the
FPGA resource utiliti es. Third, use this algorithm to
get the balanced use of FPGA dlices and block RAMS,
and then change the MAP function to alocate (cdl) a
proper multiplier maao for a given multiplication.
Finaly, the modified MAP function code needs to go
through the MAP compiler and commercial synthesis
tools again.

7. Conclusion

An FPGA module seledion problem is formulated to
ded with balancing FPGA resources. In the problem
formulation a dedsion on which multiplier
implementation should be bound to a given
multi plicaion needs to be made. Several variations of
the problem formulation are dso studied. A naive
algorithm and an efficient greedy algorithm to solve the
problem are provided. The naive dgorithm is able to
produce &ad results and the greedy algorithm
produces acarate results at a much lower cost. The
worst-case complexities of the two algorithms are
studied, and the complexity of the greedy algorithm is
very low. The two algorithms are dso implemented and
tested. The results produced by the two algorithms are
very close, and compared with results from a manual
FGPA design.

The FPGA resource-balancing problem studied in this
paper is far from complete. The balancing of FPGA
block RAMs with FPGA dices and FPGA block
multipliers is not considered. Additionally, the block
RAMs may be replacal with the distributed RAMs
built from FPGA lookup tables inside FPGA slices
freédng block RAMs and in the process additional
block multipliers. To acmommodate more block
multi pliers, a block RAM configured with 36-bits can
be replacal with two block RAMs configured with 18-
bits. Therefore, the FPGA resource-balancing problem
beomes more challenging when block RAMs are dso
considered.

Moreover, only three types of multipliers are
considered in this paper. In general, a parameterized
multiplier should be mnsidered. The implementations
of the multipliers should also be optimized. The FPGA
dlices required by the multiplier maaos used in this
reseach may be reduced. These maaos are fully
pipelined and can run at 100 MHz dock rate or above
becaise the SRC reonfigurable computer demands
100 MHz dock rate.

8. Acknowledgments

This reseach was supparted in part by an appantment
to the Oak Ridge National Laboratory/Oak Ridge
Associated Universities Historicaly Blad Colleges
and Universities and Minority Educdion Institutes
Summer Faallty Reseach Program at the Oak Ridge
National Laboratory administered by the Oak Ridge
Ingtitute for Science and Education.

Moreover, the SRC Computers, Inc. provided the
authors with the remote access of its SRC-6E
reconfigurable @mputer. All the FPGA designs
including al the maaos were developed under the
SRC computing environment.

9. References

[1] SRC Gomputers, Inc., http://mww.srccomp.con/,
2004

[2] Xilinx, Inc., Virtex-1I Platform FPGAs: Complete
Data Shed, June 2004

[3] SRC-6 Fortran Programming Environment v1.7
Guide, SRC Gompuiters, Inc. 2004

[4] Christos Bouganis, George Constantinides, and
Peter Cheung, A Novel 2D Filter Design
Methoddogy For Heterogeneous Devices, in IEEE
Symposium on Field Programmable Custom
Computing Madhines, April 2005

[5] Gareth Morris, George Constantinides, and Peter
Cheung, Migrating Functionality From ROMs to
Embedded Multipliers, in IEEE Symposium on
Field Programmable Custom Computing
Machines, p.287-288, April 2004

[6] Hassan Al Atat and lyad Ouaiss Register Binding
for FPGAswith Embedded Memory, in IEEE
Sympaosium on Field Programmable Custom
Computing Machines, p.167-175, 2004

[71 S. Wilton, SMAP: Heterogeneous Tednology
Mapping for AreaReduction in FPGAs with
Embedded Memory Arrays, ACM/SIGDN
International Symposium on Field Programmable
Arrays, February 1998

[8] M. C. Smith, J. S. Vetter, and X. Liang,
Accderating Scientific Appli cations with the SRC-
6E Recwnfigurable Computer: Methoddogies and
Analysis, The 12" Reconfigurable Architectures
Workshop, Denver, Colorado, USA, April 2005

[91 P.H.Worley and B. Toonen, A USERS GUIDE
TO PSTAWM, ORNL Technicd Report
ORNL/TM-12779 July 1995

[10] Giovanni de Micheli, Synthesis and Optimization
of Digital Circuits, Mcgraw-Hill , Inc., 1994

